MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Identification of NIFTP-Specific Differentially Expressed miRNAs
2.3. Validation of Potential miRNA Markers in TCGA Data
2.4. Validation of Potential miRNA Markers in an Independent Cohort
2.5. Clinicopathologic Utility of the Three miRNA Markers in Thyroid Cancer
2.6. Clinicopathologic Utility of the Three miRNA Markers in Patients with PTC
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Total RNA Isolation and Small RNA Sequencing
4.3. Small RNA Sequencing Data Analysis
4.4. Public miRNA-Sequencing Data Collection
4.5. MiRNA Expression Levels by qRT-PCR
4.6. BRAF Mutational Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gharib, H.; Papini, E. Thyroid nodules: Clinical importance, assessment, and treatment. Endocrinol. Metab. Clin. N. Am. 2007, 36, 707–735. [Google Scholar] [CrossRef]
- Guth, S.; Theune, U.; Aberle, J.; Galach, A.; Bamberger, C.M. Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur. J. Clin. Investig. 2009, 39, 699–706. [Google Scholar] [CrossRef]
- Reiners, C.; Wegscheider, K.; Schicha, H.; Theissen, P.; Vaupel, R.; Wrbitzky, R.; Schumm-Draeger, P.M. Prevalence of thyroid disorders in the working population of Germany: Ultrasonography screening in 96,278 unselected employees. Thyroid 2004, 14, 926–932. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.V.; Osamura, R.Y.; Kloppel, G.; Rosai, J. Chapter 2 Tumours of the thyroid gland. In WHO Classification of Tumours of Endocrine Organs, 4th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2017; pp. 65–143. [Google Scholar]
- Backes, C.; Khaleeq, Q.T.; Meese, E.; Keller, A. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res. 2016, 44, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Oh, C.M.; Cho, H.; Lee, J.Y.; Jung, K.W.; Jun, J.K.; Won, Y.J.; Kong, H.J.; Choi, K.S.; Lee, Y.J.; et al. Association between screening and the thyroid cancer ”epidemic” in South Korea: Evidence from a nationwide study. BMJ 2016, 355, 5745. [Google Scholar] [CrossRef] [Green Version]
- Ahn, H.S.; Kim, H.J.; Welch, H.G. Korea’s thyroid-cancer “epidemic” screening and overdiagnosis. N. Engl. J. Med. 2014, 371, 1765–1767. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, T.; Kim, K.; Bae, J.S.; Kim, J.S.; Jung, C.K. Highly prevalent BRAF V600E and low-frequency TERT promoter mutations underlie papillary thyroid carcinoma in Koreans. J. Pathol. Transl. Med. 2020, 54, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Won, Y.J.; Park, Y.R.; Jung, K.W.; Kong, H.J.; Lee, E.S.; Community of Population-Based Regional Cancer Registries. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2017. Cancer Res. Treat. 2020, 52, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Jeon, M.J.; Kim, W.G.; Kim, T.H.; Kim, H.K.; Kim, B.H.; Yi, H.S.; Kim, E.S.; Kim, H.; Kim, Y.N.; Kim, E.H.; et al. Disease-Specific Mortality of Differentiated Thyroid Cancer Patients in Korea: A Multicenter Cohort Study. Endocrinol. Metab. 2017, 32, 434–441. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Boufraqech, M.; Klubo-Gwiezdzinska, J.; Kebebew, E. MicroRNAs in the thyroid. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Ghafouri-Fard, S.; Shirvani-Farsani, Z.; Taheri, M. The role of microRNAs in the pathogenesis of thyroid cancer. Noncoding RNA Res. 2020, 5, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Hitu, L.; Gabora, K.; Bonci, E.A.; Piciu, A.; Hitu, A.C.; Stefan, P.A.; Piciu, D. MicroRNA in Papillary Thyroid Carcinoma: A Systematic Review from 2018 to June 2020. Cancers 2020, 12, 3118. [Google Scholar] [CrossRef]
