Clinical Characterisation and Management of the Main Treatment-Induced Toxicities in Patients with Hepatocellular Carcinoma and Cirrhosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Staging
3. Functional Assessment and Risk Stratification
4. Implications of Cirrhosis That Influence the Choice of Treatment
5. Locoregional Therapies
5.1. Radiofrequency Thermal Ablation (RFA)
5.2. Microwave Ablation (MWA)
5.3. Ethanol Injection (Alcoholisation)
5.4. Cryotherapy
5.5. Stereotactic Body Radiotherapy (SBRT)
5.6. Superselective Chemoembolisation (TACE)
5.7. Radioembolisation (TARE) with Yttrium 90
6. Main Adverse Events in Cirrhotic Patients
7. Exacerbation of HBV and HCV
8. Systemic Treatments
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- The Cancer of the liver Italian Program (CLIP) investigators. A new prognostic system for hepatocellular carcinoma: A retrospective study of 435 patients: The Cancer of the Liver Italian Program (CLIP) investigators. Hepatology 1998, 28, 751–755. [Google Scholar] [CrossRef]
- Younossi, Z.; Stepanova, M.; Ong, J.P.; Jacobson, I.M.; Bugianes, E.; Guseja, A.; Eguchi, Y.; Wong, V.W.; Negro, F.; Yilmaz, Y.; et al. Non-alcoholic steato-hepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin. Gastroenterol. Hepatol. 2019, 17, 748–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; Cosme de Oliveira, A.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Shenglong Ye, M.D.; Yang, T.S.; et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, M.D.; et al. RESORCE Investigators (2017). Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [Green Version]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.Y.; Choo, S.P.; Trojan, J.; Welling, T.H.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Kudo, M.; Matilla, A.; Santoro, A.; Melero, I.; Gracian, A.C.; Rivera, M.A.; Choo, S.P.; El-Khoueiry, A.B.; Kuromatsu, R.; El-Rayes, B.F.; et al. Checkmate-040: Nivolumab (NIVO) in patients (pts) with advanced hepatocellular carcinoma (aHCC) and Child-Pugh B (CPB) status. J. Clin. Oncol. 2019, 37, 327. [Google Scholar] [CrossRef]
- Kambhampati, S.; Bauer, K.E.; Bracci, P.M.; Keenan, B.P.; Behr, S.C.; Gordan, J.D.; Kelley, R.K. Nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh class B cirrhosis: Safety and clinical outcomes in a retrospective case series. Cancer 2019, 125, 3234–3241. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- NCCN Clinical Practice Guidelines in Oncology: Hepatobiliary Cancers v5; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2020.
- Alsina, A.; Kudo, M.; Vogel, A.; Cheng, A.L.; Tak, W.Y.; Ryoo, B.Y.; Evans, T.; López López, C.; Daniele, B.; Misir, S.; et al. Effects of Subsequent Systemic Anticancer Medication Following First-Line Lenvatinib: A Post Hoc Responder Analysis from the Phase 3 REFLECT Study in Unresectable Hepatocellular Carcinoma. Liver Cancer 2019, 9, 93–104. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Han, K.H.; Harding, J.J.; Merle, P.; et al. CheckMate 459: A randomized, multi-center phase III study of nivolumab (NIVO) vs. sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma. Ann. Oncol. 2019, 30 (Suppl. 5), v874–v875. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. REACH-2: A randomized, double-blind, placebo-controlled phase 3 study of ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma (HCC) and elevated baseline alpha-fetoprotein (AFP) following first-line sorafenib. J. Clin. Oncol. 2018, 36, 4003. [Google Scholar]
