How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Defining LS: A History
1.2. Current Clinical Guidance for LS Screening
2. Barriers to Implementing LS Screening Guidance
3. Limitations of LS Screening Guidance
3.1. Not All Colorectal Cancers Are Made Equal
3.2. Ambiguous Genetic Diagnoses
3.3. Lynch-Like Syndrome
4. The Next Generation of LS Screening
4.1. Advances in Tumour MMR Deficiency Testing
4.2. Tumour Sequencing to Screen for LS
4.3. Germline Sequencing to Identify LS
5. Should LS Screening Include Additional Lynch-Spectrum Tumours?
5.1. Molecular Analysis of Endometrial Cancers Is a Clinically Useful Screen for LS
5.2. The Frequency of LS Is Equivalent across Most Lynch-Spectrum Tumours
5.3. MMR Deficiency Is a Sensitive Biomarker of LS in All Lynch-Spectrum Tumours
5.4. The Accuracy of LS Screening by MMR Deficiency Testing Is Comparable across Most Lynch-Spectrum Tumours
5.5. MSI Analysis of CNS Tumours Has a Low Sensitivity for MMR Deficiency
5.6. MMR Deficiency Testing of Colorectal Adenomas in High-Risk Patients Could Be Used to Screen for LS
6. Non-Neoplastic Features Can Identify LS Gene Carriers Prior to Tumour Onset
7. MMR Deficiency Testing to Inform the Use of Immunotherapy Will Increase LS Detection
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vasen, H.; Blanco, I.; Aktan-Collan, K.; Gopie, J.; Alonso, A.; Aretz, S.; Bernstein, I.; Bertario, L.; Burn, J.; Capella, G.; et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): Recommendations by a group of European experts. Gut 2013, 62, 812–823. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppälä, T.T.; Ten Broeke, S.W.; Plazzer, J.-P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. Off. J. Am. Coll. Med. Genet. 2020, 22, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Le, D.; Durham, J.; Smith, K.; Wang, H.; Bartlett, B.; Aulakh, L.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Burn, J.; Sheth, H.; Elliott, F.; Reed, L.; Macrae, F.; Mecklin, J.-P.; Möslein, G.; McRonald, F.E.; Bertario, L.; Evans, D.G.; et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: A double-blind, randomised, placebo-controlled trial. Lancet 2020, 395, 1855–1863. [Google Scholar] [CrossRef]
- Cuzick, J.; Thorat, M.A.; Bosetti, C.; Brown, P.H.; Burn, J.; Cook, N.R.; Ford, L.G.; Jacobs, E.J.; Jankowski, J.A.; la Vecchia, C.; et al. Estimates of benefits and harms of prophylactic use of aspirin in the general population. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 47–57. [Google Scholar] [CrossRef]
- Dueñas, N.; Navarro, M.; Teulé, À.; Solanes, A.; Salinas, M.; Iglesias, S.; Munté, E.; Ponce, J.; Guardiola, J.; Kreisler, E.; et al. Assessing effectiveness of colonic and gynecological risk reducing surgery in Lynch syndrome individuals. Cancers 2020, 12, 3419. [Google Scholar] [CrossRef] [PubMed]
- Win, A.; Jenkins, M.; Dowty, J.; Antoniou, A.; Lee, A.; Giles, G.; Buchanan, D.; Clendenning, M.; Rosty, C.; Ahnen, D.; et al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol. Biomark. Prev. 2017, 26, 404–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, L.; Balaguer, F.; Lindor, N.; de la Chapelle, A.; Hampel, H.; Aaltonen, L.; Hopper, J.; Marchand, L.L.; Gallinger, S.; Newcomb, P.; et al. Identification of Lynch syndrome among patients with colorectal cancer. JAMA 2012, 308, 1555–1565. [Google Scholar] [CrossRef]
- Ryan, N.A.J.; Glaire, M.A.; Blake, D.; Cabrera-Dandy, M.; Evans, D.G.; Crosbie, E.J. The proportion of endometrial cancers associated with Lynch syndrome: A systematic review of the literature and meta-analysis. Genet. Med. 2019, 21, 2167–2180. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J.; Gruber, S.; Meister, K.; Bonner, J.; Watson, P.; Krush, A.; Lynch, H. History and molecular genetics of Lynch syndrome in family G: A century later. JAMA 2005, 294, 2195–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, H.T.; Krush, A.J. Cancer family “G” revisited: 1895–1970. Cancer 1971, 27, 1505–1511. [Google Scholar] [CrossRef]
- Lynch, H.; Kimberling, W.; Albano, W.; Lynch, J.; Elston, R.; Biscone, K.; Schuelke, G.; Sandberg, A.; Lipkin, M.; Deschner, E.; et al. Hereditary nonpolyposis colorectal cancer (Lynch syndromes I and II). I. Clinical description of resource. Cancer 1985, 56, 934–938. [Google Scholar] [CrossRef]
- Aaltonen, L.; Peltomäki, P.; Leach, F.; Sistonen, P.; Pylkkänen, L.; Mecklin, J.; Järvinen, H.; Powell, S.; Jen, J.; Hamilton, S.; et al. Clues to the pathogenesis of familial colorectal cancer. Science 1993, 260, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Lothe, R.; Peltomäki, P.; Meling, G.; Aaltonen, L.; Nyström-Lahti, M.; Pylkkänen, L.; Heimdal, K.; Andersen, T.; Møller, P.; Rognum, T.; et al. Genomic instability in colorectal cancer: Relationship to clinicopathological variables and family history. Cancer Res. 1993, 53, 5849–5852. [Google Scholar]
- Thibodeau, S.; Bren, G.; Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 1993, 260, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Ionov, Y.; Peinado, M.; Malkhosyan, S.; Shibata, D.; Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993, 363, 558–561. [Google Scholar] [CrossRef]
- Strand, M.; Prolla, T.; Liskay, R.; Petes, T. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 1993, 365, 274–276. [Google Scholar] [CrossRef]
- Fishel, R.; Lescoe, M.; Rao, M.; Copeland, N.; Jenkins, N.; Garber, J.; Kane, M.; Kolodner, R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993, 75, 1027–1038. [Google Scholar] [CrossRef]
- Leach, F.S.; Nicolaides, N.C.; Papadopoulos, N.; Liu, B.; Jen, J.; Parsons, R.; Peltomäki, P.; Sistonen, P.; Aaltonen, L.A.; Nyström-Lahti, M.; et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993, 75, 1215–1225. [Google Scholar] [CrossRef]
- Bronner, C.; Baker, S.; Morrison, P.; Warren, G.; Smith, L.; Lescoe, M.; Kane, M.; Earabino, C.; Lipford, J.; Lindblom, A.; et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 1994, 368, 258–261. [Google Scholar] [CrossRef]
- Nicolaides, N.; Papadopoulos, N.; Liu, B.; Wei, Y.; Carter, K.; Ruben, S.; Rosen, C.; Haseltine, W.; Fleischmann, R.; Fraser, C.; et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 1994, 371, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Miyaki, M.; Konishi, M.; Tanaka, K.; Kikuchi-Yanoshita, R.; Muraoka, M.; Yasuno, M.; Igari, T.; Koike, M.; Chiba, M.; Mori, T. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat. Genet. 1997, 17, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Ligtenberg, M.; Kuiper, R.; Chan, T.; Goossens, M.; Hebeda, K.; Voorendt, M.; Lee, T.; Bodmer, D.; Hoenselaar, E.; Hendriks-Cornelissen, S.; et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 2009, 41, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.; Umar, A.; Polyak, K.; Graff, J.; Ahuja, N.; Issa, J.; Markowitz, S.; Willson, J.; Hamilton, S.; Kinzler, K.; et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA 1998, 95, 6870–6875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, G.; Chen, A.; Hong, J.; Chae, H.; Kim, Y. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res. 1999, 59, 2029–2033. [Google Scholar] [PubMed]
- Boland, C.R. Evolution of the nomenclature for the hereditary colorectal cancer syndromes. Fam. Cancer 2005, 4, 211–218. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence UK. Molecular Testing Strategies for Lynch Syndrome in People with Colorectal Cancer [Diagnostic Guidance 27]. Available online: https://www.nice.org.uk/guidance/dg27 (accessed on 21 December 2020).
- Gylling, A.H.S.; Nieminen, T.T.; Abdel-Rahman, W.M.; Nuorva, K.; Juhola, M.; Joensuu, E.I.; Järvinen, H.J.; Mecklin, J.P.; Aarnio, M.; Peltomäki, P.T. Differential cancer predisposition in Lynch syndrome: Insights from molecular analysis of brain and urinary tract tumors. Carcinogenesis 2008, 29, 1351–1359. [Google Scholar] [CrossRef] [Green Version]
- Yurgelun, M.; Kulke, M.; Fuchs, C.; Allen, B.; Uno, H.; Hornick, J.; Ukaegbu, C.; Brais, L.; McNamara, P.; Mayer, R.; et al. Cancer susceptibility gene mutations in individuals with colorectal cancer. J. Clin. Oncol. 2017, 35, 1086–1095. [Google Scholar] [CrossRef]
- Hampel, H.; Pearlman, R.; Beightol, M.; Zhao, W.; Jones, D.; Frankel, W.; Goodfellow, P.; Yilmaz, A.; Miller, K.; Bacher, J.; et al. Assessment of tumor sequencing as a replacement for lynch syndrome screening and current molecular tests for patients with colorectal cancer. JAMA Oncol. 2018, 4, 806–813. [Google Scholar] [CrossRef]
- Porkka, N.K.; Olkinuora, A.; Kuopio, T.; Ahtiainen, M.; Eldfors, S.; Almusa, H.; Mecklin, J.-P.; Peltomäki, P. Does breast carcinoma belong to the Lynch syndrome tumor spectrum? Somatic mutational profiles vs. ovarian and colorectal carcinomas. Oncotarget 2020, 11, 1244–1256. [Google Scholar] [CrossRef] [Green Version]
- Knudson, A.G. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820. [Google Scholar] [CrossRef] [Green Version]
- Domingo, E.; Laiho, P.; Ollikainen, M.; Pinto, M.; Wang, L.; French, A.; Westra, J.; Frebourg, T.; Espín, E.; Armengol, M.; et al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J. Med. Generics 2004, 41, 664–668. [Google Scholar] [CrossRef]
- Kambara, T.; Simms, L.; Whitehall, V.; Spring, K.; Wynter, C.; Walsh, M.; Barker, M.; Arnold, S.; McGivern, A.; Matsubara, N.; et al. BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut 2004, 53, 1137–1144. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Carbonell, L.; Alenda, C.; Payá, A.; Castillejo, A.; Barberá, V.; Guillén, C.; Rojas, E.; Acame, N.; Gutiérrez-Aviñó, F.; Castells, A.; et al. Methylation analysis of MLH1 improves the selection of patients for genetic testing in Lynch syndrome. J. Mol. Diagn. 2010, 12, 498–504. [Google Scholar] [CrossRef]
- Parsons, M.; Buchanan, D.; Thompson, B.; Young, J.; Spurdle, A. Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: A literature review assessing utility of tumour features for MMR variant classification. J. Med. Generics 2012, 49, 151–157. [Google Scholar] [CrossRef]
- Stoffel, E.; Mangu, P.; Gruber, S.; Hamilton, S.; Kalady, M.; Lau, M.; Lu, K.; Roach, N.; Limburg, P. Hereditary colorectal cancer syndromes: American society of clinical oncology clinical practice guideline endorsement of the familial risk-colorectal cancer: European society for medical oncology clinical practice guidelines. J. Clin. Oncol. 2015, 33, 209–217. [Google Scholar] [CrossRef]
- Balmana, J.; Balaguer, F.; Cervantes, A.; Arnold, D. Familial risk-colorectal cancer: ESMO Clinical Practice Guidelines. Ann. Oncol. 2013, 24, 73–80. [Google Scholar] [CrossRef]
- Rodriguez-Bigas, M.; Boland, C.; Hamilton, S.; Henson, D.; Jass, J.; Khan, P.; Lynch, H.; Perucho, M.; Smyrk, T.; Sobin, L.; et al. A national cancer institute workshop on hereditary nonpolyposis colorectal cancer syndrome: Meeting highlights and Bethesda guidelines. J. Natl. Cancer Inst. 1997, 89, 1758–1762. [Google Scholar] [CrossRef] [Green Version]
- Umar, A.; Boland, C.; Terdiman, J.; Syngal, S.; de la Chapelle, A.; Rüschoff, J.; Fishel, R.; Lindor, N.; Burgart, L.; Hamelin, R.; et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl. Cancer Inst. 2004, 96, 261–268. [Google Scholar] [CrossRef]
- Mvundura, M.; Grosse, S.; Hampel, H.; Palomaki, G. The cost-effectiveness of genetic testing strategies for Lynch syndrome among newly diagnosed patients with colorectal cancer. Genet. Med. 2010, 12, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Ladabaum, U.; Wang, G.; Terdiman, J.; Blanco, A.; Kuppermann, M.; Boland, C.; Ford, J.; Elkin, E.; Phillips, K. Strategies to identify the Lynch syndrome among patients with colorectal cancer: A cost-effectiveness analysis. Ann. Intern. Med. 2011, 155, 69–79. [Google Scholar] [CrossRef]
- Snowsill, T.; Huxley, N.; Hoyle, M.; Jones-Hughes, T.; Coelho, H.; Cooper, C.; Frayling, I.; Hyde, C. A systematic review and economic evaluation of diagnostic strategies for Lynch syndrome. Health Technol. Assess. 2014, 18. [Google Scholar] [CrossRef] [Green Version]
- Di Marco, M.; Dandrea, E.; Panic, N.; Baccolini, V.; Migliara, G.; Marzuillo, C.; de Vito, C.; Pastorino, R.; Boccia, S.; Villari, P. Which Lynch syndrome screening programs could be implemented in the “real world”? A systematic review of economic evaluations. Genet. Med. 2018, 20, 1131–1144. [Google Scholar] [CrossRef] [Green Version]
- Tognetto, A.; Michelazzo, M.B.; Calabró, G.E.; Unim, B.; di Marco, M.; Ricciardi, W.; Pastorino, R.; Boccia, S. A systematic review on the existing screening pathways for Lynch syndrome identification. Front. Public Health 2017, 5, 243. [Google Scholar] [CrossRef] [Green Version]
- Heald, B.; Plesec, T.; Liu, X.; Pai, R.; Patil, D.; Moline, J.; Sharp, R.R.; Burke, C.A.; Kalady, M.F.; Church, J.; et al. Implementation of universal microsatellite instability and immunohistochemistry screening for diagnosing Lynch Syndrome in a large academic medical center. J. Clin. Oncol. 2013, 31, 1336–1340. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, T.; Handorf, E.; Meyer, J.; Hall, M.; Esnaola, N. Mismatch repair deficiency testing in patients with colorectal cancer and nonadherence to testing guidelines in young adults. JAMA Oncol. 2018, 4, e173580. [Google Scholar] [CrossRef]
- Hampel, H.; de la Chapelle, A. The search for unaffected individuals with Lynch syndrome: Do the ends justify the means? Cancer Prev. Res. 2011, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Royal College of Pathologists. Bowel Cancer UK, 2016 Data Briefing: Reflex Testing for Lynch Syndrome in People Diagnosed with Bowel Cancer under the Age of 50. Available online: https://bowelcancerorguk.s3.amazonaws.com/Final2016DataBriefingLynchsyndrome.pdf (accessed on 21 December 2020).