- Pishkari, S.; Paryan, M.; Hashemi, M.; Baldini, E.; Mohammadi-Yeganeh, S. The role of microRNAs in different types of thyroid carcinoma: A comprehensive analysis to find new miRNA supplementary therapies. J. Endocrinol. Investig. 2018, 41, 269–283. [Google Scholar] [CrossRef]
- Celano, M.; Rosignolo, F.; Maggisano, V.; Pecce, V.; Iannone, M.; Russo, D.; Bulotta, S. MicroRNAs as Biomarkers in Thyroid Carcinoma. Int. J. Genom. 2017, 2017, 6496570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, M.; Schaefer, A.; Steiner, I.; Kempkensteffen, C.; Stephan, C.; Erbersdobler, A.; Jung, K. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin. Chem. 2010, 56, 998–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Sim, J.; Kim, H.; Bang, S.S.; Jee, S.; Park, S.; Jang, K. MicroRNA-374a Expression as a Prognostic Biomarker in Lung Adenocarcinoma. J. Pathol. Transl. Med. 2019, 53, 354–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paniza, A.C.J.; Mendes, T.B.; Viana, M.D.B.; Thomaz, D.M.D.; Chiappini, P.B.O.; Colozza-Gama, G.A.; Lindsey, S.C.; de Carvalho, M.B.; Alves, V.A.F.; Curioni, O.; et al. Revised criteria for diagnosis of NIFTP reveals a better correlation with tumor biological behavior. Endocr. Connect. 2019, 8, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.H.; Sadow, P.M. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): Diagnostic updates and molecular advances. Semin. Diagn. Pathol. 2020, 37, 213–218. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Seethala, R.R.; Tallini, G.; Baloch, Z.W.; Basolo, F.; Thompson, L.D.; Barletta, J.A.; Wenig, B.M.; Al Ghuzlan, A.; Kakudo, K.; et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma: A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016, 2, 1023–1029. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, N.; Denaro, M.; Ugolini, C.; Poma, A.M.; Miccoli, M.; Vitti, P.; Miccoli, P.; Basolo, F. miRNA expression profiling of ’noninvasive follicular thyroid neoplasms with papillary-like nuclear features’ compared with adenomas and infiltrative follicular variants of papillary thyroid carcinomas. Mod. Pathol. 2017, 30, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Denaro, M.; Ugolini, C.; Poma, A.M.; Borrelli, N.; Materazzi, G.; Piaggi, P.; Chiarugi, M.; Miccoli, P.; Vitti, P.; Basolo, F. Differences in miRNA expression profiles between wild-type and mutated NIFTPs. Endocr. Relat. Cancer 2017, 24, 543–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Li, J.; Zhu, W.; Gao, C.; Jiang, R.; Li, W.; Hu, Q.; Zhang, B. MicroRNA-21 and the clinical outcomes of various carcinomas: A systematic review and meta-analysis. BMC Cancer 2014, 14, 819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sondermann, A.; Andreghetto, F.M.; Moulatlet, A.C.; da Silva Victor, E.; de Castro, M.G.; Nunes, F.D.; Brandao, L.G.; Severino, P. MiR-9 and miR-21 as prognostic biomarkers for recurrence in papillary thyroid cancer. Clin. Exp. Metastasis 2015, 32, 521–530. [Google Scholar] [CrossRef]
