Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments
Abstract
Simple Summary
Abstract
1. Modern Gynecological Brachytherapy (Interventional Radiotherapy)
2. Selection of Applicator and Approach
3. Image Guidance, Target Definition and Treatment Adaptation
3.1. Image Modality
3.2. Image-Registration
3.3. Applicator Reconstruction
3.4. Contouring
4. Treatment Planning and Dose-Painting
5. Role of In-Vivo Dosimetry
6. Quality Assurance Protocol
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georg, D.; Kirisits, C.; Hillbrand, M.; Dimopoulos, J.; Pötter, R. Image-Guided Radiotherapy for Cervix Cancer: High-Tech External Beam Therapy Versus High-Tech Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Sturdza, A.; Pötter, R.; Fokdal, L.U.; Haie-Meder, C.; Tan, L.T.; Mazeron, R.; Petric, P.; Šegedin, B.; Jurgenliemk-Schulz, I.M.; Nomden, C.; et al. Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother. Oncol. 2016, 120, 428–433. [Google Scholar] [CrossRef]
- Lanciano, R.M.; Won, M.; Coia, L.R.; Hanks, G.E. Pretreatment and treatment factors associated with improved outcome in squamous cell carcinoma of the uterine cervix: A final report of the 1973 and 1978 patterns of care studies. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 667–676. [Google Scholar] [CrossRef]
- Lanciano, R.M.; Martz, K.; Coia, L.R.; Hanks, G.E. Tumor and treatment factors improving outcome in stage III-B cervix cancer. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 95–100. [Google Scholar] [CrossRef]
- Montana, G.S.; Martz, K.L.; Hanks, G.E. Patterns and sites of failure in cervix cancer treated in the U.S.A. in 1978. Int. J. Radiat. Oncol. Biol. Phys. 1991, 20, 87–93. [Google Scholar] [CrossRef]
- Lin, A.J.; Kidd, E.; Dehdashti, F.; Siegel, B.A.; Mutic, S.; Thaker, P.H.; Massad, L.S.; Powell, M.A.; Mutch, D.G.; Markovina, S.; et al. Intensity Modulated Radiation Therapy and Image-Guided Adapted Brachytherapy for Cervix Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Shinde, A.; Chen, Y.J.; Amini, A.; Lee, S.; Dellinger, T.; Han, E.; Wakabayashi, M.; Nelson, R.; Beriwal, S.; et al. Survival Benefit of Adjuvant Brachytherapy After Hysterectomy With Positive Surgical Margins in Cervical Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Tanderup, K.; Nesvacil, N.; Pötter, R.; Kirisits, C. Uncertainties in image guided adaptive cervix cancer brachytherapy: Impact on planning and prescription. Radiother. Oncol. 2013, 107, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Koom, W.S.; Sohn, D.K.; Kim, J.Y.; Kim, J.W.; Shin, K.H.; Yoon, S.M.; Kim, D.Y.; Yoon, M.; Shin, D.; Park, S.Y.; et al. Computed Tomography-Based High-Dose-Rate Intracavitary Brachytherapy for Uterine Cervical Cancer: Preliminary Demonstration of Correlation Between Dose—Volume Parameters and Rectal Mucosal Changes Observed by Flexible Sigmoidoscopy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1446–1454. [Google Scholar] [CrossRef]
- Mazeron, R.; Maroun, P.; Castelnau-Marchand, P.; Dumas, I.; Del Campo, E.R.; Cao, K.; Slocker-Escarpa, A.; M’Bagui, R.; Martinetti, F.; Tailleur, A.; et al. Pulsed-dose rate image-guided adaptive brachytherapy in cervical cancer: Dose—Volume effect relationships for the rectum and bladder. Radiother. Oncol. 2015, 116, 226–232. [Google Scholar] [CrossRef]
- Kirchheiner, K.; Nout, R.A.; Lindegaard, J.C.; Haie-Meder, C.; Mahantshetty, U.; Segedin, B.; Jürgenliemk-Schulz, I.M.; Hoskin, P.J.; Rai, B.; Dörr, W.; et al. Dose-effect relationship and risk factors for vaginal stenosis after definitive radio(chemo)therapy with image-guided brachytherapy for locally advanced cervical cancer in the EMBRACE study. Radiother. Oncol. 2016, 118, 160–166. [Google Scholar] [CrossRef]
- Hellebust, T.P.; Tanderup, K.; Lervåg, C.; Fidarova, E.; Berger, D.; Malinen, E.; Pötter, R.; Petrič, P. Dosimetric impact of interobserver variability in MRI-based delineation for cervical cancer brachytherapy. Radiother. Oncol. 2013, 107, 13–19. [Google Scholar] [CrossRef]