- Loughrey, M.; Quirke, P.; Shepherd, N. Royal College of Pathologists, Dataset for Colorectal Cancer Histopathology Reports. Available online: https://www.rcpath.org/asset/E94CE4A2-D722-44A7-84B9D68294134CFC/ (accessed on 21 December 2020).
- Noll, A.; Parekh, P.J.; Zhou, M.; Weber, T.K.M.D.; Ahnen, D.; Ms, X.-C.W.; Karlitz, J.J. Barriers to Lynch syndrome testing and preoperative result availability in earlyonset colorectal cancer: A national physician survey study. Clin. Transl. Gastroenterol. 2018, 9, 185. [Google Scholar] [CrossRef]
- Dicks, E.; Pullman, D.; Kao, K.; MacMillan, A.; Simmonds, C.; Etchegary, H. Universal tumor screening for Lynch syndrome: Perspectives of Canadian pathologists and genetic counselors. J. Community Genet. 2019, 10, 335–344. [Google Scholar] [CrossRef]
- Brennan, B.; Hemmings, C.T.; Clark, I.; Yip, D.; Fadia, M.; Taupin, D.R. Universal molecular screening does not effectively detect Lynch syndrome in clinical practice. Ther. Adv. Gastroenterol. 2017, 10, 361–371. [Google Scholar] [CrossRef]
- Kidambi, T.D.; Lee, R.; Terdiman, J.P.; Day, L. Successful implementation of Lynch syndrome screening in a safety net institution. J. Community Genet. 2016, 7, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, C.; Lee, S.M.; Barge, W.; Siddique, S.M.; Berera, S.; Wideroff, G.; Tondon, R.; Chang, J.; Peterson, M.; Stoll, J.; et al. Low referral rate for genetic testing in racially and ethnically diverse patients despite universal colorectal cancer screening. Clin. Gastroenterol. Hepatol. 2018, 16, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Bombard, Y.; Rozmovits, L.; Sorvari, A.; Daly, C.; Carroll, J.C.; Kennedy, E.; Rabeneck, L.; Baxter, N.N. Universal tumor screening for Lynch syndrome: Health-care providers’ perspectives. Genet. Med. 2017, 19, 568–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.; Foy, R.; McGowan, J.; Kobayashi, L.; Burn, J.; Brown, K.; Side, L.; Cuzick, J. General practitioner attitudes towards prescribing aspirin to carriers of Lynch syndrome: Findings from a national survey. Fam. Cancer 2017, 16, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Melissa, K.F.; Mollie, A.B.; Michael, J.W.; Jolyn, S.T.; Stephanie, N.L.; Kevin, H. Lynch syndrome: Awareness among medical students at a United States Medical School. Curr. Women’s Health Rev. 2012, 8, 242–247. [Google Scholar]
- Tan, Y.Y.; Spurdle, A.B.; Obermair, A. Knowledge, attitudes and referral patterns of lynch syndrome: A survey of clinicians in australia. J. Pers. Med. 2014, 4, 218–244. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.E.; Zepp, J.M.; Gilmore, M.J.; Davis, J.V.; Esterberg, E.J.; Muessig, K.R.; Peterson, S.K.; Syngal, S.; Acheson, L.S.; Wiesner, G.L.; et al. Universal tumor screening for Lynch syndrome: Assessment of the perspectives of patients with colorectal cancer regarding benefits and barriers. Cancer 2015, 121, 3281–3289. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, C. Introducing whole-genome sequencing into routine cancer care: The Genomics England 100,000 Genomes Project. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 784–787. [Google Scholar] [CrossRef]
- Sankar, P.L.; Parker, L.S. The precision medicine initiative’s all of us research program: An agenda for research on its ethical, legal, and social issues. Genet. Med. Off. J. Am. Coll. Med. Genet. 2017, 19, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Engel, C.; Ahadova, A.; Seppälä, T.T.; Aretz, S.; Bigirwamungu-Bargeman, M.; Bläker, H.; Bucksch, K.; Büttner, R.; de Vos Tot Nederveen Cappel, W.T.; Endris, V.; et al. Associations of pathogenic variants in MLH1, MSH2, and MSH6 with risk of colorectal adenomas and tumors and with somatic mutations in patients with Lynch syndrome. Gastroenterology 2020, 158, 1326–1333. [Google Scholar] [CrossRef]
- Ahadova, A.; von Knebel Doeberitz, M.; Bläker, H.; Kloor, M. CTNNB1-mutant colorectal carcinomas with immediate invasive growth: A model of interval cancers in Lynch syndrome. Fam. Cancer 2016, 15, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Ten Broeke, S.; van der Klift, H.; Tops, C.; Aretz, S.; Bernstein, I.; Buchanan, D.; de la Chapelle, A.; Capella, G.; Clendenning, M.; Engel, C.; et al. Cancer risks for PMS2-associated Lynch syndrome. J. Clin. Oncol. 2018, 36, 2961–2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekine, S.; Mori, T.; Ogawa, R.; Tanaka, M.; Yoshida, H.; Taniguchi, H.; Nakajima, T.; Sugano, K.; Yoshida, T.; Kato, M.; et al. Mismatch repair deficiency commonly precedes adenoma formation in Lynch Syndrome-Associated colorectal tumorigenesis. Mod. Pathol. 2017, 30, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Ahadova, A.; Gallon, R.; Gebert, J.; Ballhausen, A.; Endris, V.; Kirchner, M.; Stenzinger, A.; Burn, J.; von Knebel Doeberitz, M.; Blaker, H.; et al. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int. J. Cancer 2018, 143, 139–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, A.M.; Westers, H.; Sousa, S.; Wu, Y.; Niessen, R.C.; Olderode-Berends, M.; van der Sluis, T.; Reuvekamp, P.T.; Seruca, R.; Kleibeuker, J.H.; et al. Mononucleotide precedes dinucleotide repeat instability during colorectal tumour development in Lynch syndrome patients. J. Pathol. 2009, 219, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.D.; Buchanan, D.D.; Pearson, S.A.; Clendenning, M.; Jenkins, M.A.; Win, A.K.; Walters, R.J.; Spring, K.J.; Nagler, B.; Pavluk, E.; et al. Immunohistochemical testing of conventional adenomas for loss of expression of mismatch repair proteins in Lynch syndrome mutation carriers: A case series from the Australasian site of the colon cancer family registry. Mod. Pathol. Off. J. USA Can. Acad. Pathol. 2012, 25, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Latham, A.; Srinivasan, P.; Kemel, Y.; Shia, J.; Bandlamudi, C.; Mandelker, D.; Middha, S.; Hechtman, J.; Zehir, A.; Dubard-Gault, M.; et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 286–295. [Google Scholar] [CrossRef]
- Bläker, H.; Haupt, S.; Morak, M.; Holinski-Feder, E.; Arnold, A.; Horst, D.; Sieber-Frank, J.; Seidler, F.; von Winterfeld, M.; Alwers, E.; et al. Age-dependent performance of BRAF mutation testing in Lynch syndrome diagnostics. Int. J. Cancer 2020, 147, 2801–2810. [Google Scholar] [CrossRef]
- Moreira, L.; Muñoz, J.; Cuatrecasas, M.; Quintanilla, I.; Leoz, M.; Carballal, S.; Ocaña, T.; López-Cerón, M.; Pellise, M.; Castellví-Bel, S.; et al. Prevalence of somatic mutl homolog 1 promoter hypermethylation in Lynch syndrome colorectal cancer. Cancer 2015, 121, 1395–1404. [Google Scholar] [CrossRef]
- Suter, C.; Martin, D.; Ward, R. Germline epimutation of MLH1 in individuals with multiple cancers. Nat. Genet. 2004, 36, 497–501. [Google Scholar] [CrossRef]
- Sloane, M.A.; Nunez, A.C.; Packham, D.; Kwok, C.T.; Suthers, G.; Hesson, L.B.; Ward, R.L. Mosaic epigenetic inheritance as a cause of early-onset colorectal cancer. JAMA Oncol. 2015, 1, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Peltomäki, P. Update on Lynch syndrome genomics. Fam. Cancer 2016, 15, 385–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, P.; Tsai, P.; Chen, D.; Wu, S.; Hoo, J.; Mu, W.; Li, B.; Vuong, H.; Lu, H.; Batth, N.; et al. TumorNext-Lynch-MMR: A comprehensive next generation sequencing assay for the detection of germline and somatic mutations in genes associated with mismatch repair deficiency and Lynch syndrome. Oncotarget 2018, 9, 20304–20322. [Google Scholar] [CrossRef] [PubMed]
- Shirts, B.H.; Konnick, E.Q.; Upham, S.; Walsh, T.; Ranola, J.M.O.; Jacobson, A.L.; King, M.C.; Pearlman, R.; Hampel, H.; Pritchard, C.C. Using somatic mutations from tumors to classify variants in mismatch repair genes. Am. J. Hum. Genet. 2018, 103, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Borras, E.; Chang, K.; Pande, M.; Cuddy, A.; Bosch, J.L.; Bannon, S.A.; Mork, M.E.; Rodriguez-Bigas, M.A.; Taggart, M.W.; Lynch, P.M.; et al. In silico systems biology analysis of variants of uncertain significance in Lynch syndrome supports the prioritization of functional molecular validation. Cancer Prev. Res. 2017, 10, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Houlleberghs, H.; Dekker, M.; Lantermans, H.; Kleinendorst, R.; Dubbink, H.J.; Hofstra, R.M.; Verhoef, S.; Te Riele, H. Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants. Proc. Natl. Acad. Sci. USA 2016, 113, 4128–4133. [Google Scholar] [CrossRef] [Green Version]
- Drost, M.; Tiersma, Y.; Thompson, B.A.; Frederiksen, J.H.; Keijzers, G.; Glubb, D.; Kathe, S.; Osinga, J.; Westers, H.; Pappas, L.; et al. A functional assay-based procedure to classify mismatch repair gene variants in Lynch syndrome. Genet. Med. Off. J. Am. Coll. Med. Genet. 2019, 21, 1486–1496. [Google Scholar] [CrossRef]
- Drost, M.; Tiersma, Y.; Glubb, D.; Kathe, S.; van Hees, S.; Calléja, F.; Zonneveld, J.B.M.; Boucher, K.M.; Ramlal, R.P.E.; Thompson, B.A.; et al. Two integrated and highly predictive functional analysis-based procedures for the classification of MSH6 variants in Lynch syndrome. Genet. Med. Off. J. Am. Coll. Med. Genet. 2020, 22, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Clendenning, M.; Hampel, H.; LaJeunesse, J.; Lindblom, A.; Lockman, J.; Nilbert, M.; Senter, L.; Sotamaa, K.; de la Chapelle, A. Long-range PCR facilitates the identification of PMS2-specific mutations. Hum. Mutat. 2006, 27, 490–495. [Google Scholar] [CrossRef]
- Mandelker, D.; Schmidt, R.; Ankala, A.; McDonald Gibson, K.; Bowser, M.; Sharma, H.; Duffy, E.; Hegde, M.; Santani, A.; Lebo, M.; et al. Navigating highly homologous genes in a molecular diagnostic setting: A resource for clinical next-generation sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 2016, 18, 1282–1289. [Google Scholar] [CrossRef] [Green Version]
- Etzler, J.; Peyrl, A.; Zatkova, A.; Schildhaus, H.; Ficek, A.; Merkelbach-Bruse, S.; Kratz, C.; Attarbaschi, A.; Hainfellner, J.; Yao, S.; et al. RNA-based mutation analysis identifies an unusual MSH6 splicing defect and circumvents PMS2 pseudogene interference. Hum. Mutat. 2008, 29, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Porkka, N.; Lahtinen, L.; Ahtiainen, M.; Böhm, J.P.; Kuopio, T.; Eldfors, S.; Mecklin, J.P.; Seppälä, T.T.; Peltomäki, P. Epidemiological, clinical and molecular characterization of Lynch-like syndrome: A population-based study. Int. J. Cancer 2019, 145, 87–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearlman, R.; Haraldsdottir, S.; de la Chapelle, A.; Jonasson, J.G.; Liyanarachchi, S.; Frankel, W.L.; Rafnar, T.; Stefansson, K.; Pritchard, C.C.; Hampel, H. Clinical characteristics of patients with colorectal cancer with double somatic mismatch repair mutations compared with Lynch syndrome. J. Med. Genet. 2019, 56, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Soler, M.; Pérez-Carbonell, L.; Guarinos, C.; Zapater, P.; Castillejo, A.; Barberá, V.M.; Juárez, M.; Bessa, X.; Xicola, R.M.; Clofent, J.; et al. Risk of cancer in cases of suspected lynch syndrome without germline mutation. Gastroenterology 2013, 144, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Mensenkamp, A.; Vogelaar, I.; van Zelst-Stams, W.; Goossens, M.; Ouchene, H.; Hendriks-Cornelissen, S.; Kwint, M.; Hoogerbrugge, N.; Nagtegaal, I.; Ligtenberg, M. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 2014, 146, 643–646. [Google Scholar] [CrossRef]
- Hemminger, J.; Pearlman, R.; Haraldsdottir, S.; Knight, D.; Jonasson, J.; Pritchard, C.; Hampel, H.; Frankel, W. Histology of colorectal adenocarcinoma with double somatic mismatch repair mutations is indistinguishable from those caused by Lynch syndrome. Hum. Pathol. 2018, 78, 125–130. [Google Scholar] [CrossRef]
- Carethers, J. Differentiating Lynch-like from Lynch syndrome. Gastroenterology 2014, 146, 602–604. [Google Scholar] [CrossRef] [Green Version]