- Wang, L.; Duan, Y.Y.; Peng, W.; Qu, C.X.; Lin, J.; Deng, Z.Q.; You, C.; Wu, C.G. miR-21 facilitates the diagnostic value of miR-138 for papillary thyroid cancer in formalin-fixed paraffin-embedded tissues. Transl. Cancer Res. 2019, 8, 1718–1726. [Google Scholar] [CrossRef]
- Nwadiugwu, M.C. Thyroid Tumor: Investigating MicroRNA-21 Gene Suppression in FTC and FTA. Cancer Inform. 2020, 19, 1176935120948474. [Google Scholar] [CrossRef]
- Ortiz, I.; Barros-Filho, M.C.; Dos Reis, M.B.; Beltrami, C.M.; Marchi, F.A.; Kuasne, H.; do Canto, L.M.; de Mello, J.B.H.; Abildgaard, C.; Pinto, C.A.L.; et al. Loss of DNA methylation is related to increased expression of miR-21 and miR-146b in papillary thyroid carcinoma. Clin. Epigenet. 2018, 10, 144. [Google Scholar] [CrossRef]
- Peng, Y.; Li, C.; Luo, D.C.; Ding, J.W.; Zhang, W.; Pan, G. Expression profile and clinical significance of microRNAs in papillary thyroid carcinoma. Molecules 2014, 19, 11586–11599. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.Z.; Que, Q.; Lin, P.; Pang, Y.Y.; Wu, H.Y.; Li, X.J.; Chen, G.; He, Y.; Yang, H. Clinical roles of miR-136-5p and its target metadherin in thyroid carcinoma. Am. J. Transl Res. 2019, 11, 6754–6774. [Google Scholar]
- Liu, X.; Sempere, L.F.; Ouyang, H.; Memoli, V.A.; Andrew, A.S.; Luo, Y.; Demidenko, E.; Korc, M.; Shi, W.; Preis, M.; et al. MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J. Clin. Investig. 2010, 120, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, Z.; Chen, R. Microrna-136 promotes proliferation and invasion ingastric cancer cells through Pten/Akt/P-Akt signaling pathway. Oncol. Lett. 2018, 15, 4683–4689. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Guan, H.; Cai, J.; Fang, L.; Li, J.; Li, M. MiR-136 promotes apoptosis of glioma cells by targeting AEG-1 and Bcl-2. FEBS Lett. 2012, 586, 3608–3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, M.; Li, X.; Tong, D.; Han, C.; Zhao, R.; He, Y.; Jin, X. miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol. Rep. 2016, 36, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Qi, Y.; Yin, X.; Gao, J. miR-136 targets MIEN1 and involves the metastasis of colon cancer by suppressing epithelial-to-mesenchymal transition. OncoTargets Ther. 2018, 11, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, J.; Li, Z.; Li, F. Overexpressed microRNA-136 works as a cancer suppressor in gallbladder cancer through suppression of JNK signaling pathway via inhibition of MAP2K4. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, 670–681. [Google Scholar] [CrossRef]
- Hosseinkhan, N.; Honardoost, M.; Blighe, K.; Moore, C.B.T.; Khamseh, M.E. Comprehensive transcriptomic analysis of papillary thyroid cancer: Potential biomarkers associated with tumor progression. J. Endocrinol. Investig. 2020, 43, 911–923. [Google Scholar] [CrossRef]