- Yau, T.; Kang, Y.; Kim, T.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.; Matilla, A.; et al. Nivolumab + ipilimumab combination therapy in patients with advanced hepatocellular carcinoma: Results from CheckMate 040. J. Clin. Oncol. 2019, 37, 4012–4020. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non- randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Llovet, J.M.; Bru, C.; Bruix, J. Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin. Liver Dis. 1999, 19, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.; Therneau, T.M.; Kosberg, C.L.; D’Amico, G.; Dickson, E.R.; Kim, W.R. A model to predict survival in patients with end-stage liver disease. Hepatology 2001, 33, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. Electronic address: [email protected], & European Association for the Study of the Liver. J. Hepatol. 2018, 69, 182–236. [Google Scholar]
- Mazzaferro, V.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Montalto, F.; Ammatuna, M.; Morabito, A.; Gennari, L. Liver transplantation for the treatment of small hepatocellularcarcinomas in patients with cirrhosis. N. Engl. J. Med. 1996, 334, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbac, J.K. Diagnosis, staging, and management of Hepatocellular Carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguet, M.; Adam, J.P.; Blanc, J.F.; Lapuyade, B.; Bernard, P.; Buscail, E.; Neau-Cransac, M.; Vendrely, V.; Laurent, C.; Chiche, L. Multidisciplinary meetings specific to hepatocellular carcinoma: How to proceed? J. Visc. Surg. 2019, 156, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Barone, C.; Koeberle, D.; Metselaar, H.; Parisi, G.; Sansonno, D.; Spinzi, G. Multidisciplinary approach for HCC patients: Hepatology for the oncologists. Ann. Oncol. 2013, 24, ii15–ii23. [Google Scholar] [CrossRef]
- Karnofsky, D.; Burchenal, J. The clinical evaluation of chemotherapeutic agents in cancer. In Evaluation of Chemotherapeutic Agents; MacLeod, C., Ed.; Columbia University Press: New York, NY, USA, 1949; pp. 191–205. [Google Scholar]
- Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity And Response Criteria Of The Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [Google Scholar] [CrossRef]
- Child, C.G.; Turcotte, J.G. Surgery and portal hypertension. Major Probl. Clin. Surg. 1964, 1, 1–85. [Google Scholar]
- Farinati, F.; Vitale, A.; Spolverato, G.; Pawlik, T.M.; Huo, T.L.; Lee, Y.H.; Frigo, A.C.; Giacomin, A.; Giannini, E.G.; Ciccarese, F.; et al. Development and Validation of a New Prognostic System for Patients with Hepatocellular Carcinoma. PLoS Med. 2016, 13, e1002006. [Google Scholar] [CrossRef]
- Borzio, M.; Dionigi, E.; Rossini, A.; Marignani, M.; Sacco, R.; De Sio, I.; Bertolini, E.; Francica, G.; Giacomin, A.; Parisi, G.; et al. External validation of the ITA.LI.CA prognostic system for patients with hepatocellular carcinoma: A multicenter cohort study. Hepatology 2018, 67, 2215–2225. [Google Scholar] [CrossRef]
- Durand, F.; Valla, D. Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. J. Hepatol. 2005, 42, S110S107. [Google Scholar] [CrossRef]
- Ripoll, C.; Genescà, J.; Araujo, I.K.; Graupera, I.; Augustin, S.; Tejedor, M.; Cirera, I.; Aracil, C.; Sala, M.; Hernandez-Guerra, M.; et al. Rebleeding prophylaxis improves outcomes in patients with hepatocellular carcinoma. A multicenter case-control study. Hepatology 2013, 58, 2079–2088. [Google Scholar] [CrossRef] [Green Version]