- Bucksch, K.; Zachariae, S.; Aretz, S.; Büttner, R.; Holinski-Feder, E.; Holzapfel, S.; Hüneburg, R.; Kloor, M.; von Knebel Doeberitz, M.; Morak, M.; et al. Cancer risks in Lynch syndrome, Lynch-like syndrome, and familial colorectal cancer type X: A prospective cohort study. BMC Cancer 2020, 20, 460. [Google Scholar] [CrossRef]
- Nyström-Lahti, M.; Kristo, P.; Nicolaides, N.C.; Chang, S.Y.; Aaltonen, L.A.; Moisio, A.L.; Järvinen, H.J.; Mecklin, J.P.; Kinzler, K.W.; Vogelstein, B.; et al. Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat. Med. 1995, 1, 1203–1206. [Google Scholar] [CrossRef]
- Liu, Q.; Hesson, L.; Nunez, A.; Packham, D.; Williams, R.; Ward, R.; Sloane, M. A cryptic paracentric inversion of MSH2 exons 2-6 causes Lynch syndrome. Carcinogenesis 2016, 37, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Kuiper, R.P.; Vissers, L.E.; Venkatachalam, R.; Bodmer, D.; Hoenselaar, E.; Goossens, M.; Haufe, A.; Kamping, E.; Niessen, R.C.; Hogervorst, F.B.; et al. Recurrence and variability of germline EPCAM deletions in Lynch syndrome. Hum. Mutat. 2011, 32, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Thoms, J.A.I.; Nunez, A.C.; Huang, Y.; Knezevic, K.; Packham, D.; Poulos, R.C.; Williams, R.; Beck, D.; Hawkins, N.J.; et al. Disruption of a −35 kb Enhancer Impairs CTCF Binding and MLH1 Expression in Colorectal Cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 4602–4611. [Google Scholar] [CrossRef] [Green Version]
- Pastrello, C.; Fornasarig, M.; Pin, E.; Berto, E.; Pivetta, B.; Viel, A. Somatic mosaicism in a patient with Lynch syndrome. Am. J. Med. Genet. Part A 2009, 149a, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Sourrouille, I.; Coulet, F.; Lefevre, J.H.; Colas, C.; Eyries, M.; Svrcek, M.; Bardier-Dupas, A.; Parc, Y.; Soubrier, F. Somatic mosaicism and double somatic hits can lead to MSI colorectal tumors. Fam. Cancer 2013, 12, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Geurts-Giele, W.R.; Rosenberg, E.H.; Rens, A.V.; Leerdam, M.E.V.; Dinjens, W.N.; Bleeker, F.E. Somatic mosaicism by a de novo MLH1 mutation as a cause of Lynch syndrome. Mol. Genet. Genom. Med. 2019, 7, e00699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dámaso, E.; González-Acosta, M.; Vargas-Parra, G.; Navarro, M.; Balmaña, J.; Ramon, Y.C.T.; Tuset, N.; Thompson, B.A.; Marín, F.; Fernández, A.; et al. Comprehensive constitutional genetic and epigenetic characterization of Lynch-like individuals. Cancers 2020, 12, 1799. [Google Scholar] [CrossRef]
- Elsayed, F.; Kets, C.; Ruano, D.; van den Akker, B.; Mensenkamp, A.; Schrumpf, M.; Nielsen, M.; Wijnen, J.; Tops, C.; Ligtenberg, M.; et al. Germline variants in POLE are associated with early onset mismatch repair deficient colorectal cancer. Eur. J. Hum. Genet. 2015, 23, 1080–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansen, A.M.; van Wezel, T.; van den Akker, B.E.; Ventayol Garcia, M.; Ruano, D.; Tops, C.M.; Wagner, A.; Letteboer, T.G.; Gómez-García, E.B.; Devilee, P.; et al. Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers. Eur. J. Hum. Genet. EJHG 2016, 24, 1089–1092. [Google Scholar] [CrossRef]
- Palles, C.; Cazier, J.B.; Howarth, K.M.; Domingo, E.; Jones, A.M.; Broderick, P.; Kemp, Z.; Spain, S.L.; Guarino, E.; Salguero, I.; et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 2013, 45, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Spier, I.; Holzapfel, S.; Altmüller, J.; Zhao, B.; Horpaopan, S.; Vogt, S.; Chen, S.; Morak, M.; Raeder, S.; Kayser, K.; et al. Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas. Int. J. Cancer 2015, 137, 320–331. [Google Scholar] [CrossRef]
- Boland, C.; Thibodeau, S.; Hamilton, S.; Sidransky, D.; Eshleman, J.; Burt, R.; Meltzer, S.; Rodriguez-Bigas, M.; Fodde, R.; Ranzani, G.; et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998, 58, 5248–5257. [Google Scholar] [PubMed]
- Wu, Y.; Berends, M.; Mensink, R.; Kempinga, C.; Sijmons, R.; van Der Zee, A.; Hollema, H.; Kleibeuker, J.; Buys, C.; Hofstra, R. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am. J. Hum. Genet. 1999, 65, 1291–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halford, S.; Sasieni, P.; Rowan, A.; Wasan, H.; Bodmer, W.; Talbot, I.; Hawkins, N.; Ward, R.; Tomlinson, I. Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait. Cancer Res. 2002, 62, 53–57. [Google Scholar] [PubMed]
- Laiho, P.; Launonen, V.; Lahermo, P.; Esteller, M.; Guo, M.; Herman, J.; Mecklin, J.; Järvinen, H.; Sistonen, P.; Kim, K.; et al. Low-level microsatellite instability in most colorectal carcinomas. Cancer Res. 2002, 62, 1166–1170. [Google Scholar]
- Verma, L.; Kane, M.; Brassett, C.; Schmeits, J.; Evans, D.; Kolodner, R.; Maher, E. Mononucleotide microsatellite instability and germline MSH6 mutation analysis in early onset colorectal cancer. J. Med. Generics 1999, 36, 678–682. [Google Scholar]
- You, J.; Buhard, O.; Ligtenberg, M.; Kets, C.; Niessen, R.; Hofstra, R.; Wagner, A.; Dinjens, W.; Colas, C.; Lascols, O.; et al. Tumours with loss of MSH6 expression are MSI-H when screened with a pentaplex of five mononucleotide repeats. Br. J. Cancer 2010, 103, 1840–1845. [Google Scholar] [CrossRef]
- Buhard, O.; Suraweera, N.; Lectard, A.; Duval, A.; Hamelin, R. Quasimonomorphic mononucleotide repeats for high-level microsatellite instability analysis. Dis. Markers 2004, 20, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.; Zhang, S.; Geiger, T.; Hafez, M.; Bacher, J.; Berg, K.; Eshleman, J. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J. Mol. Diagn. 2006, 8, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Bacher, J.; Flanagan, L.; Smalley, R.; Nassif, N.; Burgart, L.; Halberg, R.; Megid, W.; Thibodeau, S. Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis. Markers 2004, 20, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Southey, M.; Jenkins, M.; Mead, L.; Whitty, J.; Trivett, M.; Tesoriero, A.; Smith, L.; Jennings, K.; Grubb, G.; Royce, S.; et al. Use of molecular tumor characteristics to prioritize mismatch repair gene testing in early-onset colorectal cancer. J. Clin. Oncol. 2005, 23, 6524–6532. [Google Scholar] [CrossRef]
- De Jong, A.; Van Puijenbroek, M.; Hendriks, Y.; Tops, C.; Wijnen, J.; Ausems, M.; Meijers-Heijboer, H.; Wagner, A.; Van Os, T.; Bröcker-Vriends, A.; et al. Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin. Cancer Res. 2004, 10, 972–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangold, E.; Pagenstecher, C.; Friedl, W.; Fischer, H.; Merkelbach-Bruse, S.; Ohlendorf, M.; Friedrichs, N.; Aretz, S.; Buettner, R.; Propping, P.; et al. Tumours from MSH2 mutation carriers show loss of MSH2 expression but many tumours from MLH1 mutation carriers exhibit weak positive MLH1 staining. J. Pathol. 2005, 207, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Zwaenepoel, K.; Holmgaard Duelund, J.; de Winne, K.; Maes, V.; Weyn, C.; Lambin, S.; Dendooven, R.; Broeckx, G.; Steiniche, T.; Pauwels, P. Clinical performance of the Idylla MSI test for a rapid assessment of the DNA microsatellite status in human colorectal cancer. J. Mol. Diagn. JMD 2020, 22, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Echle, A.; Grabsch, H.I.; Quirke, P.; van den Brandt, P.A.; West, N.P.; Hutchins, G.G.A.; Heij, L.R.; Tan, X.; Richman, S.D.; Krause, J.; et al. Clinical-grade detection of microsatellite instability in colorectal tumors by deep learning. Gastroenterology 2020, 159, 1406–1416. [Google Scholar] [CrossRef] [PubMed]
- Frampton, G.; Fichtenholtz, A.; Otto, G.; Wang, K.; Downing, S.; He, J.; Schnall-Levin, M.; White, J.; Sanford, E.; An, P.; et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 2013, 31, 1023–1031. [Google Scholar] [CrossRef]
- Niu, B.; Ye, K.; Zhang, Q.; Lu, C.; Xie, M.; McLellan, M.; Wendl, M.; Ding, L. MSIsensor: Microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 2014, 30, 1015–1016. [Google Scholar] [CrossRef] [Green Version]
- Salipante, S.; Scroggins, S.; Hampel, H.; Turner, E.; Pritchard, C. Microsatellite instability detection by next generation sequencing. Clin. Chem. 2014, 60, 1192–1199. [Google Scholar] [CrossRef]
- Huang, M.N.; McPherson, J.R.; Cutcutache, I.; Teh, B.T.; Tan, P.; Rozen, S.G. MSIseq: Software for assessing microsatellite instability from catalogs of somatic mutations. Sci. Rep. 2015, 5, 13321. [Google Scholar] [CrossRef] [Green Version]
- Kautto, E.; Bonneville, R.; Miya, J.; Yu, L.; Krook, M.; Reeser, J.; Roychowdhury, S. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 2016, 8, 7452–7463. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Huang, Y.; Fang, X.; Liu, C.; Deng, W.; Zhong, C.; Xu, J.; Xu, D.; Yuan, Y. A novel and reliable method to detect microsatellite instability in colorectal cancer by next-generation sequencing. J. Mol. Diagn. 2018, 20, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Marino, P.; Touzani, R.; Perrier, L.; Rouleau, E.; Kossi, D.; Zhaomin, Z.; Charrier, N.; Goardon, N.; Preudhomme, C.; Durand-Zaleski, I.; et al. Cost of cancer diagnosis using next-generation sequencing targeted gene panels in routine practice: A nationwide French study. Eur. J. Hum. Genet. 2018, 26, 314–323. [Google Scholar] [CrossRef]
- Yurgelun, M.; Allen, B.; Kaldate, R.; Bowles, K.; Judkins, T.; Kaushik, P.; Roa, B.; Wenstrup, R.; Hartman, A.; Syngal, S. Identification of a variety of mutations in cancer predisposition genes in patients with suspected Lynch syndrome. Gastroenterology 2015, 149, 604–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lightbody, G.; Haberland, V.; Browne, F.; Taggart, L.; Zheng, H.; Parkes, E.; Blayney, J.K. Review of applications of high-throughput sequencing in personalized medicine: Barriers and facilitators of future progress in research and clinical application. Brief. Bioinform. 2019, 20, 1795–1811. [Google Scholar] [CrossRef] [PubMed]
- Hempelmann, J.; Scroggins, S.; Pritchard, C.; Salipante, S. MSIplus for integrated colorectal cancer molecular testing by next-generation sequencing. J. Mol. Diagn. 2015, 17, 705–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waalkes, A.; Smith, N.; Penewit, K.; Hempelmann, J.; Konnick, E.; Hause, R.; Pritchard, C.; Salipante, S. Accurate pan-cancer molecular diagnosis of microsatellite instability by single-molecule molecular inversion probe capture and high-throughput sequencing. Clin. Chem. 2018, 64, 950–958. [Google Scholar] [CrossRef]
- Gallon, R.; Sheth, H.; Hayes, C.; Redford, L.; Alhilal, G.; O’Brien, O.; Spiewak, H.; Waltham, A.; McAnulty, C.; Izuogu, O.G.; et al. Sequencing-based microsatellite instability testing using as few as six markers for high-throughput clinical diagnostics. Hum. Mutat. 2020, 41, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Ricker, C.; Barzi, A. Value of germline multi-gene panel next generation sequencing (NGS) in identification of hereditary cancer syndromes (HCS) in colorectal cancer population (CRC). J. Clin. Oncol. 2018, 36, 1587. [Google Scholar] [CrossRef]
- Mantere, T.; Kersten, S.; Hoischen, A. Long-read sequencing emerging in medical genetics. Front. Genet. 2019, 10, 426. [Google Scholar] [CrossRef] [Green Version]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.; Gobet, N.; Cruz-Dávalos, D.I.; Mounier, N.; Dessimoz, C.; Sedlazeck, F.J. Structural variant calling: The long and the short of it. Genome Biol. 2019, 20, 246. [Google Scholar] [CrossRef]
- Thibodeau, M.L.; O’Neill, K.; Dixon, K.; Reisle, C.; Mungall, K.L.; Krzywinski, M.; Shen, Y.; Lim, H.J.; Cheng, D.; Tse, K.; et al. Improved structural variant interpretation for hereditary cancer susceptibility using long-read sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 2020, 22, 1892–1897. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.H.; Dinh, M.; Kohlmann, W.; Watson, P.; Green, J.; Syngal, S.; Bandipalliam, P.; Chen, L.M.; Allen, B.; Conrad, P.; et al. Gynecologic cancer as a “sentinel cancer” for women with hereditary nonpolyposis colorectal cancer syndrome. Obstet. Gynecol. 2005, 105, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Braun, D.; Ukaegbu, C.; Dhingra, T.G.; Kastrinos, F.; Parmigiani, G.; Syngal, S.; Yurgelun, M.B. Clinical factors associated with gastric cancer in individuals with Lynch syndrome. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2020, 18, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Schulmann, K.; Brasch, F.E.; Kunstmann, E.; Engel, C.; Pagenstecher, C.; Vogelsang, H.; Krüger, S.; Vogel, T.; Knaebel, H.P.; Rüschoff, J.; et al. HNPCC-associated small bowel cancer: Clinical and molecular characteristics. Gastroenterology 2005, 128, 590–599. [Google Scholar] [CrossRef]