- Mian, C.; Pennelli, G.; Fassan, M.; Balistreri, M.; Barollo, S.; Cavedon, E.; Galuppini, F.; Pizzi, M.; Vianello, F.; Pelizzo, M.R.; et al. MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: Preliminary relationships with RET status and outcome. Thyroid 2012, 22, 890–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wang, M.; Guo, M.; Xie, Y.; Cong, Y.S. miR-127 regulates cell proliferation and senescence by targeting BCL6. PLoS ONE 2013, 8, e80266. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lin, Y. Hsa-mir-127 impairs survival of patients with glioma and promotes proliferation, migration and invasion of cancerous cells by modulating replication initiator 1. Neuroreport 2018, 29, 1166–1173. [Google Scholar] [CrossRef]
- Gao, X.; Wang, X.; Cai, K.; Wang, W.; Ju, Q.; Yang, X.; Wang, H.; Wu, H. MicroRNA-127 is a tumor suppressor in human esophageal squamous cell carcinoma through the regulation of oncogene FMNL3. Eur. J. Pharmacol. 2016, 791, 603–610. [Google Scholar] [CrossRef]
- Herr, I.; Sahr, H.; Zhao, Z.; Yin, L.; Omlor, G.; Lehner, B.; Fellenberg, J. MiR-127 and miR-376a act as tumor suppressors by in vivo targeting of COA1 and PDIA6 in giant cell tumor of bone. Cancer Lett. 2017, 409, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Tao, L.; Wang, Y.; Han, X. MicroRNA-127 Inhibits the Progression of Melanoma by Downregulating Delta-Like Homologue 1. Biomed. Res. Int. 2020, 2020, 8523465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondal, T.; Jensby Nielsen, S.; Baker, A.; Andreasen, D.; Mouritzen, P.; Wrang Teilum, M.; Dahlsveen, I.K. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 2013, 59, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Glinge, C.; Clauss, S.; Boddum, K.; Jabbari, R.; Jabbari, J.; Risgaard, B.; Tomsits, P.; Hildebrand, B.; Kaab, S.; Wakili, R.; et al. Stability of Circulating Blood-Based MicroRNAs–Pre-Analytic Methodological Considerations. PLoS ONE 2017, 12, e0167969. [Google Scholar] [CrossRef]
- Dave, V.P.; Ngo, T.A.; Pernestig, A.K.; Tilevik, D.; Kant, K.; Nguyen, T.; Wolff, A.; Bang, D.D. MicroRNA amplification and detection technologies: Opportunities and challenges for point of care diagnostics. Lab. Investig. 2019, 99, 452–469. [Google Scholar] [CrossRef]
- Nishino, M.; Nikiforova, M. Update on Molecular Testing for Cytologically Indeterminate Thyroid Nodules. Arch. Pathol. Lab. Med. 2018, 142, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Park, J.L.; Jeon, S.; Seo, E.H.; Bae, D.H.; Jeong, Y.M.; Kim, Y.; Bae, J.S.; Kim, S.K.; Jung, C.K.; Kim, Y.S. Comprehensive DNA Methylation Profiling Identifies Novel Diagnostic Biomarkers for Thyroid Cancer. Thyroid 2020, 30, 192–203. [Google Scholar] [CrossRef]
- Amin, M.B.; Edge, S.; Greene, F.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C.; et al. AJCC Cancer Staging Manual, 8th ed.; Springer: New York, NY, USA, 2017; pp. 873–890. [Google Scholar]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Dai, L.; Zhang, Z.; Zheng, J.; Zhao, J. Overexpression of microRNA-203 can downregulate survivin and function as a potential therapeutic target in papillary thyroid cancer. Oncol. Lett. 2020, 19, 