- Tamaoki, M.; Toshikuni, N.; Matsueda, K.; Yamamoto, H. Influence of high-risk esophageal varices on outcomes in hepatocellular carcinoma patients: Benefits of prophylactic endoscopic therapies. Hepatogastroenterology 2012, 59, 2557–2563. [Google Scholar] [CrossRef] [PubMed]
- Giovanardi, F.; Lai, Q.; Bertacco, A.; Vitale, A. Resection for hepatocellular cancer: Overpassing old barriers. Transl. Gastroenterol. Hepatol. 2018, 3, 64. [Google Scholar] [CrossRef] [PubMed]
- Majno, P.E.; Mentha, G.; Mazzaferro, V. Partial hepatectomy versus radiofrequency ablation for hepatocellular carcinoma: Confirming the trial that will never be, and some comments on the indications for liver resection. Hepatology 2010, 51, 1116–1118. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.; Peck-Radosavljevic, M.; Giannini, E.G.; Vibert, E.; Sieghart, W.; Van Poucke, S.; Pawlik, T.M. Personalized treatment of patients with very early hepatocellular carcinoma. J. Hepatol. 2017, 66, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cucchetti, A.; Sposito, C.; Pinna, A.D.; Citterio, D.; Ercolani, G.; Flores, M.; Cescon, M.; Mazzaferro, V. Effect of age on survival in patients undergoing resection of hepatocellular carcinoma. Br. J. Surg. 2016, 103, e93–e99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.S.; Li, J.Q.; Zheng, Y.; Guo, R.P.; Liang, H.H.; Zhang, Y.Q.; Lin, X.J.; Lau, W.Y. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann. Surg. 2006, 243, 321–328. [Google Scholar] [CrossRef]
- Marelli, L.; Stigliano, R.; Triantos, C.; Senzolo, M.; Cholongitas, E.; Davies, N.; Yu, D.; Meyer, T.; Patch, D.W.; Burroughs, A.K. Treatment outcomes for hepatocellular carcinoma using chemoembolization in combination with other therapies. Cancer Treat. Rev. 2006, 32, 594–606. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Kim, J.K.; Kim, W.T.; Chung, J.W. Hepatic resection versus radiofrequency ablation for very early stage hepatocellular carcinoma: A Markov model analysis. Hepatology 2010, 51, 1284–1290. [Google Scholar] [CrossRef]
- Golfieri, R.; Bilbao, J.I.; Carpanese, L.; Cianni, R.; Gasparini, R.; Ezziddin, S.; Paprottka, P.M.; Fiore, F.; Cappelli, A.; Rodriguez, M.; et al. Comparison of the survival and tolerability of radioembolization in elderly vs. younger patients with unresectable hepatocellular carcinoma. J. Hepatol. 2013, 59, 753–761. [Google Scholar] [CrossRef]
- Chinnaratha, M.A.; Chuang, M.Y.; Fraser, R.J.; Woodman, R.J.; Wigg, A.J. Percutaneous thermal ablation for primary hepatocellular carcinoma: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2016, 31, 294–301. [Google Scholar] [CrossRef]
- Tan, W.; Deng, Q.; Lin, S.; Wang, Y.; Xu, G. Comparison of microwave ablation and radiofrequency ablation for hepatocellular carcinoma: A systematic review and meta-analysis. Int. J. Hyperthermia 2019, 36, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vietti Violi, N.; Duran, F.; Guiu, B.; Cercueil, J.P.; Aubé, C.; Digklia, A.; Pache, I.; Deltenre, P.; Knebel, J.F.; Denys, A.; et al. Efficacy of microwave ablation versus radiofrequency ablation for the treatment of hepatocellular carcinoma in patients with chronic liver disease: A randomised controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 2018, 3, 317–325. [Google Scholar] [CrossRef]