- Van der Post, R.S.; Kiemeney, L.A.; Ligtenberg, M.J.; Witjes, J.A.; van de Kaa, C.A.H.; Bodmer, D.; Schaap, L.; Kets, C.M.; van Krieken, J.H.; Hoogerbrugge, N. Risk of urothelial bladder cancer in Lynch syndrome is increased, in particular among MSH2 mutation carriers. J. Med. Genet. 2010, 47, 464–470. [Google Scholar] [CrossRef]
- Crosbie, E.J.; Ryan, N.A.J.; Arends, M.J.; Bosse, T.; Burn, J.; Cornes, J.M.; Crawford, R.; Eccles, D.; Frayling, I.M.; Ghaem-Maghami, S.; et al. The Manchester International Consensus Group recommendations for the management of gynecological cancers in Lynch syndrome. Genet. Med. Off. J. Am. Coll. Med. Genet. 2019, 21, 2390–2400. [Google Scholar] [CrossRef] [Green Version]
- Kahn, R.M.; Gordhandas, S.; Maddy, B.P.; Nelson, B.B.; Askin, G.; Christos, P.J.; Caputo, T.A.; Chapman-Davis, E.; Holcomb, K.; Frey, M.K. Universal endometrial cancer tumor typing: How much has immunohistochemistry, microsatellite instability, and MLH1 methylation improved the diagnosis of Lynch syndrome across the population? Cancer 2019, 125, 3172–3183. [Google Scholar] [CrossRef]
- Hampel, H.; Frankel, W.; Panescu, J.; Lockman, J.; Sotamaa, K.; Fix, D.; Comeras, I.; la Jeunesse, J.; Nakagawa, H.; Westman, J.; et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2006, 66, 7810–7817. [Google Scholar] [CrossRef] [Green Version]
- Mills, A.; Liou, S.; Ford, J.; Berek, J.; Pai, R.; Longacre, T. Lynch syndrome screening should be considered for all patients with newly diagnosed endometrial cancer. Am. J. Surg. Pathol. 2014, 38, 1501–1509. [Google Scholar] [CrossRef]
- Rubio, I.; Ibáñez-Feijoo, E.; Andrés, L.; Aguirre, E.; Balmaña, J.; Blay, P.; Llort, G.; González-Santiago, S.; Maortua, H.; Tejada, M.I.; et al. Analysis of Lynch syndrome mismatch repair genes in women with endometrial cancer. Oncology 2016, 91, 171–176. [Google Scholar] [CrossRef]
- Chao, X.; Li, L.; Wu, M.; Ma, S.; Tan, X.; Zhong, S.; Bi, Y.; Lang, J. Comparison of screening strategies for Lynch syndrome in patients with newly diagnosed endometrial cancer: A prospective cohort study in China. Cancer Commun. 2019, 39, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampel, H.; Pearlman, R.; de la Chapelle, A.; Pritchard, C.C.; Zhao, W.; Jones, D.; Yilmaz, A.; Chen, W.; Frankel, W.L.; Suarez, A.A.; et al. Double somatic mismatch repair gene pathogenic variants as common as Lynch syndrome among endometrial cancer patients. Gynecol. Oncol. 2021, 160, 161–168. [Google Scholar] [CrossRef]
- Walsh, M.D.; Cummings, M.C.; Buchanan, D.D.; Dambacher, W.M.; Arnold, S.; McKeone, D.; Byrnes, R.; Barker, M.A.; Leggett, B.A.; Gattas, M.; et al. Molecular, pathologic, and clinical features of early-onset endometrial cancer: Identifying presumptive Lynch syndrome patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 1692–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruegl, A.S.; Ring, K.L.; Daniels, M.; Fellman, B.M.; Urbauer, D.L.; Broaddus, R.R. Clinical challenges associated with universal screening for Lynch syndrome-Associated endometrial cancer. Cancer Prev. Res. 2017, 10, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelloo, E.; Jansen, A.M.L.; Osse, E.M.; Nout, R.A.; Creutzberg, C.L.; Ruano, D.; Church, D.N.; Morreau, H.; Smit, V.; van Wezel, T.; et al. Practical guidance for mismatch repair-deficiency testing in endometrial cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 96–102. [Google Scholar] [CrossRef]
- Berends, M.J.; Wu, Y.; Sijmons, R.H.; van der Sluis, T.; Ek, W.B.; Ligtenberg, M.J.; Arts, N.J.; ten Hoor, K.A.; Kleibeuker, J.H.; de Vries, E.G.; et al. Toward new strategies to select young endometrial cancer patients for mismatch repair gene mutation analysis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2003, 21, 4364–4370. [Google Scholar] [CrossRef]
- Kim, T.; Laird, P.; Park, P. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 2013, 155, 858–868. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shi, C.; Eisenberg, R.; Vnencak-Jones, C.L. Differences in microsatellite instability profiles between endometrioid and colorectal cancers: A potential cause for false-negative results? J. Mol. Diagn. JMD 2017, 19, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, A.M.; Spurdle, A.B. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: A literature review. Fam. Cancer 2014, 13, 1–12. [Google Scholar] [CrossRef]
- Goverde, A.; Spaander, M.; van Doorn, H.; Dubbink, H.; van den Ouweland, A.; Tops, C.; Kooi, S.; de Waard, J.; Hoedemaeker, R.; Bruno, M.; et al. Cost-effectiveness of routine screening for Lynch syndrome in endometrial cancer patients up to 70years of age. Gynecol. Oncol. 2016, 143, 453–459. [Google Scholar] [CrossRef]
- Snowsill, T.M.; Ryan, N.A.J.; Crosbie, E.J.; Frayling, I.M.; Evans, D.G.; Hyde, C.J. Cost-effectiveness analysis of reflex testing for Lynch syndrome in women with endometrial cancer in the UK setting. PLoS ONE 2019, 14, e0221419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, N.; Nobes, M.; Sedgewick, D.; Teoh, S.N.; Evans, D.G.; Crosbie, E.J. A mismatch in care: Results of a United Kingdom-wide patient and clinician survey of gynaecological services for women with Lynch syndrome. BJOG Int. J. Obstet. Gynaecol. 2020. [Google Scholar] [CrossRef]
- Batte, B.A.; Bruegl, A.S.; Daniels, M.S.; Ring, K.L.; Dempsey, K.M.; Djordjevic, B.; Luthra, R.; Fellman, B.M.; Lu, K.H.; Broaddus, R.R. Consequences of universal MSI/IHC in screening ENDOMETRIAL cancer patients for Lynch syndrome. Gynecol. Oncol. 2014, 134, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, N.A.J.; Evans, D.G.; Green, K.; Crosbie, E.J. Pathological features and clinical behavior of Lynch syndrome-associated ovarian cancer. Gynecol. Oncol. 2017, 144, 491–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vierkoetter, K.R.; Ayabe, A.R.; VanDrunen, M.; Ahn, H.J.; Shimizu, D.M.; Terada, K.Y. Lynch Syndrome in patients with clear cell and endometrioid cancers of the ovary. Gynecol. Oncol. 2014, 135, 81–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampel, H.; Frankel, W.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Nakagawa, H.; Sotamaa, K.; Prior, T.; Westman, J.; et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N. Engl. J. Med. 2005, 352, 1851–1860. [Google Scholar] [CrossRef] [Green Version]
- Hampel, H.; Frankel, W.; Martin, E.; Arnold, M.; Khanduja, K.; Kuebler, P.; Clendenning, M.; Sotamaa, K.; Prior, T.; Westman, J.; et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J. Clin. Oncol. 2008, 26, 5783–5788. [Google Scholar] [CrossRef]
- Dondi, G.; Coluccelli, S.; de Leo, A.; Ferrari, S.; Gruppioni, E.; Bovicelli, A.; Godino, L.; Coadă, C.A.; Morganti, A.G.; Giordano, A.; et al. An analysis of clinical, surgical, pathological and molecular characteristics of endometrial cancer according to mismatch repair status. A multidisciplinary approach. Int. J. Mol. Sci. 2020, 21, 7188. [Google Scholar] [CrossRef]
- Christakis, A.G.; Papke, D.J.; Nowak, J.A.; Yurgelun, M.B.; Agoston, A.T.; Lindeman, N.I.; MacConaill, L.E.; Sholl, L.M.; Dong, F. Targeted cancer next-generation sequencing as a primary screening tool for microsatellite instability and Lynch syndrome in upper gastrointestinal tract cancers. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1246–1251. [Google Scholar] [CrossRef]
- Pal, T.; Akbari, M.R.; Sun, P.; Lee, J.H.; Fulp, J.; Thompson, Z.; Coppola, D.; Nicosia, S.; Sellers, T.A.; McLaughlin, J.; et al. Frequency of mutations in mismatch repair genes in a population-based study of women with ovarian cancer. Br. J. Cancer 2012, 107, 1783–1790. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.R.; Zhang, S.; Cragun, D.; Lee, J.H.; Coppola, D.; McLaughlin, J.; Risch, H.A.; Rosen, B.; Shaw, P.; Sellers, T.A.; et al. Correlation between germline mutations in MMR genes and microsatellite instability in ovarian cancer specimens. Fam. Cancer 2017, 16, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Leskela, S.; Romero, I.; Cristobal, E.; Pérez-Mies, B.; Rosa-Rosa, J.M.; Gutierrez-Pecharroman, A.; Caniego-Casas, T.; Santón, A.; Ojeda, B.; López-Reig, R.; et al. Mismatch repair deficiency in ovarian carcinoma: Frequency, causes, and consequences. Am. J. Surg. Pathol. 2020, 44, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.C.; Selander, I.; Connor, A.A.; Selvarajah, S.; Borgida, A.; Briollais, L.; Petersen, G.M.; Lerner-Ellis, J.; Holter, S.; Gallinger, S. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 2015, 148, 556–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, A.A.; Denroche, R.E.; Jang, G.H.; Timms, L.; Kalimuthu, S.N.; Selander, I.; McPherson, T.; Wilson, G.W.; Chan-Seng-Yue, M.A.; Borozan, I.; et al. Association of distinct mutational signatures with correlates of increased immune activity in pancreatic ductal adenocarcinoma. JAMA Oncol. 2017, 3, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.I.; Shia, J.; Stadler, Z.K.; Varghese, A.M.; Capanu, M.; Salo-Mullen, E.; Lowery, M.A.; Diaz, L.A., Jr.; Mandelker, D.; Yu, K.H.; et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 1326–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, R.C.; Denroche, R.; Jang, G.H.; Nowak, K.M.; Zhang, A.; Borgida, A.; Holter, S.; Topham, J.T.; Wilson, J.; Dodd, A.; et al. Clinical and genomic characterisation of mismatch repair deficient pancreatic adenocarcinoma. Gut 2020. [Google Scholar] [CrossRef]
- Jun, S.Y.; Lee, E.J.; Kim, M.J.; Chun, S.M.; Bae, Y.K.; Hong, S.U.; Choi, J.; Kim, J.M.; Jang, K.T.; Kim, J.Y.; et al. Lynch syndrome-related small intestinal adenocarcinomas. Oncotarget 2017, 8, 21483–21500. [Google Scholar] [CrossRef] [Green Version]
- Suerink, M.; Kilinç, G.; Terlouw, D.; Hristova, H.; Sensuk, L.; van Egmond, D.; Farina Sarasqueta, A.; Langers, A.M.J.; van Wezel, T.; Morreau, H.; et al. Prevalence of mismatch repair deficiency and Lynch syndrome in a cohort of unselected small bowel adenocarcinomas. J. Clin. Pathol. 2020. [Google Scholar] [CrossRef]
- Carlo, M.I.; Ravichandran, V.; Srinavasan, P.; Bandlamudi, C.; Kemel, Y.; Ceyhan-Birsoy, O.; Mukherjee, S.; Mandelker, D.; Chaim, J.; Knezevic, A.; et al. Cancer susceptibility mutations in patients with urothelial malignancies. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 406–414. [Google Scholar] [CrossRef]
- Harper, H.L.; McKenney, J.K.; Heald, B.; Stephenson, A.; Campbell, S.C.; Plesec, T.; Magi-Galluzzi, C. Upper tract urothelial carcinomas: Frequency of association with mismatch repair protein loss and lynch syndrome. Mod. Pathol. Off. J. USA Can. Acad. Pathol. 2017, 30, 146–156. [Google Scholar] [CrossRef]
- Metcalfe, M.J.; Petros, F.G.; Rao, P.; Mork, M.E.; Xiao, L.; Broaddus, R.R.; Matin, S.F. Universal point of care testing for Lynch syndrome in patients with upper tract urothelial carcinoma. J. Urol. 2018, 199, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Urakami, S.; Inoshita, N.; Oka, S.; Miyama, Y.; Nomura, S.; Arai, M.; Sakaguchi, K.; Kurosawa, K.; Okaneya, T. Clinicopathological characteristics of patients with upper urinary tract urothelial cancer with loss of immunohistochemical expression of the DNA mismatch repair proteins in universal screening. Int. J. Urol. Off. J. Jpn. Urol. Assoc. 2018, 25, 151–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gingras, M.C.; Covington, K.R.; Chang, D.K.; Donehower, L.A.; Gill, A.J.; Ittmann, M.M.; Creighton, C.J.; Johns, A.L.; Shinbrot, E.; Dewal, N.; et al. Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Rep. 2016, 14, 907–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandapani, M.; Chittenden, A.; Stunkel, A.J.; Rosenblatt, M.; Syngal, S.; Stoffel, E.M. Sebaceous neoplasms in Lynch syndrome. Hered. Cancer Clin. Pract. 2011, 9, P7. [Google Scholar] [CrossRef] [Green Version]