61–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Zhang, M.; Nie, C.; Jia, J.; Wang, F.; Yu, J.; Bi, W.; Liu, B.; Sheng, R.; He, G.; et al. miR-215 suppresses papillary thyroid cancer proliferation, migration, and invasion through the AKT/GSK-3beta/Snail signaling by targeting ARFGEF1. Cell Death Dis. 2019, 10, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.B.; Chen, C.L.; Tian, Z.L.; Yuan, F.K.; Jia, G.L. MicroRNA-791 is an independent prognostic factor of papillary thyroid carcinoma and inhibits the proliferation of PTC cells. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5562–5568. [Google Scholar] [CrossRef]
- Cho, U.; Mete, O.; Kim, M.H.; Bae, J.S.; Jung, C.K. Molecular correlates and rate of lymph node metastasis of non-invasive follicular thyroid neoplasm with papillary-like nuclear features and invasive follicular variant papillary thyroid carcinoma: The impact of rigid criteria to distinguish non-invasive follicular thyroid neoplasm with papillary-like nuclear features. Mod. Pathol. 2017, 30, 810–825. [Google Scholar] [CrossRef]
- Jung, C.K.; Kim, Y.; Jeon, S.; Jo, K.; Lee, S.; Bae, J.S. Clinical utility of EZH1 mutations in the diagnosis of follicular-patterned thyroid tumors. Hum. Pathol. 2018, 81, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Fresh Frozen Samples for Discovery | FFPE Samples for Validation |
---|---|---|
Sample | 34 | 233 |
Age years at diagnosis, mean (range) | 44 (26–70) | 47 (19–70) |
Sex | ||
Female | 17 | 144 |
Male | 9 | 89 |
Tumor size (cm), mean (range) | 2.1 (1.1–5.0) | 2.4 (1.0–9.0) |
Pathologic diagnosis | ||
Matched normal thyroid | 7 | 0 |
Follicular adenoma | 0 | 43 |
NIFTP | 6 | 57 |
PTC, classic type | 11 | 49 |
PTC, IEFV | 3 | 22 |
PTC, tall cell variant | 7 | 45 |
PTC, other variants 1 | 0 | 3 |
Follicular thyroid carcinoma 2 | 0 | 12 |
Hürthle cell carcinoma 3 | 0 | 2 |
miRNAs | Expression in NIFTP | Average Fold Change (log2 Scale) | Classic PTC vs. NIFTP | TCVPTC vs. NIFTP | IEFVPTC vs. NIFTP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P-Value | Fold Change (log2 Scale) | Average CPM (log2 Scale) | P-Value | Fold Change (log2 Scale) | Average CPM (log2 Scale) | p-Value | Fold Change (log2 Scale) | Average CPM (log2 Scale) | |||
hsa-miR-873-5p | UP | 3.144 | 9.78 × 10−10 | 4.070 | 3.279 | 5.81 × 10−8 | 4.216 | 3.545 | 3.53 × 10−2 | 1.854 | 4.156 |
Has-miR-1251-5p | UP | 2.519 | 1.54 × 10−7 | 2.257 | 6.051 | 2.27 × 10−7 | 2.315 | 6.260 | 4.37 × 10−2 | 1.312 | 6.855 |
hsa-miR-138-1-3p | UP | 1.683 | 4.95 × 10−3 | 1.526 | 4.694 | 9.53 × 10−4 | 1.986 | 4.737 | 4.71 × 10−2 | 1.750 | 5.202 |
hsa-miR-138-5p | UP | 1.574 | 1.06 × 10−2 | 1.111 | 6.198 | 4.15 × 10−4 | 1.780 | 6.121 | 2.11 × 10−2 | 1.740 | 6.564 |
hsa-miR-598-3p | UP | 1.359 | 1.44 × 10−2 | 0.882 | 5.283 | 9.91 × 10−4 | 1.155 | 5.283 | 9.65 × 10−3 | 1.633 | 5.536 |
hsa-miR-107 | UP | 1.244 | 1.43 × 10−2 | 0.830 | 5.686 | 3.78 × 10−4 | 1.337 | 5.594 | 4.81 × 10−2 | 1.203 | 5.991 |
hsa-miR-34b-5p | UP | 0.409 | 4.06 × 10−2 | 2.259 | 3.663 | 3.15 × 10−2 | 2.631 | 3.820 | 4.57 × 10−2 | 4.706 | 4.130 |
hsa-miR-653-5p | DOWN | −1.366 | 2.52 × 10−3 | −1.653 | 3.500 | 7.87 × 10−5 | −2.659 | 4.033 | 1.39 × 10−2 | −2.150 | 3.523 |