- Germani, G.; Pleguezuelo, M.; Gurusamy, K.; Meyer, T.; Isgrò, G.; Burroughs, A.K. Clinical outcomes of radiofrequency ablation, percutaneous alcohol and acetic acid injection for hepatocellular carcinoma: A meta-analysis. J. Hepatol. 2010, 52, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.W.; Ying, H.F.; Gao, S.; Shen, Y.-H.; Meng, Z.-Q.; Chen, H.; Chen, Z.; Tenget, W.-J. Radiofrequency ablation plus chemoembolization versus radiofrequency ablation alone for hepatocellular carcinoma: A systematic review and meta-analysis. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 309–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajyaguru, D.J.; Borgert, A.J.; Smith, A.L.; Thomes, R.M.; Conway, P.D.; Halfdanarson, T.R.; Truty, M.J.; Kurup, N.; Go, R.S. Radiofrequency ablation versus stereotactic body radiotherapy for localized hepatocellular carcinoma in nonsurgically managed patients: Analysis of the national cancer database. J. Clin. Oncol. 2018, 36, 600–608. [Google Scholar] [CrossRef]
- Xie, H.; Yu, H.; Tian, S.; Yang, X.; Wang, X.; Yang, Z.; Wang, H.; Guo, Z. What is the best combination treatment with transarterial chemoembolization of unresectable hepatocellular carcinoma? A systematic review and network meta-analysis. Oncotarget 2018, 8, 100508–100523. [Google Scholar] [CrossRef] [Green Version]
- Sacco, R.; Bargellini, I.; Bertini, M.; Bozzi, E.; Romano, A.; Petruzzi, P.; Tumino, E.; Ginanni, B.; Federici, G.; Cioni, R.; et al. Conventional versus doxorubicin-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J. Vasc. Interv. Radiol. 2011, 22, 1545–1552. [Google Scholar] [CrossRef]
- Golfieri, R.; Giampalma, E.; Renzulli, M.; Cioni, R.; Bargellini, I.; Bartolozzi, C.; Breatta, A.D.; Gandini, G.; Nani, R.; Gasparini, D.; et al. Randomised controlled trial of doxorubicin-eluting beads vs. conventional chemoembolisation for hepatocellular carcinoma. Br. J. Cancer 2014, 111, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Piscaglia, F.; Ogasawara, S. Patient Selection for Transarterial Chemoembolization in Hepatocellular Carcinoma: Importance of Benefit/Risk Assessment. Liver Cancer 2018, 7, 104–119. [Google Scholar] [CrossRef]
- Ishikawa, T. Prevention of post-embolization syndrome after transarterial chemoembolization for hepatocellular carcinoma—Is prophylactic dexamethasone useful, or not? Hepatobiliary Surg. Nutr. 2018, 7, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Miksad, R.A.; Ogasawara, S.; Xia, F.; Fellous, M.; Piscaglia, F. Liver function changes after transarterial chemoembolization in US hepatocellular carcinoma patients: The LiverT study. BMC Cancer 2019, 19, 795. [Google Scholar] [CrossRef] [Green Version]
- Edeline, J.; Crouzet, L.; Campillo-Gimenez, B.; Rolland, Y.; Pracht, M.; Guillygomarc’h, A.; Boudjema, K.; Lenoir, L.; Adhoute, X.; Rohou, T.; et al. Selective internal radiation therapy compared with sorafenib for hepatocellular carcinoma with portal vein thrombosis. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Sangro, B.; Maini, C.L.; Ettorre, G.M.; Cianni, R.; Golfieri, R.; Gasparini, D.; Ezziddin, S.; Paprottka, P.M.; Fiore, F.; Van Buskirk, M.; et al. Radioembolisation in patients with hepatocellular carcinoma that have previously received liver-directed therapies. European Network on Radioembolization with Yttrium-90 resin microspheres (ENRY). Eur. J. Nucl. Med. Mol. Imaging 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilgrain, V.; Pereira, H.; Assenat, E.; Guiu, B.; Ilonca, A.D.; Pageaux, G.-P.; Sibert, A.; Bouattour, M.; Lebtahi, R.; Allaham, W.; et al. SARAH Trial Group. Efficacy and safety of selective internal radiotherapy with yttrium-90 resin microspheres compared with sorafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH): An open-label randomised controlled phase 3 trial. Lancet Oncol. 2017, 18, 1624–1636. [Google Scholar] [CrossRef]