- Kirisits, C.; Rivard, M.J.; Baltas, D.; Ballester, F.; De Brabandere, M.; Van Der Laarse, R.; Niatsetski, Y.; Papagiannis, P.; Hellebust, T.P.; Perez-Calatayud, J.; et al. Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM. Radiother. Oncol. 2014, 110, 199–212. [Google Scholar] [CrossRef]
- Elledge, C.R.; LaVigne, A.W.; Bhatia, R.K.; Viswanathan, A.N. Aiming for 100% Local Control in Locally Advanced Cervical Cancer: The Role of Complex Brachytherapy Applicators and Intraprocedural Imaging. Semin. Radiat. Oncol. 2020, 30, 300–310. [Google Scholar] [CrossRef]
- Banerjee, R.; Kamrava, M. Brachytherapy in the treatment of cervical cancer: A review. Int. J. Womens Health 2014, 6, 555–564. [Google Scholar] [PubMed]
- Viswanathan, A.N.; Moughan, J.; Small, W.; Levenback, C.; Iyer, R.; Hymes, S.; Dicker, A.P.; Miller, B.; Erickson, B.; Gaffney, D.K. The quality of cervical cancer brachytherapy implantation and the impact on local recurrence and disease-free survival in Radiation Therapy Oncology Group prospective trials 0116 and 0128. Int. J. Gynecol. Cancer 2012, 22, 123–131. [Google Scholar] [CrossRef]
- Viswanathan, A.N.; Beriwal, S.; De Los Santos, J.F.; Demanes, D.J.; Gaffney, D.; Hansen, J.; Jones, E.; Kirisits, C.; Thomadsen, B.; Erickson, B. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: High-dose-rate brachytherapy. Brachytherapy 2012, 11, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.P.; Fokdal, L.; Westerveld, H.; Chargari, C.; Rohl, L.; Morice, P.; Nesvacil, N.; Mazeron, R.; Haie-Meder, C.; Pötter, R.; et al. Recommendations from gynaecological (GYN) GEC-ESTRO working group—ACROP: Target concept for image guided adaptive brachytherapy in primary vaginal cancer. Radiother. Oncol. 2020, 145, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Prescribing, Recording, and Reporting Brachytherapy for Cancer of the Cervix. J. Int. Comm. Radiat. Units Meas. 2013, 13. [CrossRef]
- Viswanathan, A.N.; Thomadsen, B. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: General principles. Brachytherapy 2012, 11, 33–46. [Google Scholar] [CrossRef]
- Richart, J.; Carmona-Meseguer, V.; García-Martínez, T.; Herreros, A.; Otal, A.; Pellejero, S.; Tornero-López, A.; Pérez-Calatayud, J. Review of strategies for MRI based reconstruction of endocavitary and interstitial applicators in brachytherapy of cervical cancer. Rep. Pract. Oncol. Radiother. 2018, 23, 547–561. [Google Scholar] [CrossRef]
- Kovács, G.; Tagliaferri, L.; Valentini, V. Is an Interventional Oncology Center an advantage in the service of cancer patients or in the education? The Gemelli Hospital and INTERACTS experience. J. Contemp. Brachyther. 2017, 9, 497–498. [Google Scholar] [CrossRef]
- Fionda, B.; Boldrini, L.; D’Aviero, A.; Lancellotta, V.; Gambacorta, M.A.; Kovács, G.; Patarnello, S.; Valentini, V.; Tagliaferri, L. Artificial intelligence (AI) and interventional radiotherapy (brachytherapy): State of art and future perspectives. J. Contemp. Brachyther. 2020, 12, 497–500. [Google Scholar] [CrossRef]
- Eskander, R.N.; Scanderbeg, D.; Saenz, C.C.; Brown, M.; Yashar, C. Comparison of computed tomography and magnetic resonance imaging in cervical cancer brachytherapy target and normal tissue contouring. Int. J. Gynecol. Cancer 2010, 20, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.N.; Dimopoulos, J.; Kirisits, C.; Berger, D.; Pötter, R. Computed Tomography Versus Magnetic Resonance Imaging-Based Contouring in Cervical Cancer Brachytherapy: Results of a Prospective Trial and Preliminary Guidelines for Standardized Contours. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Rai, B.; Patel, F.D.; Tomar, P.; Singh, O.A.; Simha, V.; Dhanireddy, B.; Sharma, S.C. A study to assess the feasibility of using CT (±diagnostic MRI) instead of MRI at brachytherapy in image guided brachytherapy in cervical cancer. J. Radiother. Pract. 2013, 13, 438–446. [Google Scholar] [CrossRef]