- Everett, J.N.; Raymond, V.M.; Dandapani, M.; Marvin, M.; Kohlmann, W.; Chittenden, A.; Koeppe, E.; Gustafson, S.L.; Else, T.; Fullen, D.R.; et al. Screening for germline mismatch repair mutations following diagnosis of sebaceous neoplasm. JAMA Dermatol. 2014, 150, 1315–1321. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.E.; Riegert-Johnson, D.L.; Thomas, B.C.; Rumilla, K.M.; Thomas, C.S.; Heckman, M.G.; Purcell, J.U.; Hanson, N.B.; Leppig, K.A.; Lim, J.; et al. A clinical scoring system to identify patients with sebaceous neoplasms at risk for the Muir-Torre variant of Lynch syndrome. Genet. Med. Off. J. Am. Coll. Med. Genet. 2014, 16, 711–716. [Google Scholar] [CrossRef] [Green Version]
- Schon, K.; Rytina, E.; Drummond, J.; Simmonds, J.; Abbs, S.; Sandford, R.; Tischkowitz, M. Evaluation of universal immunohistochemical screening of sebaceous neoplasms in a service setting. Clin. Exp. Dermatol. 2018, 43, 410–415. [Google Scholar] [CrossRef]
- Davies, H.; Morganella, S.; Purdie, C.; Jang, S.; Borgen, E.; Russnes, H.; Glodzik, D.; Zou, X.; Viari, A.; Richardson, A.; et al. Whole-genome sequencing reveals breast cancers with mismatch repair deficiency. Cancer Res. 2017, 77, 4755–4762. [Google Scholar] [CrossRef] [Green Version]
- Nicolosi, P.; Ledet, E.; Yang, S.; Michalski, S.; Freschi, B.; O’Leary, E.; Esplin, E.D.; Nussbaum, R.L.; Sartor, O. Prevalence of germline variants in prostate cancer and implications for current genetic testing guidelines. JAMA Oncol. 2019, 5, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Guedes, L.B.; Antonarakis, E.S.; Schweizer, M.T.; Mirkheshti, N.; Almutairi, F.; Park, J.C.; Glavaris, S.; Hicks, J.; Eisenberger, M.A.; De Marzo, A.M.; et al. MSH2 loss in primary prostate cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 6863–6874. [Google Scholar] [CrossRef] [Green Version]
- Takamochi, K.; Takahashi, F.; Suehara, Y.; Sato, E.; Kohsaka, S.; Hayashi, T.; Kitano, S.; Uneno, T.; Kojima, S.; Takeuchi, K.; et al. DNA mismatch repair deficiency in surgically resected lung adenocarcinoma: Microsatellite instability analysis using the Promega panel. Lung Cancer 2017, 110, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Liu, Y.; Eisfeld, A.K.; Zhen, F.; Jin, S.; Gao, W.; Yu, T.; Chen, L.; Wang, W.; Chen, W.; et al. Identification of germline mismatch repair gene mutations in lung cancer patients with paired tumor-normal next generation sequencing: A retrospective study. Front. Oncol. 2019, 9, 550. [Google Scholar] [CrossRef] [PubMed]
- Aarnio, M.; Salovaara, R.; Aaltonen, L.A.; Mecklin, J.P.; Järvinen, H.J. Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome. Int. J. Cancer 1997, 74, 551–555. [Google Scholar] [CrossRef]
- Yamamoto, H.; Itoh, F.; Nakamura, H.; Fukushima, H.; Sasaki, S.; Perucho, M.; Imai, K. Genetic and clinical features of human pancreatic ductal adenocarcinomas with widespread microsatellite instability. Cancer Res. 2001, 61, 3139–3144. [Google Scholar]
- Lu, K.H.; Schorge, J.O.; Rodabaugh, K.J.; Daniels, M.S.; Sun, C.C.; Soliman, P.T.; White, K.G.; Luthra, R.; Gershenson, D.M.; Broaddus, R.R. Prospective determination of prevalence of lynch syndrome in young women with endometrial cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 5158–5164. [Google Scholar] [CrossRef]
- Ring, K.L.; Bruegl, A.S.; Allen, B.A.; Elkin, E.P.; Singh, N.; Hartman, A.R.; Daniels, M.S.; Broaddus, R.R. Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Mod. Pathol. Off. J. USA Can. Acad. Pathol. 2016, 29, 1381–1389. [Google Scholar] [CrossRef]
- Fornasarig, M.; Magris, R.; de Re, V.; Bidoli, E.; Canzonieri, V.; Maiero, S.; Viel, A.; Cannizzaro, R. Molecular and pathological features of gastric cancer in Lynch syndrome and familial adenomatous polyposis. Int. J. Mol. Sci. 2018, 19, 1682. [Google Scholar] [CrossRef] [Green Version]
- Saita, C.; Yamaguchi, T.; Horiguchi, S.I.; Yamada, R.; Takao, M.; Iijima, T.; Wakaume, R.; Aruga, T.; Tabata, T.; Koizumi, K. Tumor development in Japanese patients with Lynch syndrome. PLoS ONE 2018, 13, e0195572. [Google Scholar] [CrossRef]
- Niskakoski, A.; Kaur, S.; Renkonen-Sinisalo, L.; Lassus, H.; Järvinen, H.J.; Mecklin, J.P.; Bützow, R.; Peltomäki, P. Distinct molecular profiles in Lynch syndrome-associated and sporadic ovarian carcinomas. Int. J. Cancer 2013, 133, 2596–2608. [Google Scholar] [CrossRef] [Green Version]
- Roth, R.M.; Haraldsdottir, S.; Hampel, H.; Arnold, C.A.; Frankel, W.L. Discordant mismatch repair protein immunoreactivity in Lynch syndrome-associated neoplasms: A recommendation for screening synchronous/metachronous neoplasms. Am. J. Clin. Pathol. 2016, 146, 50–56. [Google Scholar] [CrossRef] [Green Version]
- McIlvried, D.E.; Birhiray, R.E.; Lu, J.Z. Atypical identification of Lynch syndrome by immunohistochemistry and microsatellite instability analysis on jejunal adenocarcinoma. Fam. Cancer 2010, 9, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloyd, J.M.; Chun, Y.S.; Ikoma, N.; Vauthey, J.N.; Aloia, T.A.; Cuddy, A.; Rodriguez-Bigas, M.A.; You, Y.N. Clinical and genetic implications of DNA mismatch repair deficiency in biliary tract cancers associated with Lynch syndrome. J. Gastrointest. Cancer 2018, 49, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Therkildsen, C.; Ladelund, S.; Rambech, E.; Persson, A.; Petersen, A.; Nilbert, M. Glioblastomas, astrocytomas and oligodendrogliomas linked to Lynch syndrome. Eur. J. Neurol. 2015, 22, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Park, D.M.; Yeaney, G.A.; Hamilton, R.L.; Mabold, J.; Urban, N.; Appleman, L.; Flickinger, J.; Lieberman, F.; Mintz, A. Identifying Muir-Torre syndrome in a patient with glioblastoma multiforme. Neuro Oncol. 2009, 11, 452–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehrer, M.D.; Lynch, H.; Glembocki, D.J.; Patel, N.B. Glioblastoma multiforme as initial internal malignancy in Muir-Torre syndrome (MTS). JAAD Case Rep. 2015, 1, 381–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzman, D.J.; Fabiano, A.J.; Qiu, J.; Zeitouni, N.C. Muir-Torre syndrome and central nervous system malignancy: Highlighting an uncommon association. Dermatol Surg. 2015, 41, 856–859. [Google Scholar] [CrossRef]
- Walsh, M.D.; Buchanan, D.D.; Cummings, M.C.; Pearson, S.A.; Arnold, S.T.; Clendenning, M.; Walters, R.; McKeone, D.M.; Spurdle, A.B.; Hopper, J.L.; et al. Lynch syndrome-associated breast cancers: Clinicopathologic characteristics of a case series from the colon cancer family registry. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2010, 16, 2214–2224. [Google Scholar] [CrossRef] [Green Version]
- Lotsari, J.E.; Gylling, A.; Abdel-Rahman, W.M.; Nieminen, T.T.; Aittomäki, K.; Friman, M.; Pitkänen, R.; Aarnio, M.; Järvinen, H.J.; Mecklin, J.P.; et al. Breast carcinoma and Lynch syndrome: Molecular analysis of tumors arising in mutation carriers, non-carriers, and sporadic cases. Breast Cancer Res. BCR 2012, 14, R90. [Google Scholar] [CrossRef] [Green Version]
- Ryan, S.; Jenkins, M.A.; Win, A.K. Risk of prostate cancer in Lynch syndrome: A systematic review and meta-analysis. Cancer Epidemiol. Biomark. Prev. 2014, 23, 437–449. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Valentin, M.; Joost, P.; Therkildsen, C.; Jonsson, M.; Rambech, E.; Nilbert, M. Frequent mismatch-repair defects link prostate cancer to Lynch syndrome. BMC Urol. 2016, 16, 15. [Google Scholar] [CrossRef] [Green Version]
- Antonarakis, E.S.; Shaukat, F.; Isaacsson Velho, P.; Kaur, H.; Shenderov, E.; Pardoll, D.M.; Lotan, T.L. Clinical features and therapeutic outcomes in men with advanced prostate cancer and DNA mismatch repair gene mutations. Eur. Urol. 2019, 75, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Sweetser, S.; Chandan, V.S.; Baron, T.H. Dysphagia in Lynch syndrome. Gastroenterology 2013, 145, 1167–1168. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Yamashita, K.; Nakase, H. Pedunculated upper esophageal adenocarcinoma in Lynch syndrome. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2019, 17, A20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, L.; Salovaara, R.; Kristo, P.; Canzian, F.; Hemminki, A.; Peltomäki, P.; Chadwick, R.; Kääriäinen, H.; Eskelinen, M.; Järvinen, H.; et al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N. Engl. J. Med. 1998, 338, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Bonneville, R.; Krook, M.A.; Kautto, E.A.; Miya, J.; Wing, M.R.; Chen, H.Z.; Reeser, J.W.; Yu, L.; Roychowdhury, S. Landscape of microsatellite instability across 39 cancer types. JCO Precis. Oncol. 2017. [Google Scholar] [CrossRef]
- Toyota, M.; Ahuja, N.; Suzuki, H.; Itoh, F.; Ohe-Toyota, M.; Imai, K.; Baylin, S.B.; Issa, J.P. Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res. 1999, 59, 5438–5442. [Google Scholar]
- Yamamoto, H.; Perez-Piteira, J.; Yoshida, T.; Terada, M.; Itoh, F.; Imai, K.; Perucho, M. Gastric cancers of the microsatellite mutator phenotype display characteristic genetic and clinical features. Gastroenterology 1999, 116, 1348–1357. [Google Scholar] [CrossRef]
- Leung, W.K.; Kim, J.J.; Kim, J.G.; Graham, D.Y.; Sepulveda, A.R. Microsatellite instability in gastric intestinal metaplasia in patients with and without gastric cancer. Am. J. Pathol. 2000, 156, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Bass, A.J.; Thorsson, V.; Shmulevich, I.; Reynolds, S.M.; Miller, M.; Bernard, B.; Hinoue, T.; Laird, P.W.; Curtis, C.; Shen, H.; et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar]
- Pal, T.; Permuth-Wey, J.; Kumar, A.; Sellers, T.A. Systematic review and meta-analysis of ovarian cancers: Estimation of microsatellite-high frequency and characterization of mismatch repair deficient tumor histology. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 6847–6854. [Google Scholar] [CrossRef] [Green Version]
- Aysal, A.; Karnezis, A.; Medhi, I.; Grenert, J.P.; Zaloudek, C.J.; Rabban, J.T. Ovarian endometrioid adenocarcinoma: Incidence and clinical significance of the morphologic and immunohistochemical markers of mismatch repair protein defects and tumor microsatellite instability. Am. J. Surg. Pathol. 2012, 36, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Luchini, C.; Brosens, L.A.A.; Wood, L.D.; Chatterjee, D.; Shin, J.I.; Sciammarella, C.; Fiadone, G.; Malleo, G.; Salvia, R.; Kryklyva, V.; et al. Comprehensive characterisation of pancreatic ductal adenocarcinoma with microsatellite instability: Histology, molecular pathology and clinical implications. Gut 2021, 70, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Planck, M.; Ericson, K.; Piotrowska, Z.; Halvarsson, B.; Rambech, E.; Nilbert, M. Microsatellite instability and expression of MLH1 and MSH2 in carcinomas of the small intestine. Cancer 2003, 97, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Potter, D.D.; Murray, J.A.; Donohue, J.H.; Burgart, L.J.; Nagorney, D.M.; van Heerden, J.A.; Plevak, M.F.; Zinsmeister, A.R.; Thibodeau, S.N. The role of defective mismatch repair in small bowel adenocarcinoma in celiac disease. Cancer Res. 2004, 64, 7073–7077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio, T.; Svrcek, M.; Zaanan, A.; Beohou, E.; Laforest, A.; Afchain, P.; Mitry, E.; Taieb, J.; Di Fiore, F.; Gornet, J.M.; et al. Small bowel adenocarcinoma phenotyping, a clinicobiological prognostic study. Br. J. Cancer 2013, 109, 3057–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, M.; Singhi, A.D.; Dudley, B.; Brand, R.; Nikiforova, M.; Pai, R.K. Small bowel adenocarcinoma frequently exhibits lynch syndrome-associated mismatch repair protein deficiency but does not harbor sporadic MLH1 deficiency. Appl. Immunohistochem. Mol. Morphol. AIMM 2017, 25, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Vanoli, A.; Balci, S.; Reid, M.M.; Saka, B.; Bagci, P.; Memis, B.; Choi, H.; Ohike, N.; Tajiri, T.; et al. Non-ampullary-duodenal carcinomas: Clinicopathologic analysis of 47 cases and comparison with ampullary and pancreatic adenocarcinomas. Mod. Pathol. Off. J. USA Can. Acad. Pathol. 2017, 30, 255–266. [Google Scholar] [CrossRef]