- Chow, P.K.H.; Gandhi, M.; Choo, S.P.; Thng, C.H.; Tan, S.B.; Low, A.S.C.; Cheow, P.C.; Goh, A.S.W.; Tay, K.H.; Lo, R.H.G.; et al. Phase III multi-centre open-label randomized controlled trial of selective internal radiation therapy (SIRT) versus sorafenib in locally advanced hepatocellular carcinoma: The SIRveNIB study. 2017 ASCO Annual Meeting. J. Clin. Oncol. 2017, 35, 4002. [Google Scholar] [CrossRef]
- Hilgard, P.; Hamami, M.; Fouly, A.E.; El Fouly, A.; Scherag, A.; Müller, S.; Ertle, J.; Heusner, T.; Cicinnati, V.R.; Paul, A.; et al. Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology 2010, 52, 1741–1749. [Google Scholar] [CrossRef]
- Riaz, A.; Lewandowski, R.J.; Kulik, L.M.; Mulcahy, M.F.; Sato, K.T.; Ryu, R.K.; Omary, R.A.; Salem, R. Complications following radioembolization with yttrium-90 microspheres: A comprehensive literature review. J. Vasc. Interv. Radiol. 2009, 20, 1121–1130. [Google Scholar] [CrossRef]
- Gil-Alzugaray, B.; Chopitea, A.; Iñarrairaegui, M.; Bilbao, J.I.; Rodriguez-Fraile, M.; Rodriguez, J.; Benito, A.; Dominguez, I.; D’Avola, D.; Herrero, J.I.; et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2013, 57, 1078–1087. [Google Scholar] [CrossRef]
- Papatheodoridis, G.; Dalekos, G.; Sypsa, V.; Yurdaydin, C.; Buti, M.; Goulis, J.; Calleja, J.L.; Chi, H.; Manolakopoulos, S.; Mangia, G.; et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy. J. Hepatol. 2016, 64, 800–806. [Google Scholar] [CrossRef]
- Cabibbo, G.; Petta, S.; Barbara, M.; Attardo, S.; Bucci, L.; Farinati, F.; Giannini, E.G.; Negrini, G.; Ciccarese, F.; Rapaccini, G.L.; et al. Hepatic decompensation is the major driver of death in HCV-infected cirrhotic patients with successfully treated early hepatocellular carcinoma. J. Hepatol. 2017, 67, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Cabibbo, G.; Celsa, C.; Calvaruso, V.; Petta, S.; Cacciola, I.; Cannavò, M.R.; Madonia, S.; Rossi, M.; Magro, B.; Rini, F.; et al. Direct-acting antivirals after successful treatment of early hepatocellular carcinoma improve survival in HCV-cirrhotic patients. J. Hepatol. 2019, 71, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.P.; Liposits, G.; Caird, S.; Dunne, R.F.; Moffat, G.T.; Okonji, D.; Rodriquenz, M.G.; Dua, D.; Dotan, E. Hepatocellular carcinoma in older adults: A comprehensive review by Young International Society of Geriatric Oncology. J. Geritar. Oncol. 2020, 11, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.P.; Ketchum, N.S.; Gelfond, J. Comparative efficacy and safety of sorafenib in elderly versus non-elderly patients with advanced hepatocellular carcinoma (HCC) with varying liver dysfunction. J. Clin. Oncol. 2018, 36, 430. [Google Scholar] [CrossRef]
- Di Costanzo, G.G.; Tortora, R.; De Luca, M.; Galeota Lanza, A.; Lampasi, F.; Tartaglione, M.T.; Picciotto, F.P.; Imparato, M.; Mattera, S.; Cordone, G.; et al. Impact of age on toxicity and efficacy of sorafenib-targeted therapy in cirrhotic patients with hepatocellular carcinoma. Med. Oncol. 2013, 30, 446. [Google Scholar] [CrossRef] [PubMed]