hsa-miR-199a-3p | DOWN | −2.299 | 1.17 × 10−3 | −2.443 | 4.204 | 4.21 × 10−10 | −3.255 | 4.618 | 3.55 × 10−2 | −1.675 | 3.431 |
hsa-miR-487b-3p | DOWN | −2.358 | 7.28 × 10−5 | −4.258 | 3.175 | 2.64 × 10−6 | −4.136 | 2.967 | 1.85 × 10−2 | −3.120 | 2.380 |
hsa-miR-21-3p | DOWN | −2.369 | 1.32 × 10−13 | −2.835 | 10.720 | 2.47 × 10−28 | −3.289 | 10.919 | 1.97 × 10−2 | −1.095 | 9.010 |
hsa-miR-409-5p | DOWN | −2.399 | 2.64 × 10−4 | −2.928 | 3.437 | 4.36 × 10−6 | −3.609 | 3.753 | 4.39 × 10−2 | −2.176 | 2.756 |
hsa-miR-381-3p | DOWN | −2.542 | 3.61 × 10−6 | −3.289 | 5.758 | 7.16 × 10−15 | −3.681 | 5.860 | 6.35 × 10−3 | −2.147 | 4.402 |
hsa-miR-654-3p | DOWN | −2.744 | 6.59 × 10−7 | −3.864 | 5.413 | 4.32 × 10−17 | −3.975 | 5.290 | 3.22 × 10−3 | −2.592 | 3.920 |
hsa-miR-410-3p | DOWN | −3.173 | 1.28 × 10−6 | −4.292 | 4.509 | 6.79 × 10−12 | −4.411 | 4.428 | 2.33 × 10−2 | −2.459 | 2.896 |
hsa-miR-136-3p | DOWN | −3.182 | 1.06 × 10−7 | −4.075 | 5.171 | 3.05 × 10−17 | −4.593 | 5.408 | 2.96 × 10−3 | −2.651 | 3.601 |
hsa-miR-199b-5p | DOWN | −3.254 | 5.45 × 10−8 | −3.740 | 8.580 | 1.88 × 10−13 | −4.468 | 8.994 | 3.85 × 10−2 | −1.832 | 6.468 |
hsa-miR-409-3p | DOWN | −3.623 | 2.02 × 10−8 | −4.181 | 6.275 | 1.67 × 10−21 | −4.590 | 6.425 | 7.50 × 10−5 | −3.087 | 4.733 |
hsa-miR-127-3p | DOWN | −3.696 | 2.34 × 10−7 | −4.035 | 10.032 | 1.78 × 10−12 | −4.194 | 9.912 | 4.30 × 10−3 | −2.506 | 8.062 |
hsa-miR-411-5p | DOWN | −3.762 | 4.67 × 10−7 | −4.089 | 7.256 | 6.03 × 10−14 | −4.271 | 7.181 | 1.63 × 10−3 | −2.721 | 5.464 |
Characteristic | miR-136 | P-Value | miR-21 | P-Value | miR-127 | P-Value | |||
---|---|---|---|---|---|---|---|---|---|
High Expression | Low Expression | High Expression | Low Expression | High Expression | Low Expression | ||||
Age (years) | <0.001 | 0.289 | 1.000 | ||||||
< 55 | 58 (84.1%) | 11 (15.9%) | 69 (82.1%) | 15 (17.9%) | 60 (71.4%) | 24 (28.6%) | |||
≥ 55 | 24 (48.0%) | 26 (52.0%) | 25 (71.4%) | 10 (28.6%) | 25 (71.4%) | 10 (28.6%) | |||
Sex | 0.362 | 0.404 | 0.044 | ||||||
Male | 40 (74.1%) | 14 (25.9%) | 45 (83.3%) | 9 (16.7%) | 44 (81.5%) | 10 (18.5%) | |||
Female | 42 (64.6%) | 23 (35.4%) | 49 (75.4%) | 16 (24.6%) | 41 (63.1%) | 24 (36.9%) | |||
Tumor size (cm) | 2.04 ± 1.16 | 1.93 ± 1.11 | 0.645 | 1.95 ± 1.09 | 2.22 ± 1.33 | 0.281 | 2.18 ± 1.13 | 1.94 ± 1.15 | 0.312 |
Histologic subtypes | <0.001 | <0.001 | <0.001 | ||||||
Classic | 33 (66.7%) | 16 (33.3%) | 43 (87.8%) | 6 (12.2%) | 34 (69.4%) | 15 (30.6%) | |||
IEFV | 7 (31.8%) | 15 (68.2%) | 5 (22.7%) | 17 (77.3%) | 6 (27.3%) | 16 (72.7%) | |||
Tall cell variant | 39 (86.7%) | 6 (13.3%) | 43 (95.6%) | 2 (4.4%) | 42 (93.3%) | 3 (6.7%) | |||
Other | 3 (100%) | 0 (0.00%) | 3 (100%) | 0 | 3 (100%) | 0 | |||
Histologic aggressiveness | <0.001 | <0.001 | <0.001 | ||||||
Non-aggressive variant | 41 (56.9%) | 31 (43.1%) | 49 (68.1%) | 23 (31.9%) | 41 (56.9%) | 31 (43.1%) | |||
Aggressive variant | 41 (87.2%) | 6 (12.8%) | 45 (95.7%) | 2 (4.3%) | 44 (93.6%) | 3 (6.4%) | |||
Extrathyroidal extension | 0.003 | <0.001 | <0.001 | ||||||
Absent | 21 (50.0%) | 21 (50.0%) | 22 (52.4%) | 20 (47.6%) | 20 (47.6%) | 22 (52.4%) | |||
Microscopic | 47 (77.1%) | 14 (23.0%) | 56 (91.8%) | 5 (8.2%) | 51 (83.6%) | 10 (16.4%) | |||