- Giedl, J.; Schneckenpointner, R.; Filbeck, T.; Ruemmele, P.; Hofstaedter, F.; Burger, M.; Hartmann, A.; Stoehr, R. Low frequency of HNPCC-associated microsatellite instability and aberrant MMR protein expression in early-onset bladder cancer. Am. J. Clin. Pathol. 2014, 142, 634–639. [Google Scholar] [CrossRef] [Green Version]
- Ju, J.Y.; Mills, A.M.; Mahadevan, M.S.; Fan, J.; Culp, S.H.; Thomas, M.H.; Cathro, H.P. Universal Lynch syndrome screening should be performed in all upper tract urothelial carcinomas. Am. J. Surg. Pathol. 2018, 42, 1549–1555. [Google Scholar] [CrossRef]
- Rashid, A.; Ueki, T.; Gao, Y.T.; Houlihan, P.S.; Wallace, C.; Wang, B.S.; Shen, M.C.; Deng, J.; Hsing, A.W. K-ras mutation, p53 overexpression, and microsatellite instability in biliary tract cancers: A population-based study in China. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2002, 8, 3156–3163. [Google Scholar]
- Scarpa, A.; Di Pace, C.; Talamini, G.; Falconi, M.; Lemoine, N.R.; Iacono, C.; Achille, A.; Baron, A.; Zamboni, G. Cancer of the ampulla of Vater: Chromosome 17p allelic loss is associated with poor prognosis. Gut 2000, 46, 842–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sessa, F.; Furlan, D.; Zampatti, C.; Carnevali, I.; Franzi, F.; Capella, C. Prognostic factors for ampullary adenocarcinomas: Tumor stage, tumor histology, tumor location, immunohistochemistry and microsatellite instability. Virchows Arch. Int. J. Pathol. 2007, 451, 649–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruemmele, P.; Dietmaier, W.; Terracciano, L.; Tornillo, L.; Bataille, F.; Kaiser, A.; Wuensch, P.H.; Heinmoeller, E.; Homayounfar, K.; Luettges, J.; et al. Histopathologic features and microsatellite instability of cancers of the papilla of vater and their precursor lesions. Am. J. Surg. Pathol. 2009, 33, 691–704. [Google Scholar] [CrossRef]
- Agaram, N.P.; Shia, J.; Tang, L.H.; Klimstra, D.S. DNA mismatch repair deficiency in ampullary carcinoma: A morphologic and immunohistochemical study of 54 cases. Am. J. Clin. Pathol. 2010, 133, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goeppert, B.; Roessler, S.; Renner, M.; Loeffler, M.; Singer, S.; Rausch, M.; Albrecht, T.; Mehrabi, A.; Vogel, M.N.; Pathil, A.; et al. Low frequency of mismatch repair deficiency in gallbladder cancer. Diagn. Pathol. 2019, 14, 36. [Google Scholar] [CrossRef]
- Heby, M.; Lundgren, S.; Nodin, B.; Elebro, J.; Eberhard, J.; Jirström, K. Relationship between mismatch repair immunophenotype and long-term survival in patients with resected periampullary adenocarcinoma. J. Transl. Med. 2018, 16, 66. [Google Scholar] [CrossRef]
- Mojtahed, A.; Schrijver, I.; Ford, J.M.; Longacre, T.A.; Pai, R.K. A two-antibody mismatch repair protein immunohistochemistry screening approach for colorectal carcinomas, skin sebaceous tumors, and gynecologic tract carcinomas. Mod. Pathol. Off. J. USA Can. Acad. Pathol. 2011, 24, 1004–1014. [Google Scholar] [CrossRef] [Green Version]
- Jessup, C.J.; Redston, M.; Tilton, E.; Reimann, J.D. Importance of universal mismatch repair protein immunohistochemistry in patients with sebaceous neoplasia as an initial screening tool for Muir-Torre syndrome. Hum. Pathol. 2016, 49, 1–9. [Google Scholar] [CrossRef]
- Walsh, M.D.; Jayasekara, H.; Huang, A.; Winship, I.M.; Buchanan, D.D. Clinico-pathological predictors of mismatch repair deficiency in sebaceous neoplasia: A large case series from a single Australian private pathology service. Australas. J. Dermatol. 2019, 60, 126–133. [Google Scholar] [CrossRef]
- Tepeoglu, M.; Borcek, P.; Ozen, O.; Altinors, N. Microsatellite instability in glioblastoma: Is it really relevant in tumor prognosis? Turk. Neurosurg. 2019, 29, 778–784. [Google Scholar] [CrossRef] [Green Version]
- Cheng, A.S.; Leung, S.C.Y.; Gao, D.; Burugu, S.; Anurag, M.; Ellis, M.J.; Nielsen, T.O. Mismatch repair protein loss in breast cancer: Clinicopathological associations in a large British Columbia cohort. Breast Cancer Res. Treat. 2020, 179, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewitt, L.C.; Inam, I.Z.; Saito, Y.; Yoshikawa, T.; Quaas, A.; Hoelscher, A.; Bollschweiler, E.; Fazzi, G.E.; Melotte, V.; Langley, R.E.; et al. Epstein-Barr virus and mismatch repair deficiency status differ between oesophageal and gastric cancer: A large multi-centre study. Eur. J. Cancer 2018, 94, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.S.; Lee, C.W.; Shun, C.T.; Wang, H.P.; Lee, W.J.; Chang, M.C.; Sheu, J.C.; Lin, J.T. Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes. Genes Chromosomes Cancer 2000, 27, 403–411. [Google Scholar] [CrossRef]
- Bruegl, A.S.; Djordjevic, B.; Urbauer, D.L.; Westin, S.N.; Soliman, P.T.; Lu, K.H.; Luthra, R.; Broaddus, R.R. Utility of MLH1 methylation analysis in the clinical evaluation of Lynch Syndrome in women with endometrial cancer. Curr. Pharm. Des. 2014, 20, 1655–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasen, H.; Ghorbanoghli, Z.; Bourdeaut, F.; Cabaret, O.; Caron, O.; Duval, A.; Entz-Werle, N.; Goldberg, Y.; Ilencikova, D.; Kratz, C.; et al. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium “Care for CMMR-D” (C4CMMR-D). J. Med. Genet. 2014, 51, 283–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlo, A.; Rochlitz, C.; Scott, R. Survival of patients with Turcot’s syndrome and glioblastoma. N. Engl. J. Med. 1996, 334, 736–737. [Google Scholar] [CrossRef]
- Bougeard, G.; Charbonnier, F.; Moerman, A.; Martin, C.; Ruchoux, M.; Drouot, N.; Frebourg, T. Early onset brain tumor and lymphoma in MSH2-deficient children. Am. J. Hum. Genet. 2003, 72, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Leenen, C.; Geurts-Giele, W.; Dubbink, H.; Reddingius, R.; van den Ouweland, A.; Tops, C.; van de Klift, H.; Kuipers, E.; van Leerdam, M.; Dinjens, W.; et al. Pitfalls in molecular analysis for mismatch repair deficiency in a family with biallelic pms2 germline mutations. Clin. Genet. 2011, 80, 558–565. [Google Scholar] [CrossRef]
- Shlien, A.; Campbell, B.; de Borja, R.; Alexandrov, L.; Merico, D.; Wedge, D.; van Loo, P.; Tarpey, P.; Coupland, P.; Behjati, S.; et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 2015, 47, 257–262. [Google Scholar] [CrossRef]
- Indraccolo, S.; Lombardi, G.; Fassan, M.; Pasqualini, L.; Giunco, S.; Marcato, R.; Gasparini, A.; Candiotto, C.; Nalio, S.; Fiduccia, P.; et al. Genetic, epigenetic, and immunologic profiling of MMR-deficient relapsed glioblastoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 1828–1837. [Google Scholar] [CrossRef]
- Dabir, P.D.; Bruggeling, C.E.; van der Post, R.S.; Dutilh, B.E.; Hoogerbrugge, N.; Ligtenberg, M.J.L.; Boleij, A.; Nagtegaal, I.D. Microsatellite instability screening in colorectal adenomas to detect Lynch syndrome patients? A systematic review and meta-analysis. Eur. J. Hum. Genet. EJHG 2020, 28, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Pan, D.; Zhang, H.; Ye, Q.; Xu, P.; Pan, J. Single-center study of Lynch syndrome screening in colorectal polyps. Hered. Cancer Clin. Pract. 2019, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Van Lier, M.; Leenen, C.; Wagner, A.; Ramsoekh, D.; Dubbink, H.; van den Ouweland, A.; Westenend, P.; de Graaf, E.; Wolters, L.; Vrijland, W.; et al. Yield of routine molecular analyses in colorectal cancer patients ≤70 years to detect underlying Lynch syndrome. J. Pathol. 2012, 226, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Dow, E.; Buchanan, D.D.; Winship, I.M. Utility of immunohistochemistry for mismatch repair proteins on colorectal polyps in the familial cancer clinic. Intern. Med. J. 2018, 48, 1325–1330. [Google Scholar] [CrossRef]
- Kloor, M.; Huth, C.; Voigt, A.; Benner, A.; Schirmacher, P.; Doeberitz, M.V.K.; Bläker, H. Prevalence of mismatch repair-deficient crypt foci in Lynch syndrome: A pathological study. Lancet Oncol. 2012, 13, 598–606. [Google Scholar] [CrossRef]
- Brand, R.E.; Dudley, B.; Karloski, E.; Das, R.; Fuhrer, K.; Pai, R.K.; Pai, R.K. Detection of DNA mismatch repair deficient crypts in random colonoscopic biopsies identifies Lynch syndrome patients. Fam. Cancer 2020, 19, 169–175. [Google Scholar] [CrossRef]
- Boland, C.R. Lynch syndrome: New tales from the crypt. Lancet Oncol. 2012, 13, 562–564. [Google Scholar] [CrossRef] [Green Version]
- Kansikas, M.; Kasela, M.; Kantelinen, J.; Nyström, M. Assessing how reduced expression levels of the mismatch repair genes MLH1, MSH2, and MSH6 affect repair efficiency. Hum. Mutat. 2014, 35, 1123–1127. [Google Scholar] [CrossRef]
- Kasela, M.; Nyström, M.; Kansikas, M. PMS2 expression decrease causes severe problems in mismatch repair. Hum. Mutat. 2019, 40, 904–907. [Google Scholar] [CrossRef]
- Staffa, L.; Echterdiek, F.; Nelius, N.; Benner, A.; Werft, W.; Lahrmann, B.; Grabe, N.; Schneider, M.; Tariverdian, M.; von Knebel Doeberitz, M.; et al. Mismatch repair-deficient crypt foci in Lynch syndrome--molecular alterations and association with clinical parameters. PLoS ONE 2015, 10, e0121980. [Google Scholar] [CrossRef] [Green Version]
- Coolbaugh-Murphy, M.; Xu, J.; Ramagli, L.; Ramagli, B.; Brown, B.; Lynch, P.; Hamilton, S.; Frazier, M.; Siciliano, M. Microsatellite instability in the peripheral blood leukocytes of HNPCC patients. Hum. Mutat. 2010, 31, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.; Lee, C.; Xu, J.; Simien, C.; Fan, C.; Tam, M.; Ramagli, L.; Brown, B.; Lynch, P.; Frazier, M.; et al. Microsatellite instability in saliva from patients with hereditary non-polyposis colon cancer and siblings carrying germline mismatch repair gene mutations. Ann. Clin. Lab. Sci. 2011, 41, 321–330. [Google Scholar]
- Coolbaugh-Murphy, M.; Xu, J.; Ramagli, L.; Brown, B.; Siciliano, M. Microsatellite instability (MSI) increases with age in normal somatic cells. Mech. Ageing Dev. 2005, 126, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Alazzouzi, H.; Domingo, E.; González, S.; Blanco, I.; Armengol, M.; Espín, E.; Plaja, A.; Schwartz, S.; Capella, G.; Schwartz, S.J. Low levels of microsatellite instability characterize MLH1 and MSH2 HNPCC carriers before tumor diagnosis. Hum. Mol. Genet. 2005, 14, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Gallon, R.; Muhlegger, B.; Wenzel, S.; Sheth, H.; Hayes, C.; Aretz, S.; Dahan, K.; Foulkes, W.; Kratz, C.; Ripperger, T.; et al. A sensitive and scalable microsatellite instability assay to diagnose constitutional mismatch repair deficiency by sequencing of peripheral blood leukocytes. Hum. Mutat. 2019, 40, 649–655. [Google Scholar] [CrossRef]
- González-Acosta, M.; Marín, F.; Puliafito, B.; Bonifaci, N.; Fernández, A.; Navarro, M.; Salvador, H.; Balaguer, F.; Iglesias, S.; Velasco, A.; et al. High-sensitivity microsatellite instability assessment for the detection of mismatch repair defects in normal tissue of biallelic germline mismatch repair mutation carriers. J. Med. Genet. 2020, 57, 269–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodo, S.; Colas, C.; Buhard, O.; Collura, A.; Tinat, J.; Lavoine, N.; Guilloux, A.; Chalastanis, A.; Lafitte, P.; Coulet, F.; et al. Diagnosis of constitutional mismatch repair-deficiency syndrome based on microsatellite instability and lymphocyte tolerance to methylating agents. Gastroenterology 2015, 149, 1017–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloor, M.; von Knebel Doeberitz, M. The immune biology of microsatellite-unstable cancer. Trends Cancer 2016, 2, 121–133. [Google Scholar] [CrossRef] [Green Version]
- André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [Green Version]