- Williet, N.; Clavel, L.; Bourmaud, A.; Verot, C.; Bouarioua, N.; Roblin, X.; Merle, P.; Jean-Marc Phelip, J.-M. Tolerance and outcomes of sorafenib in elderly patients treated for advanced hepatocellular carcinoma. Dig. Liver Dis. 2017, 49, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Ikeda, M.; Zhu, A.X.; Sung, M.W.; Baron, A.D.; Kudo, M.; Okusaka, T.; Kobayashi, M.; Kumada, H.; Kaneko, S.; et al. Phase Ib study of Lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J. Clin. Oncol. 2020, 38, 2960–2970. [Google Scholar] [CrossRef]
- Wong, H.; Tang, Y.F.; Yao, T.J.; Chiu, J.; Leung, R.; Chan, P.; Cheung, T.T.; Chan, A.C.; Pang, R.W.; Poon, R.; et al. The outcomes and safety of single-agent sorafenib in the treatment of elderly patients with advanced hepatocellular carcinoma (HCC). Oncologist 2011, 16, 1721–1728. [Google Scholar] [CrossRef] [Green Version]
- Collins, B.H.; Pirsch, J.D.; Becker, Y.T.; Hanaway, M.J.; Van der Werf, W.J.; D’Alessandro, A.M.; Knechtle, S.J.; Odorico, J.S.; Leverson, G.; Musat, A.; et al. Long-term results of liver transplantation in older patients 60 years of age and older. Transplantation 2000, 70, 780–783. [Google Scholar] [CrossRef]
- Majumdar, A.; Roccarina, D.; Thorburn, D.; Davidson, B.R.; Tsochatzis, E.; Gurusamy, S.G. Management of people with early- or very early-stage hepatocellular carcinoma: An attempted network meta-analysis. Cochrane Database Syst. Rev. 2017, 3, CD011650. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.F.; Chen, Y.; Song, S.Y.; Wang, T.J.; Ji, W.-J.; Li, S.-W.; Liu, N.; Yan, C.-X. Immune-Related Adverse Events Associated with Anti-PD-1/PD-L1 Treatment for Malignancies: A Meta-Analysis. Front. Pharm. 2017, 8, 730. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A.; Kostine, M.; Barnetche, T.; Truchetet, M.-E.; Schaeverbeke, T. Immune related adverse events associated with anti-CTLA-4 antibodies: Systematic review and meta-analysis. BMC Med. 2015, 13, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Velasco, G.; Je, Y.; Bossé, D.; Awad, M.M.; Ott, P.A.; Moreira, R.B.; Schutz, F.; Bellmunt, J.; Sonpavde, G.P.; Hodi, F.S.; et al. Comprehensive Meta-analysis of Key Immune-Related Adverse Events from CTLA-4 and PD-1/PD-L1 Inhibitors in Cancer Patients. Cancer Immunol. Res. 2017, 5, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, O.; Fouad, M. Risk of pneumonitis in cancer patients treated with immune checkpoint inhibitors: A meta-analysis. Adv. Respir. Dis. 2016, 10, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef]
- Albillos, A.; Lario, M.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.L.; Yip, T.C.-F.; Wong, V.W.-S.; Tse, Y.-K.; Yuen, B.W.-Y.; Luk, H.W.-S.; Lui, R.N.-S.; Chan, H.L.-Y.; Mok, T.S.-K.; Wong, G.L.-H. Pattern and impact of hepatic adverse events encountered during immune checkpoint inhibitors—A territory-wide cohort study. Cancer Med. 2020, 9, 7052–7061. [Google Scholar] [CrossRef]
- Sangro, B.; Gomez-Martin, C.; de la Mata, M.; Iñarrairaegui, M.; Garralda, E.; Barrera, P.; Riezu-Boj, J.I.; Larrea, E.; Alfaro, C.; Sarobe, P.; et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 2013, 59, 81–88. [Google Scholar] [CrossRef]
- Qin, S.; Ren, Z.; Meng, Z.; Chen, Z.; Chai, X.; Xiong, J.; Bai, Y.; Yang, L.; Zhu, H.; Fang, W.; et al. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: A multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020, 21, 571–580. [Google Scholar] [CrossRef]