Gross | 14 (87.5%) | 2 (12.5%) | 16 (100%) | 0 | 14 (87.5%) | 2 (12.5%) | |||
Multifocality | 0.503 | 0.097 | 0.404 | ||||||
Absent | 39 (65.0%) | 21 (35.0%) | 44 (72.1%) | 17 (27.9%) | 41 (67.2%) | 20 (32.8%) | |||
Present | 42 (72.4%) | 16 (27.6%) | 50 (86.2%) | 8 (13.8%) | 44 (75.9%) | 14 (24.1%) | |||
Lymph node metastasis | 0.189 | <0.001 | 0.053 | ||||||
Absent | 30 (61.2%) | 19 (38.8%) | 31 (59.6%) | 21 (40.4%) | 29 (60.4%) | 19 (39.6%) | |||
Present | 52 (74.3%) | 18 (25.7%) | 63 (94.0%) | 4 (6.0%) | 55 (78.6%) | 15 (21.4%) | |||
pT category | 0.637 | 0.583 | 0.148 | ||||||
pT1 | 46 (64.8%) | 25 (35.2%) | 56 (78.9%) | 15 (21.1%) | 53 (74.6%) | 18 (25.4%) | |||
pT2 | 21 (72.4%) | 8 (27.6%) | 21 (72.4%) | 8 (27.6%) | 16 (55.2%) | 13 (44.8%) | |||
pT3 | 10 (76.9%) | 3 (23.1%) | 11 (84.6%) | 2 (15.4%) | 11 (84.6%) | 2 (15.4%) | |||
pT4 | 5 (83.3%) | 1 (16.7%) | 6 (100%) | 0 | 5 (83.3%) | 1 (16.67%) | |||
Distant metastasis | 0.005 | 0.038 | 0.005 | ||||||
Absent | 67 (64.42%) | 37 (35.58%) | 79 (76.0%) | 25 (24.0%) | 69 (67.0%) | 34 (33.0%) | |||
Present 1 | 15 (100%) | 0 (0.00%) | 15 (100%) | 0 | 15 (100%) | 0 | |||
BRAFV600E mutation | 0.615 | <0.001 | <0.001 | ||||||
Negative | 87 (82.08%) | 19 (17.92%) | 18 (48.7%) | 19 (51.4%) | 16 (43.2%) | 21 (56.8%) | |||
Positive | 64 (78.05%) | 18 (21.95%) | 76 (92.7%) | 6 (7.3%) | 69 (84.0%) | 13 (16.1%) | |||
Recurrent or persistent disease | <0.001 | 0.012 | 0.013 | ||||||
Absent | 63 (63.00%) | 37 (37.00%) | 75 (75.0%) | 25 (25.0%) | 67 (77.0%) | 33 (33.0%) | |||
Present | 19 (100%) | 0 (0.00%) | 19 (100%) | 0 | 18 (94.7) | 1 (5.3%) | |||
ATA recurrence risk | <0.001 | <0.001 | <0.001 | ||||||
Low | 14 (43.75%) | 18 (56.25%) | 13 (40.6%) | 19 (59.4%) | 14 (43.8%) | 18 (56.3%) | |||
Intermediate | 51 (75.00%) | 17 (25.00%) | 22 (78.6%) | 6 (21.4%) | 54 (79.4%) | 14 (20.6%) | |||
High | 17 (89.47%) | 2 (10.53%) | 19 (100%) | 0 | 17 (89.5%) | 2 (10.5%) | |||
AJCC stage, 8th edition | 0.525 | 0.492 | 0.375 | ||||||
I | 66 (66.00%) | 34 (34.00%) | 76 (76.0%) | 24 (24.0%) | 68 (68.0%) | 32 (32.0%) | |||
II | 11 (78.57%) | 3 (21.43%) | 13 (92.9%) | 1 (7.1%) | 12 (85.7%) | 2 (14.3%) | |||
III | 2 (100%) | 0 (0.00%) | 2 (100%) | 0 | 2 (100%) | 0 | |||
IV | 3 (100%) | 0 (0.00%) | 3 (100%) | 0 | 3 (100%) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-L.; Kim, S.-K.; Jeon, S.; Jung, C.-K.; Kim, Y.-S. MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer. Cancers 2021, 13, 632. https://doi.org/10.3390/cancers13040632
Park J-L, Kim S-K, Jeon S, Jung C-K, Kim Y-S. MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer. Cancers. 2021; 13(4):632. https://doi.org/10.3390/cancers13040632
Chicago/Turabian StylePark, Jong-Lyul, Seon-Kyu Kim, Sora Jeon, Chan-Kwon Jung, and Yong-Sung Kim. 2021. "MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer" Cancers 13, no. 4: 632. https://doi.org/10.3390/cancers13040632
APA StylePark, J. -L., Kim, S. -K., Jeon, S., Jung, C. -K., & Kim, Y. -S. (2021). MicroRNA Profile for Diagnostic and Prognostic Biomarkers in Thyroid Cancer. Cancers, 13(4), 632. https://doi.org/10.3390/cancers13040632