- Seppälä, T.T.; Latchford, A.; Negoi, I.; Sampaio Soares, A.; Jimenez-Rodriguez, R.; Sánchez-Guillén, L.; Evans, D.G.; Ryan, N.; Crosbie, E.J.; Dominguez-Valentin, M.; et al. European guidelines from the EHTG and ESCP for Lynch syndrome: An updated third edition of the Mallorca guidelines based on gene and gender. Br. J. Surg. 2020. [Google Scholar] [CrossRef]
Tumour Type | Frequency | Method | Reference |
---|---|---|---|
Colorectal Cancer | 426/14075 (3.0%, 2.7–3.3% [95% CI]) | Total | |
23/1066 (2.2%) | Germline MMR gene testing of patients with MMR-deficient tumours | Hampel et al., 2005 [159] | |
18/500 (3.6%) | Germline MMR gene testing of patients with MMR-deficient tumours | Hampel et al., 2008 [160] | |
312/10206 (3.1%) | Germline MMR gene testing of 2650 (26.0%) patients | Moreira et al., 2012 [8] | |
33/1058 (3.1%) | Germline MMR gene testing of all patients | Yurgelun et al., 2017 [29] | |
12/419 (2.9%) | Germline MMR gene testing of all patients | Hampel et al., 2018 [30] | |
28/826 (3.4%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
Endometrial Cancer | 188/7098 (2.7%, 2.3–3.1% [95% CI]) | Total | |
145/5882 (2.5%) | Meta-analysis of germline MMR gene testing with heterogeneity of patients and genes tested | Ryan et al., 2019 [9] | |
6/111 (5.4%) | Germline MMR gene testing of all patients | Chao et al., 2019 [144] | |
9/525 (1.7%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
18/239 (7.5%) | Germline MMR gene testing of patients with MMR-deficient and MLH1 promoter methylation-negative tumours | Dondi et al., 2020 [161] | |
10/341 (2.9%) | Germline MMR gene testing of patients with MMR-deficient and MLH1 promoter methylation-negative tumours | Hampel et al., 2021 [145] | |
Gastric Cancer | 3/308 (1.0%, 0.2–2.8% [95% CI]) | Total | |
1/97 (1.0%) | Germline MMR gene testing of patients with MMR-deficient tumours | Christakis et al., 2019 [162] | |
2/211 (0.9%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
Ovarian Cancer | 51/3484 (1.4%, 1.1–1.9% [95% CI]) | Total 1 | |
9–64/1893 (0.5–3.4%) | Known pathogenic-known and predicted pathogenic. Germline MLH1, MSH2, and MSH6 gene testing of all patients | Pal et al., 2012 [163] | |
4/656 (0.6%) | Germline MLH1, MSH2, and MSH6 gene testing of all patients | Akbari et al., 2017 [164] | |
Majority serous | 0/343 (0.0%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] |
6/502 (1.2%) | Germline MMR gene testing of 17/36 (47.2%) patients with MMR-deficient tumour | Leskela et al., 2020 [165] | |
Endometrioid or Clear Cell | 4/90 (4.4%) | Germline MMR gene testing of 5/7 (71.4%) patients with MMR-deficient tumour | Vierkoetter et al., 2014 [158] |
Pancreatic Cancer | 41/3608 (1.1%, 0.8–1.5% [95% CI]) | Total | |
4/290 (1.4%) | Germline MMR gene testing of all patients | Grant et al., 2015 [166] | |
5/249 (2.0%) | Germline MMR gene testing of all patients | Connor et al., 2017 [167] | |
9/833 (1.1%) | Germline MMR gene testing of all patients | Hu et al., 2018 [168] | |
1/199 (0.5%) | Germline MMR gene testing of patients with MMR-deficient tumours | Christakis et al., 2019 [162] | |
8/824 (1.0%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
14/1213 (1.2%) | Germline MMR gene testing of 519/1213 (42.8%) patients | Grant et al., 2020 [169] | |
Small Bowel Cancer | 34/666 (5.1%, 3.6–7.1% [95% CI]) | Total | |
8/195 (4.1%) | Germline MMR gene testing of patients with MMR-deficient tumours | Jun et al., 2017 [170] | |
4/29 (13.8%) | Germline MMR gene testing of patients with MMR-deficient tumours | Christakis et al., 2019 [162] | |
2/57 (3.5%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
20/385 (5.2%) | Germline MMR gene testing of patients with MMR-deficient and MLH1 promoter methylation-negative tumours | Suerink et al., 2020 [171] | |
Urothelial Cancer | 40/1589 (2.5%, 1.8–3.4% [95% CI]) | Total | |
13/551 (2.4%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
12/586 (2.0%) | Germline MMR gene testing of all patients | Carlo et al., 2020 [172] | |
Upper tract urothelial | 6/194 (3.1%) | Germline MMR gene testing of patients with MMR-deficient tumours | Harper et al., 2016 [173] |
Upper tract urothelial | 7/115 (6.1%) | Germline MMR gene testing of patients with MMR-deficient tumours | Metcalfe et al., 2018 [174] |
Upper tract urothelial | 2/143 (1.4%) | Germline MMR gene testing of 2/7 (28.6%) patients with MMR-deficient tumours | Urakami et al., 2018 [175] |
Biliary Tract Cancer | 6/250 (2.4%, 0.9–5.2% [95% CI]) | Total | |
Ampulla of Vater | 0/11 (0.0%) | Germline MMR gene testing of patients with MMR-deficient tumours | Christakis et al., 2019 [162] |
Bile duct | 0/60 (0.0%) | Germline MMR gene testing of patients with MMR-deficient tumours | Christakis et al., 2019 [162] |
Gall bladder | 0/19 (0.0%) | Germline MMR gene testing of patients with MMR-deficient tumours | Christakis et al., 2019 [162] |
Periampullary | 6/160 (3.8%) | Germline MMR gene testing of patients with MMR-deficient tumours | Gingras et al., 2015 [176] |
Sebaceous Neoplasms | 87/261 (33.3%, 27.6–39.4% [95% CI]) | Total | |
11/24 (45.8%) | Germline MMR gene testing of all patients | Dandapani et al., 2011 [177] | |
25/86 (29.1%) | Germline MMR gene testing of 58/86 (67.4%) patients | Everett et al., 2014 [178] | |
40/89 (44.9%) | Germline MMR gene testing of all patients | Roberts et al., 2014 [179] | |
11/62 (17.7%) | 9/62 (14.5%) known genetic diagnosis, germline MMR gene testing of 10/53 (18.9%) remaining patients | Schon et al., 2018 [180] | |
CNS Tumour | 3/923 (0.3%, 0.1–0.9% [95% CI]) | Total | |
3/923 (0.3%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
Breast Cancer | 11/3011 (0.4%, 0.2–0.7% [95% CI]) | Total | |
4/640 (0.6%) | Germline MMR gene testing of all patients | Davies et al., 2017 [181] | |
7/2371 (0.3%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
Prostate Cancer | 68/5831 (1.2%, 0.9–1.5% [95% CI]) | Total | |
7/1048 (0.7%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
58/3607 (1.6%) | Germline MMR gene testing of all patients | Nicolosi et al., 2019 [182] | |
3/1176 (0.3%) | Germline MSH2 gene testing of 12/14 (85.7%) patients with MSH2-deficient tumours | Guedes et al., 2020 [183] | |
Non-Lynch-Spectrum Cancer | 32/9116 (0.4%, 0.2–0.5% [95% CI]) | Total | |
24/7366 (0.3%) | Germline MMR gene testing of all patients | Latham et al., 2019 [70] | |
Lung | 1/341 (0.3%) | Germline MMR gene testing of patients with MMR-deficient tumours | Takamochi et al., 2017 [184] |
Lung | 6/1179 (0.5%) | Germline MMR gene testing of all patients | Sun et al., 2019 [185] |
Oesophageal | 1/230 (0.4%) | Germline MMR gene testing of patients with MMR-deficient tumours | Christakis et al., 2019 [162] |
Tumour Type | Frequency | Method | Reference |
---|---|---|---|
Colorectal Cancer | 135/140 (96.4%, 91.9–98.8% [95% CI]) | Total 1 | |
46/48 (95.8%)/35/35 (100.0%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel)/IHC of MLH1, MSH2, and MSH6 | Gylling et al., 2008 [28] | |
28/29 (96.6%) | MSI analysis by unspecified method and/or IHC of unspecified panel | Yurgelun et al., 2017 [29] | |
54/58 (93.1%)/53/58 (91.4%) | MSI by FLA of 5 monoNRs (Promega), and MSI by NGS (mSINGS)/IHC of all 4 MMR proteins | Hampel et al., 2018 [30] | |
18/18 (100.0%) | MSI by FLA of 2 monoNRs, and/or IHC of all 4 MMR proteins | Porkka et al., 2020 [31] | |
Endometrial Cancer | 79/98 (80.6%, 71.4–87.9% [95% CI]) | Total 1 | |
8/8 (100.0%)/9/9 (100.0%) | MSI by FLA of 3 monoNRs and 3 diNRs (adapted Bethesda panel)/IHC of MLH1, MSH2, and MSH6 | Lu et al., 2007 [188] | |
38/60 (63.3%)/42/42 (100.0%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel)/IHC of MLH1, MSH2, and MSH6 | Gylling et al., 2008 [28] | |
19/21 (90.5%) | MSI (unspecified) and IHC of all 4 MMR proteins | Ring et al., 2016 [189] | |
5/12 (41.7%)/10/13 (76.9%) | MSI by FLA of 3 monoNRs and 3 diNRs (adapted Bethesda panel)/IHC of all 4 MMR protein | Rubio et al., 2016 [143] | |
4/4 (100.0%)/4/6 (66.7%) | MSI by FLA of 5 monoNRs (Sinomdgene Co. Ltd., Beijing China)/IHC of all 4 MMR proteins | Chao et al., 2019 [144] | |
Gastric Cancer | 35/39 (89.6%, 75.8–97.1% [95% CI]) | Total 1,2 | |
7-15/15 (46.7–100.0%) | MSI-H-possible MSI-H due to inconclusive results. MSI by FLA of 7 diNRs | Aarnio et al., 1997 [186] | |
13/13 (100.0%)/10/10 (100.0%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel)/IHC of MLH1, MSH2, and MSH6 | Gylling et al., 2008 [28] | |
4/4 (100.0%)/4/4 (100.0%) | MSI by FLA of 5 monoNRs (Promega) or 2 monoNRs and 3 diNRs (Bethesda panel)/IHC of all 4 MMR proteins | Fornasarig et al., 2018 [190] | |
8/8 (100.0%) | IHC of all 4 MMR proteins | Saita et al., 2018 [191] | |
Ovarian Cancer | 38/40 (93.8%, 83.1–99.4% [95% CI]) | Total 1 | |
19/20 (95.0%)/16/20 (80.0%) | MSI by FLA of 2 monoNRs/IHC of all 4 MMR proteins | Niskakoski et al., 2013 [192] | |
4/4 (100.0%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel) | Akbari et al., 2017 [164] | |
16/16 (100.0%) | MSI by FLA of 2 monoNRs, and/or IHC of all 4 MMR proteins | Porkka et al., 2020 [31] | |
Pancreatic Cancer | 22/29 (75.9%, 56.5–89.7% [95% CI]) | Total | |
3/3 (100.0%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel) | Yamamoto et al., 2001 [187] | |
2/2 (100.0%) | IHC of all 4 MMR proteins | Grant et al., 2015 [166] | |
3/5 (60.0%) | Mutational signatures (Alexandrov et al., 2013), confirmed by MSI by FLA of 5 monoNRs (Promega) and IHC of all 4 MMR proteins | Connor et al., 2017 [167] | |
7/9 (77.8%) | MSI by NGS (MSIsensor), MSI by FLA of 5 monoNRs, and/or IHC of all 4 MMR proteins | Hu et al., 2018 [168] | |
7/10 (70.0%) | IHC of all 4 MMR proteins, 10/14 (71.4%) LS tumours tested | Grant et al., 2020 [169] | |
Small Bowel Cancer | 22/23 (95.6%, 78.1–100.0% [95% CI]) | Total 1 | |
21/21 (100.0%)/16/18 (88.9%) | MSI by FLA of 3 monoNRs and 3 diNRs (adapted Bethesda panel)/IHC of MLH1, MSH2, and MSH6 | Schulmann et al., 2005 [137] | |
2/2 (100.0%) | IHC of all 4 MMR proteins | Roth et al., 2016 [193] | |
Jejunal | 1/1 (100.0%)/1/1 (100.0%) | MSI method not specified/IHC of all 4 MMR proteins | McIlvried et al., 2011 [194] |
Urothelial Cancer | 26/30 (85.0%, 69.3–96.2% [95% CI]) | Total 1 | |
Bladder urothelial | 3/5 (60.0%)/4/4 (100.0%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel)/IHC of MLH1, MSH2, and MSH6 | Gylling et al., 2008 [28] |
Bladder urothelial | 6/7 (85.7%)/14/17 (82.4%) | MSI by FLA of 3 monoNRs and 3 diNRs (adapted Bethesda panel)/IHC of all 4 MMR proteins | van der Post et al., 2010 [138] |
Bladder urothelial | 5/5 (100.0%) | IHC of all 4 MMR proteins | Saita et al., 2018 [191] |
Upper tract urothelial | 6/9 (66.7%)/8/8 (100.0%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel)/IHC of MLH1, MSH2, and MSH6 | Gylling et al., 2008 [28] |
Biliary Tract Cancer | 6/6 (100.0%, 54.1–100.0% [95% CI]) | Total | |
5/5 (100.0%) | IHC of all 4 MMR proteins, 5/11 (45.5%) LS tumours tested | Cloyd et al., 2017 [195] | |
Ampulla of Vater | 1/1 (100.0%) | IHC of all 4 MMR proteins | Roth et al., 2016 [193] |
Sebaceous Neoplasms | 47/58 (81.0%, 68.6–90.1% [95% CI]) | Total | |
13/16 (81.3%) | IHC of all 4 MMR proteins | Everett et al., 2014 [178] | |
27/34 (79.4%) | IHC of all 4 MMR proteins, numbers represent patients with all tumours showing MMR protein loss | Roberts et al., 2014 [179] | |
7/8 (87.5%) | IHC of all 4 MMR proteins | Roth et al., 2016 [193] | |
CNS Tumour | 13/18 (73.9%, 46.5–90.3% [95% CI]) | Total 1 | |
0/7 (0.0%) / 4/4 (100.0%)/3/4 (75.0%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel)/MSI by small-pool PCR of 2 diNRs/IHC of MLH1, MSH2, and MSH6 | Gylling et al., 2008 [28] | |
8/10 (80.0%) | IHC of all 4 MMR proteins | Therkildsen et al., 2015 [196] | |
Glioblastoma | 1/1 (100.0%) | IHC of all 4 MMR proteins | Park et al., 2009 [197] |
Glioblastoma | 1/1 (100.0%) | IHC of all 4 MMR proteins | Lehrer et al., 2015 [198] |
Glioblastoma | 1/1 (100.0%) | IHC of all 4 MMR proteins | Kurtzman et al., 2015 [199] |
Breast Cancer | 43/84 (50.9%, 40.0–62.3% [95% CI]) | Total 1 | |
18/35 (51.4%) | IHC of all 4 MMR proteins | Walsh et al., 2010 [200] | |