- Wainberg, Z.A. Safety and Clinical Activity of Durvalumab Monotherapy in Patients with Hepatocellular Carcinoma (HCC). J. Clin. Oncol. 2017, 35, 4071. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Tovoli, F.; Ielasi, L.; Casadei-Gardini, A.; Granito, A.; Foschi, F.G.; Rovesti, G.; Negrini, G.; Orsi, G.; Renzulli, M.; Piscaglia, F. Management of adverse events with tailored sorafenib dosing prolongs survival of hepatocellular carcinoma patients. J. Hepatol. 2019, 71, 1175–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieux-Klotz, C.; Dior, M.; Damotte, D.; Dreanic, J.; Brieau, B.; Brezault, C.; Abitbol, V.; Chaussade, S.; Coriat, R. Immune Checkpoint Inhibitor-Induced Colitis: Diagnosis and Management. Target Oncol. 2017, 12, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Rimassa, L.; Danesi, R.; Pressiani, T.; Merle, P. Management of adverse events associated with tyrosine kinase inhibitors: Improving outcomes for patients with hepatocellular carcinoma. Cancer Treat. Rev. 2019, 77, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Eso, Y.; Marusawa, H. Novel approaches for molecular targeted therapy against hepatocellular carcinoma. Hepatol. Res. 2018, 48, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Torres, F.; Rodriguez-Lope, C.; Forner, A.; Llarch, N.; Rimola, J.; Darnell, A.; Rios, J.; Ayuso, C.; Bruix, J. Early dermatologic adverse events predict better outcome in HCC patients treated with sorafenib. J. Hepatol. 2014, 61, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Tovoli, F.; De Lorenzo, S.; Trevisani, F. Immunotherapy with checkpoint inhibitors for hepatocellular carcinoma: Where are we now? Vaccines 2020, 8, 57. [Google Scholar] [CrossRef]
PARAMETER | 1 | 2 | 3 |
Serum Bilirubin (mg/dL) | 2.0 | 2–3 | >3.0 |
Serum Albumin (g/dL) | >3.515 | 2.8–3.5 | <2.8 |
Prothrombin Time (Prolongation(s)) | 1–4 | 5–6 | >6 |
Hepatic Encephalopathy | None | Minimal | Moderate |
Ascites | None | Slight | Moderate |
1 and 2-years survival based on CTP Score Class | 1 yr | 2 yr | |
A (5–6 points) | 100% | 85% | |
B (7–9 points) | 80% | 60% | |
C (10–15 points) | 45% | 35% |
Treatment | Mortality | Major Complications | mOS | 5 Years Survival |
---|---|---|---|---|
RFA | 0.1–05% | 2.2–4.1% | 21 months | 59.8% |
MWA | 0–0.36% | 2.6–4.6% | 31 months | 67.9% |
PEI | 0.6 | 0–3.2% | NA | 47–53% |
CA | 0% | 2.8–3.9% | NA | 59.5% |
IRE | 0% | 3.3–4.7% | 26.3 | NA |
TACE | 1% | 2.1–5% | 38.3 | 27.6% |
DEB-TACE | 1.2% | 3.2% | 37 | 22.5% |
SIRT | 1.5% | 4.9% | 10–29 | NA |
Drug (Reference). | AE Grade ≥3. | Incidence ≥5 (%). |
---|---|---|
Sorafenib (3). | Diarrhoea. | 11. |
Fatigue. | 10. | |
Abdominal pain. | 9. | |
HFSR. | 8. | |
Ascites. | 7. | |
Regorafenib (5). | Hypertension. | 15. |
HFSR. | 13. | |
Increased blood bilirubin. | 11. | |
Increased AST. | 11. | |
Fatigue. | 9. | |
Anaemia. | 5.. | |
Lenvatinib (9). | Hypertension. | 23. |
Weight loss. | 8. | |
Increased blood bilirubin. | 7. | |
Proteinuria. | 6. | |
Decreased appetite. | 5. | |
Decreased platelet count. | 5. | |
Cabozantinib (14). | HFSR. | 17. |
Hypertension. | 16. | |
Increased AST. | 12. | |
Diarrhoea. | 10. | |
Fatigue. | 10. | |
Asthenia. | 7. | |
Decreased appetite. | 6. | |
Increased ALT. | 5. |
