A Novel Salt Inducible Kinase 2 Inhibitor, ARN-3261, Sensitizes Ovarian Cancer Cell Lines and Xenografts to Carboplatin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. ARN-3261 Inhibits Cell Growth and Increases Sensitivity to Carboplatin in Ovarian Cancer Cells
2.2. ARN-3261 or SIK2 Knockout Enhances Carboplatin-Induced Apoptosis by Downregulating Survivin
2.3. ARN-3261 Enhances Carboplatin-Induced DNA Damage
2.4. ARN-3261 Inhibits Growth Of Cisplatin-Resistant Cancer Cell Lines and Enhances Sensitivity to Carboplatin
2.5. ARN-3261 Enhances the Activity of Carboplatin in Human Ovarian Cancer Xenograft Models
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Cell Lines and Cultures
4.3. Cell Viability Assays
4.4. Clonogenic Survival Assays
4.5. Protein Extraction and Western Blot Analysis
4.6. Immunofluorescence Staining
4.7. Comet Assays
4.8. Apoptosis Assays
4.9. Murine Xenografts
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial ovarian cancer. Lancet 2019, 393, 1240–1253. [Google Scholar] [CrossRef] [Green Version]
- Bowtell, D.D.; Bohm, S.; Ahmed, A.A.; Aspuria, P.J.; Bast, R.C., Jr.; Beral, V.; Berek, J.S.; Birrer, M.J.; Blagden, S.; Bookman, M.A.; et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer 2015, 15, 668–679. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Wang, X.; Lu, Z.; Goldsmith, J.; Le, X.F.; Grandjean, G.; Bartholomeusz, G.; Broom, B.; Bast, R.C., Jr. Modulating microtubule stability enhances the cytotoxic response of cancer cells to Paclitaxel. Cancer Res. 2011, 71, 5806–5817. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.A.; Lu, Z.; Jennings, N.B.; Etemadmoghadam, D.; Capalbo, L.; Jacamo, R.O.; Barbosa-Morais, N.; Le, X.F.; Australian Ovarian Cancer Study Group; Vivas-Mejia, P.; et al. SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell 2010, 18, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef] [Green Version]
- Bon, H.; Wadhwa, K.; Schreiner, A.; Osborne, M.; Carroll, T.; Ramos-Montoya, A.; Ross-Adams, H.; Visser, M.; Hoffmann, R.; Ahmed, A.A.; et al. Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol. Cancer Res. 2015, 13, 620–635. [Google Scholar] [CrossRef] [Green Version]
- Miranda, F.; Ahmed, A.A. How to make ovarian cancer cells “sick-too”. Cell Cycle 2017, 16, 15–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, F.; Mannion, D.; Liu, S.; Zheng, Y.; Mangala, L.S.; Redondo, C.; Herrero-Gonzalez, S.; Xu, R.; Taylor, C.; Chedom, D.F.; et al. Salt-Inducible Kinase 2 Couples Ovarian Cancer Cell Metabolism with Survival at the Adipocyte-Rich Metastatic Niche. Cancer Cell 2016, 30, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Zohrap, N.; Saatci, O.; Ozes, B.; Coban, I.; Atay, H.M.; Battaloglu, E.; Sahin, O.; Bugra, K. SIK2 attenuates proliferation and survival of breast cancer cells with simultaneous perturbation of MAPK and PI3K/Akt pathways. Oncotarget 2018, 9, 21876–21892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, T.; Zhang, X.; Zhao, J.; Zhou, F.; Wang, Y.; Zhao, Z.; Xing, J.; Chen, B.; Li, J.; Liu, S. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1alpha pathway and Drp1-mediated mitochondrial fission in ovarian cancer. Cancer Lett. 2020, 469, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhang, X.; Gao, T.; Wang, S.; Hou, Y.; Yuan, P.; Yang, Y.; Yang, T.; Xing, J.; Li, J.; et al. SIK2 enhances synthesis of fatty acid and cholesterol in ovarian cancer cells and tumor growth through PI3K/Akt signaling pathway. Cell Death Dis. 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Mao, W.; Pang, L.; Santiago-O’Farrill, J.M.; Yang, H.; Ahmed, A.; Vankayalapati, H.; Bast, R.C. SIK2 inhibitors regulate DNA repair pathway and sensitize ovarian cancer to PARP1 inhibitors. Cancer Res. 2018, 78, 324. [Google Scholar] [CrossRef]
- Lombardi, M.S.; Gillieron, C.; Dietrich, D.; Gabay, C. SIK inhibition in human myeloid cells modulates TLR and IL-1R signaling and induces an anti-inflammatory phenotype. J. Leukoc. Biol. 2016, 99, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Alfraidi, A.; Zhang, S.; Santiago-O’Farrill, J.M.; Yerramreddy Reddy, V.K.; Alsaadi, A.; Ahmed, A.A.; Yang, H.; Liu, J.; Mao, W.; et al. A Novel Compound ARN-3236 Inhibits Salt-Inducible Kinase 2 and Sensitizes Ovarian Cancer Cell Lines and Xenografts to Paclitaxel. Clin. Cancer Res. 2017, 23, 1945–1954. [Google Scholar] [CrossRef] [Green Version]
- Makin, G.; Dive, C. Apoptosis and cancer chemotherapy. Trends Cell Biol. 2001, 11, S22–S26. [Google Scholar] [CrossRef]