8/23 (34.8%)/13/20 (65.0%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel)/IHC of MLH1, MSH2, and MSH6 | Lotsari et al., 2012 [201] | |
2/4 (50.0%) | Mutational signatures (Alexandrov et al., 2013), confirmed by IHC of all 4 MMR proteins | Davies et al., 2017 [181] | |
1/3 (33.3%) | IHC of all 4 MMR proteins | Saita et al., 2018 [191] | |
11/20 (55.0%) | MSI by FLA of 2 monoNRs, and/or IHC of all 4 MMR proteins | Porkka et al., 2020 [31] | |
Prostate Cancer | 47/72 (65.7%, 53.1–76.1% [95% CI]) | Total 1 | |
32/44 (72.7%) | Meta-analysis of studies using IHC | Ryan et al., 2014 [202] | |
2/16 (12.5%)/11/16 (68.8%) | MSI by FLA of 5 monoNRs (Promega)/IHC of all 4 MMR proteins | Dominguez-Valentin et al., 2016 [203] | |
1/1 (100.0%) | IHC of all 4 MMR proteins | Saita et al., 2018 [191] | |
7/11 (63.6%)/8/10 (80.0%) | MSI by FLA of 5 monoNRs (Promega)/IHC of all 4 MMR proteins | Antonarakis et al., 2019 [204] | |
Non-Lynch-Spectrum Cancer | 2/11 (18.2%, 2.3–51.8% [95% CI]) | Total | |
0/3 (0.0%) | IHC of all 4 MMR proteins | Saita et al., 2018 [191] | |
Lung | 0/6 (0.0%) | MSI by NGS (MSIsensor), MSI by FLA of 5 monoNRs, and/or IHC of all 4 MMR proteins | Sun et al., 2019 [185] |
Oesophageal | 1/1 (100.0%) | IHC of MSH2 and MSH6 | Sweetser et al., 2013 [205] |
Oesophageal | 1/1 (100.0%) | IHC of all 4 MMR proteins | Sasaki et al., 2019 [206] |
Tumour Type | Frequency | Method | Reference |
---|---|---|---|
Colorectal Cancer | 1823/13093 (13.9%, 13.3–14.5% [95% CI]) | Total 1 | |
63/509 (12.4%) | MSI by Southern blot of 7 diNRs (custom panel), or by FLA of 16 diNRs (custom panel) | Aaltonen et al., 1998 [207] | |
135/1066 (12.7%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel) | Hampel et al., 2005 [159] | |
64/500 (12.8%)/71/483 (14.7%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel)/IHC of all 4 MMR proteins | Hampel et al., 2008 [160] | |
1386/10019 (13.8%) | MSI by FLA of various microsatellite panels and/or IHC of various protein panels | Moreira et al., 2012 [8] | |
77/419 (18.4%) | MSI by FLA of 5 monoNRs (Promega), and MSI by NGS (mSINGS) | Hampel et al., 2018 [30] | |
Colonic | 85/431 (19.7%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] |
Rectal | 9/157 (5.7%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] |
Endometrial Cancer | 1735/6522 (26.6%, 25.5–27.7% [95% CI]) | Total 1 | |
170/542 (31.4%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] | |
768/2890 (26.6%)/1948/7725 (25.2%) | Meta-analysis of studies using MSI analysis/meta-analysis of studies using IHC | Ryan et al., 2019 [9] | |
12/83 (14.5%)/28/102 (27.5%) | MSI by FLA of 5 monoNRs (Sinomdgene Co. Ltd.)/IHC of all 4 MMR proteins | Chao et al., 2019 [144] | |
96/239 (40.2%) | IHC of all 4 MMR proteins | Dondi et al., 2020 [161] | |
91/341 (26.7%) | MSI by FLA of 5 monoNRs (Promega)/IHC of all 4 MMR proteins | Hampel et al., 2021 [145] | |
Gastric Cancer | 199/1123 (17.7%, 15.5–20.1% [95% CI]) | Total | |
5/56 (8.9%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel) | Toyota et al., 1999 [209] | |
29/205 (14.1%) | MSI by FLA of 2 monoNRs and 3 diNRs (custom panel) | Yamamoto et al., 1999 [210] | |
8/30 (26.7%) | MSI by 5 monoNRs and 3 diNRs (adapted Bethesda panel) | Leung et al., 2000 [211] | |
64/295 (21.7%) | MSI by NGS (not specified) | Bass et al., 2014 [212] | |
84/440 (19.1%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] | |
9/97 (9.3%) | MSI by NGS (custom analysis) | Christakis et al., 2019 [162] | |
Ovarian Cancer | 289/2733 (10.6%, 9.4–11.8% [95% CI]) | Total 1 | |
145/977 (14.8%) | Meta-analysis of studies using MSI analysis | Pal et al., 2008 [213] | |
88/656 (13.4%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel) | Akbari et al., 2017 [164] | |
36/502 (7.2%) | IHC of all 4 MMR proteins | Leskela et al., 2020 [165] | |
Endometrioid | 7/71 (9.9%)/7/71 (9.9%) | MSI by FLA of 5 monoNRs (Promega)/IHC of all 4 MMR proteins | Aysal et al., 2012 [214] |
Endometrioid or clear cell | 7/90 (7.8%) | IHC of all 4 MMR proteins | Vierkoetter et al., 2014 [158] |
Serous | 6/437 (1.4%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] |
Pancreatic Cancer | 224/8954 (2.5%, 2.2–2.8% [95% CI]) | Total | |
0/183 (0.0%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] | |
4/249 (1.6%) | Mutational signatures (Alexandrov et al., 2013), confirmed by MSI by FLA of 5 monoNRs (Promega) and IHC of all 4 MMR proteins | Connor et al., 2017 [167] | |
2/199 (1.0%) | MSI by NGS (custom analysis) | Christakis et al., 2019 [162] | |
218/8323 (2.6%) | Meta-analysis of studies using MSI analysis and/or IHC | Luchini et al., 2020 [215] | |
Small Bowel Cancer | 136/704 (19.3%, 16.5–22.4% [95% CI]) | Total | |
16/89 (18.0%) | MSI by FLA of 4 monoNRs | Planck et al., 2003 [216] | |
2/22 (9.1%) | MSI by FLA of 4 monoNRs and 6 diNRs (custom panel) | Potter et al., 2004 [217] | |
14/61 (23.0%) | IHC of all 4 MMR proteins | Aparicio et al., 2013 [218] | |
6/71 (8.5%) | MSI by 2 monoNRs and 3 diNRs (Bethesda panel) | Xia et al., 2017 [219] | |
8/29 (27.6%) | MSI by NGS (custom analysis) | Christakis et al., 2019 [162] | |
84/385 (21.8%) | IHC of all 4 MMR proteins | Suerink et al., 2020 [171] | |
Duodenal | 6/47 (12.8%) | IHC of all 4 MMR proteins | Xue et al., 2017 [220] |
Urothelial Cancer | 42/1200 (3.5%, 2.5–4.7% [95% CI]) | Total 1 | |
Bladder urothelial | 0/54 (0.0%)/6/92 (6.5%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel)/IHC of all 4 MMR proteins | Giedl et al., 2014 [221] |
Bladder urothelial | 2/412 (0.5%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] |
Bladder urothelial | 1/160 (0.6%) | IHC of all 4 MMR proteins | Ju et al., 2018 [222] |
Upper tract urothelial | 10/194 (5.2%) | IHC of all 4 MMR proteins | Harper et al., 2016 [173] |
Upper tract urothelial | 10/117 (8.5%) | IHC of all 4 MMR proteins | Ju et al., 2018 [222] |
Upper tract urothelial | 5/87 (5.7%)/13/115 (11.3%) | MSI by FLA of 3 monoNRs, 3 diNRs, and 1 marker of ambiguous identity/IHC of all 4 MMR proteins | Metcalfe et al., 2018 [174] |
Upper tract urothelial | 7/143 (4.9%) | IHC of all 4 MMR proteins | Urakami et al., 2018 [175] |
Biliary Tract Cancer | 68/993 (6.9%, 5.4–8.6% [95% CI]) | Total 1 | |
4/126 (3.2%) | MSI by FLA of 2 monoNRs and 3 diNRs (Bethesda panel) | Rashid et al., 2002 [223] | |
Ampulla of Vater | 8/53 (15.1%) | MSI by FLA of 8 diNRs (panel for LoH analysis) | Scarpa et al., 2000 [224] |
Ampulla of Vater | 5/53 (9.4%) | MSI by FLA of 5 monoNRs (panel of Suraweera et al., 2002) | Sessa et al., 2007 [225] |
Ampulla of Vater | 15/144 (10.4%)/11/139 (7.9%) | MSI by FLA of 3 monoNRs and 4 diNRs (adapted Bethesda panel)/IHC of MLH1, MSH2, and MSH6 | Ruemmele et al., 2009 [226] |
Ampulla of Vater | 3/54 (5.6%) | IHC of all 4 MMR proteins | Agaram et al., 2010 [227] |
Ampulla of Vater | 0/11 (0.0%) | MSI by NGS (custom analysis) | Christakis et al., 2019 [162] |
Bile duct | 1/74 (1.4%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] |
Bile duct | 1/60 (1.7%) | MSI by NGS (custom analysis) | Christakis et al., 2019 [162] |
Gall bladder | 0/19 (0.0%) | MSI by NGS (custom analysis) | Christakis et al., 2019 [162] |
Gall bladder | 1/69 (1.4%) | MSI by FLA of 3 monoNRs (custom panel) | Goeppert et al., 2019 [228] |
Periampullary | 12/160 (7.5%) | MSI by NGS (custom analysis) | Gingras et al., 2015 [176] |
Periampullary | 20/172 (11.6%) | IHC of all 4 MMR proteins | Heby et al., 2018 [229] |
Sebaceous Neoplasms | 584/1385 (42.2%, 39.5–44.8% [95% CI]) | Total | |
24/49 (49.0%) | IHC of all 4 MMR proteins | Mojtahed et al., 2011 [230] | |
38/77 (49.4%) | IHC of all 4 MMR proteins | Everett et al., 2014 [178] | |
71/74 (95.9%) | IHC of all 4 MMR proteins, numbers represent patients with at least one tumour showing MMR protein loss | Roberts et al., 2014 [179] | |
143/216 (66.2%) | IHC of all 4 MMR proteins | Jessup et al., 2016 [231] | |
26/50 (52.0%) | IHC of all 4 MMR proteins | Schon et al., 2018 [180] | |
282/919 (30.7%) | IHC of all 4 MMR proteins | Walsh et al., 2018 [232] | |
CNS Tumour | 10/980 (1.0%, 0.5–1.9% [95% CI]) | Total | |
Glioblastoma | 1/396 (0.3%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] |
Glioblastoma | 7/71 (9.9%) | IHC of all 4 MMR proteins | Tepeoglu et al., 2019 [233] |
Lower-grade glioma | 2/513 (0.4%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] |
Breast Cancer | 58/3319 (1.7%, 1.3–2.3% [95% CI]) | Total | |
16/1044 (1.5%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] | |
11/640 (1.7%) | Mutational signatures (Alexandrov et al., 2013), confirmed by IHC of all 4 MMR proteins | Davies et al., 2017 [181] | |
31/1635 (1.9%) | IHC of all 4 MMR proteins | Cheng et al., 2020 [234] | |
Prostate Cancer | 17/1674 (1.0%, 0.6–1.6% [95% CI]) | Total | |
3/498 (0.6%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] | |
14/1176 (1.2%) | IHC of MSH2 | Guedes et al., 2020 [183] | |
Non-Lynch-spectrum Cancer | 55/7222 (0.8%, 0.6–1.0% [95% CI]) | Total 1 | |
46/6012 (0.8%) | MSI by NGS (MANTIS) | Bonneville et al., 2017 [208] | |
Lung | 1/341 (0.3%) | MSI by FLA of 5 monoNRs (Promega) | Takamochi et al., 2017 [184] |
Oesophageal | 2/362 (0.6%)/7/916 (0.8%) | MSI by FLA of 5 monoNRs (Promega)/IHC of various protein panels | Hewitt et al., 2018 [235] |
Oesophageal | 3/230 (1.3%) | MSI by NGS (custom analysis) | Christakis et al., 2019 [162] |
Tumour Type | Frequency Estimates | MMR Deficiency Screen Results 1 | Screening Accuracy | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MMR Deficiency 2 | Lynch Syndrome 3 | True Positive | False Negative | True Negative | False Positive | Sensitivity 4 | Specificity | PPV | NPV | |
Colorectal cancer | 13.9% | 3.0% | 2.9% | 0.1% | 86.0% | 11.0% | 96.4% | 88.7% | 20.8% | 99.9% |
Endometrial cancer | 26.6% | 2.7% | 2.2% | 0.5% | 72.9% | 24.4% | 80.6% | 74.9% | 8.2% | 99.3% |
Gastric cancer | 17.7% | 1.0% | 0.9% | 0.1% | 82.2% | 16.8% | 89.6% | 83.0% | 5.1% | 99.9% |
Ovarian cancer | 10.6% | 1.4% | 1.3% | 0.1% | 89.3% | 9.3% | 93.8% | 90.6% | 12.4% | 99.9% |
Pancreatic cancer | 2.5% | 1.1% | 0.8% | 0.3% | 97.2% | 1.7% | 75.9% | 98.3% | 33.4% | 99.7% |
Small bowel cancer | 19.3% | 5.1% | 4.9% | 0.2% | 80.5% | 14.4% | 95.6% | 84.8% | 25.3% | 99.7% |
Urothelial cancer | 3.5% | 2.5% | 2.1% | 0.4% | 96.1% | 1.4% | 85.0% | 98.6% | 60.7% | 99.6% |
Biliary tract cancer | 6.9% | 2.4% | 2.4% | 0.0% | 93.1% | 4.5% | 100.0% | 95.4% | 34.8% | 100.0% |
Sebaceous neoplasms | 42.2% | 33.3% | 27.0% | 6.3% | 51.5% | 15.2% | 81.0% | 77.2% | 63.9% | 89.1% |
CNS tumour | 1.0% | 0.3% | 0.2% | 0.1% | 98.9% | 0.8% | 73.9% | 99.2% | 22.2% | 99.9% |
Breast cancer | 1.7% | 0.4% | 0.2% | 0.2% | 98.1% | 1.5% | 50.9% | 98.5% | 12.0% | 99.8% |
Prostate cancer | 1.0% | 1.2% | 0.8% | 0.4% | 98.6% | 0.2% | 65.7% | 99.8% | 78.8% | 99.6% |
Non-Lynch-spectrum | 0.8% | 0.4% | 0.1% | 0.3% | 98.9% | 0.7% | 18.2% | 99.3% | 9.1% | 99.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallon, R.; Gawthorpe, P.; Phelps, R.L.; Hayes, C.; Borthwick, G.M.; Santibanez-Koref, M.; Jackson, M.S.; Burn, J. How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies. Cancers 2021, 13, 406. https://doi.org/10.3390/cancers13030406
Gallon R, Gawthorpe P, Phelps RL, Hayes C, Borthwick GM, Santibanez-Koref M, Jackson MS, Burn J. How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies. Cancers. 2021; 13(3):406. https://doi.org/10.3390/cancers13030406
Chicago/Turabian StyleGallon, Richard, Peter Gawthorpe, Rachel L. Phelps, Christine Hayes, Gillian M. Borthwick, Mauro Santibanez-Koref, Michael S. Jackson, and John Burn. 2021. "How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies" Cancers 13, no. 3: 406. https://doi.org/10.3390/cancers13030406
APA StyleGallon, R., Gawthorpe, P., Phelps, R. L., Hayes, C., Borthwick, G. M., Santibanez-Koref, M., Jackson, M. S., & Burn, J. (2021). How Should We Test for Lynch Syndrome? A Review of Current Guidelines and Future Strategies. Cancers, 13(3), 406. https://doi.org/10.3390/cancers13030406