Provide the patient with adequate information on the potential adverse effects. Advise the patient to keep a diary in which to record his/her weight, blood pressure and bowel movements. Provide the patient with a list of products (creams containing urea, anti-diarrhoea products such as loperamide, anti-hypertensives: ACEi, ARB, beta blockers, non-dihydropyridine calcium-channel blockers) for the treatment and prevention of AEs. Instruct him/her on how to take the therapy. Provide information on any concomitant therapy considering potential drug-drug interactions (e.g., PPIs reduce the absorption of sorafenib by reducing gastric acidity). Provide practical information on the management of the most common adverse events (e.g., diarrhoea: avoid caffeine and spicy or fatty foods, dairy products, foods with a high fibre content and introduce potatoes, apple juice, probiotics, bananas and abundant oral hydration to prevent dehydration. For patients who frequently experienced diarrhoea, loperamide may also be taken pre-emptively. Concomitant lactulose dose reduction may be necessary. Loperamide-refractory diarrhoea may be treated with atropine-diphenoxylate, codeine or tincture of opium, if appropriate). Provide the patient with information on prophylactic management of HFSR (e.g., prophylactic use of emollients containing 10% urea and to remove existing areas of hyperkeratosis before TKI treatment initiation). Finally, in conventional clinical practice it is mandatory to establish early close follow-up after treatment initiation, and that patients should be given easy access to unscheduled visits and consultations to detect AEs, manage them promptly, and adjust dosage. This surely improves treatment compliance with optimal efficacy without unneeded treatment interruptions or cancellations. |
TOXICITIES. | Nivolumab. | Pembrolizumab. | Atezolizumab + Bevacizumab. | Pembrolizumab + Lenvatinib. | Nivolumab + Ipilimumab. |
---|---|---|---|---|---|
Grade ≥ 3 AEs. | 22%. | 46.3%. | 56.5%. | 67% (including three grade 5 events). | 37%. |
Discontinuation rate for AEs. | 4%. | 17.2%. | 15.5%. | Not reported. | 2–18%. |
Adverse Event | AB (% Any Grade) | PL (% Any Grade) | ≥Grade 3 (%) AB vs. PL |
---|---|---|---|
Hypertension | 30 | 36 | 15 vs. 17 |
Fatigue | 20 | 30 | 2 vs. 4 |
Proteinuria | 20 | 20 | 3 vs. 4 |
AST increase | 19.5 | 20 | 7 vs. 11 |
Pruritus | 19.5 | NR | 0 vs. NR |
Diarrhea | 19 | 35 | 2 vs. 5 |
Decrease appetite | 18 | 28 | 1 vs. 0 |
Pyrexia | 18 | NR | 1 vs. NR |
ALT increase | 14 | NR | 1 vs. NR |
Weight decrease | 11 | 22 | 0 vs. 3 |
Constipation | 13 | NR | 0 vs. NR |
Nausea | 12 | 17 | 0 vs. 1 |
Asthenia | 7 | 19 | 0 vs. 5 |
Rash | 12.5 | NR | 0 vs. NR |
Hypothyroidism | NR | 25 | NR vs. 0 |
HFRS | 1 | 23 | 0 vs. 1 |
Dysphonia | NR | 21 | NR vs. 1 |
Grade 5 | 4.6 | 13 * | 4.6 vs. 13 * |
Total | 98 | 99 | 56.5 vs. 67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meriggi, F.; Graffeo, M. Clinical Characterisation and Management of the Main Treatment-Induced Toxicities in Patients with Hepatocellular Carcinoma and Cirrhosis. Cancers 2021, 13, 584. https://doi.org/10.3390/cancers13030584
Meriggi F, Graffeo M. Clinical Characterisation and Management of the Main Treatment-Induced Toxicities in Patients with Hepatocellular Carcinoma and Cirrhosis. Cancers. 2021; 13(3):584. https://doi.org/10.3390/cancers13030584
Chicago/Turabian StyleMeriggi, Fausto, and Massimo Graffeo. 2021. "Clinical Characterisation and Management of the Main Treatment-Induced Toxicities in Patients with Hepatocellular Carcinoma and Cirrhosis" Cancers 13, no. 3: 584. https://doi.org/10.3390/cancers13030584
APA StyleMeriggi, F., & Graffeo, M. (2021). Clinical Characterisation and Management of the Main Treatment-Induced Toxicities in Patients with Hepatocellular Carcinoma and Cirrhosis. Cancers, 13(3), 584. https://doi.org/10.3390/cancers13030584