- Garg, H.; Suri, P.; Gupta, J.C.; Talwar, G.P.; Dubey, S. Survivin: A unique target for tumor therapy. Cancer Cell Int. 2016, 16, 49. [Google Scholar] [CrossRef] [Green Version]
- Jordan, P.; Carmo-Fonseca, M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol. Life Sci. 2000, 57, 1229–1235. [Google Scholar] [CrossRef]
- Cepeda, V.; Fuertes, M.A.; Castilla, J.; Alonso, C.; Quevedo, C.; Perez, J.M. Biochemical mechanisms of cisplatin cytotoxicity. Anticancer Agents Med. Chem. 2007, 7, 3–18. [Google Scholar] [CrossRef]
- Dungl, D.A.; Maginn, E.N.; Stronach, E.A. Preventing Damage Limitation: Targeting DNA-PKcs and DNA Double-Strand Break Repair Pathways for Ovarian Cancer Therapy. Front. Oncol. 2015, 5, 240. [Google Scholar] [CrossRef] [Green Version]
- Stefanou, D.T.; Bamias, A.; Episkopou, H.; Kyrtopoulos, S.A.; Likka, M.; Kalampokas, T.; Photiou, S.; Gavalas, N.; Sfikakis, P.P.; Dimopoulos, M.A.; et al. Aberrant DNA damage response pathways may predict the outcome of platinum chemotherapy in ovarian cancer. PLoS ONE 2015, 10, e0117654. [Google Scholar] [CrossRef]
- Sears, C.R.; Cooney, S.A.; Chin-Sinex, H.; Mendonca, M.S.; Turchi, J.J. DNA damage response (DDR) pathway engagement in cisplatin radiosensitization of non-small cell lung cancer. DNA Repair 2016, 40, 35–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, K.; Lin, Y.G.; Roman, L.D.; Sood, A.K. Overcoming platinum resistance in ovarian carcinoma. Expert Opin. Investig. Drugs 2010, 19, 1339–1354. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Brunelli, L.; Affatato, R.; Chila, R.; Verza, M.; Indraccolo, S.; Falcetta, F.; Fratelli, M.; Fruscio, R.; Pastorelli, R.; et al. Overcoming platinum-acquired resistance in ovarian cancer patient-derived xenografts. Ther. Adv. Med. Oncol. 2019, 11, 1758835919839543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damia, G.; Broggini, M. Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers 2019, 11, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Krishnakumar, S.; Kanwar, R.K.; Cheung, C.H.; Kanwar, J.R. Clinical aspects for survivin: A crucial molecule for targeting drug-resistant cancers. Drug Discov. Today 2015, 20, 578–587. [Google Scholar] [CrossRef]
- Dynek, J.N.; Vucic, D. Antagonists of IAP proteins as cancer therapeutics. Cancer Lett. 2013, 332, 206–214. [Google Scholar] [CrossRef]
- Andreotti, P.E.; Cree, I.A.; Kurbacher, C.M.; Hartmann, D.M.; Linder, D.; Harel, G.; Gleiberman, I.; Caruso, P.A.; Ricks, S.H.; Untch, M.; et al. Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: Clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res. 1995, 55, 5276–5282. [Google Scholar] [PubMed]
- Crouch, S.P.; Kozlowski, R.; Slater, K.J.; Fletcher, J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol Methods 1993, 160, 81–88. [Google Scholar] [CrossRef]
- Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Końca, K.; Lankoff, A.; Banasik, A.; Lisowska, H.; Kuszewski, T.; Góźdź, S.; Koza, Z.; Wojcik, A. A cross-platform public domain PC image-analysis program for the comet assay. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2003, 534, 15–20. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Yang, H.; Mao, W.; Rask, P.J.; Pang, L.; Xu, C.; Vankayalapat, H.; Ahmed, A.A.; Bast, R.C., Jr.; Lu, Z. A Novel Salt Inducible Kinase 2 Inhibitor, ARN-3261, Sensitizes Ovarian Cancer Cell Lines and Xenografts to Carboplatin. Cancers 2021, 13, 446. https://doi.org/10.3390/cancers13030446
Fan D, Yang H, Mao W, Rask PJ, Pang L, Xu C, Vankayalapat H, Ahmed AA, Bast RC Jr., Lu Z. A Novel Salt Inducible Kinase 2 Inhibitor, ARN-3261, Sensitizes Ovarian Cancer Cell Lines and Xenografts to Carboplatin. Cancers. 2021; 13(3):446. https://doi.org/10.3390/cancers13030446
Chicago/Turabian StyleFan, Dengxuan, Hailing Yang, Weiqun Mao, Philip J. Rask, Lan Pang, Congjian Xu, Hariprasad Vankayalapat, Ahmed A. Ahmed, Robert C. Bast, Jr., and Zhen Lu. 2021. "A Novel Salt Inducible Kinase 2 Inhibitor, ARN-3261, Sensitizes Ovarian Cancer Cell Lines and Xenografts to Carboplatin" Cancers 13, no. 3: 446. https://doi.org/10.3390/cancers13030446
APA StyleFan, D., Yang, H., Mao, W., Rask, P. J., Pang, L., Xu, C., Vankayalapat, H., Ahmed, A. A., Bast, R. C., Jr., & Lu, Z. (2021). A Novel Salt Inducible Kinase 2 Inhibitor, ARN-3261, Sensitizes Ovarian Cancer Cell Lines and Xenografts to Carboplatin. Cancers, 13(3), 446. https://doi.org/10.3390/cancers13030446