- Viswanathan, A.N.; Erickson, B.; Gaffney, D.K.; Beriwal, S.; Bhatia, S.K.; Burnett, O.L.; D’Souza, D.P.; Patil, N.; Haddock, M.G.; Jhingran, A.; et al. Comparison and consensus guidelines for delineation of clinical target volume for CT- and MR-based brachytherapy in locally advanced cervical cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, N.; Pötter, R.; Kirisits, C.; Berger, D.; Federico, M.; Sturdza, A.; Nesvacil, N. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy: Impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination. Acta Oncol. 2013, 52, 1345–1352. [Google Scholar] [CrossRef]
- Pötter, R.; Federico, M.; Sturdza, A.; Fotina, I.; Hegazy, N.; Schmid, M.; Kirisits, C.; Nesvacil, N. Value of Magnetic Resonance Imaging Without or with Applicator in Place for Target Definition in Cervix Cancer Brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 588–597. [Google Scholar] [CrossRef][Green Version]
- Tanderup, K.; Nielsen, S.K.; Nyvang, G.B.; Pedersen, E.M.; Røhl, L.; Aagaard, T.; Fokdal, L.; Lindegaard, J.C. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother. Oncol. 2010, 94, 173–180. [Google Scholar] [CrossRef]
- Mahantshetty, U.; Ch, P.N.; Khadanga, C.R.; Gudi, S.; Chopra, S.; Gurram, L.; Jamema, S.; Ghadi, Y.; Shrivastava, S. A Prospective Comparison of Computed Tomography with Transrectal Ultrasonography Assistance and Magnetic Resonance Imaging–Based Target-Volume Definition During Image Guided Adaptive Brachytherapy for Cervical Cancers. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1448–1456. [Google Scholar] [CrossRef]
- Nesvacil, N.; Schmid, M.P.; Pötter, R.; Kronreif, G.; Kirisits, C. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: Proof of concept. Brachytherapy 2016, 15, 839–844. [Google Scholar] [CrossRef]
- St-Amant, P.; Foster, W.; Froment, M.A.; Aubin, S.; Lavallée, M.C.; Beaulieu, L. Use of 3D transabdominal ultrasound imaging for treatment planning in cervical cancer brachytherapy: Comparison to magnetic resonance and computed tomography. Brachytherapy 2017, 16, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.P.; Nesvacil, N.; Pötter, R.; Kronreif, G.; Kirisits, C. Transrectal ultrasound for image-guided adaptive brachytherapy in cervix cancer—An alternative to MRI for target definition? Radiother. Oncol. 2016, 120, 467–472. [Google Scholar] [CrossRef]
- Siebert, F.A.; Kirisits, C.; Hellebust, T.P.; Baltas, D.; Verhaegen, F.; Camps, S.; Pieters, B.; Kovács, G.; Thomadsen, B. GEC-ESTRO/ACROP recommendations for quality assurance of ultrasound imaging in brachytherapy. Radiother. Oncol. 2020, 148, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Swamidas, J.; Kirisits, C.; De Brabandere, M.; Hellebust, T.P.; Siebert, F.A.; Tanderup, K. Image registration, contour propagation and dose accumulation of external beam and brachytherapy in gynecological radiotherapy. Radiother. Oncol. 2020, 143, 1–11. [Google Scholar] [CrossRef]
- Ghose, S.; Holloway, L.; Lim, K.; Chan, P.; Veera, J.; Vinod, S.K.; Liney, G.; Greer, P.B.; Dowling, J. A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning. Artif. Intell. Med. 2015, 64, 75–87. [Google Scholar] [CrossRef]
- Rigaud, B.; Simon, A.; Gobeli, M.; Lafond, C.; Leseur, J.; Barateau, A.; Jaksic, N.; Castelli, J.; Williaume, D.; Haigron, P.; et al. CBCT-guided evolutive library for cervical adaptive IMRT. Med. Phys. 2018, 45, 1379–1390. [Google Scholar] [CrossRef]
- Vásquez Osorio, E.M.; Kolkman-Deurloo, I.K.K.; Schuring-Pereira, M.; Zolnay, A.; Heijmen, B.J.M.; Hoogeman, M.S. Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer. Med. Phys. 2015, 42, 206–220. [Google Scholar] [CrossRef]
- Nesvacil, N.; Pötter, R.; Sturdza, A.; Hegazy, N.; Federico, M.; Kirisits, C. Adaptive image guided brachytherapy for cervical cancer: A combined MRI-/CT-planning technique with MRI only at first fraction. Radiother. Oncol. 2013, 107, 75–81. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chapman, C.H.; Polan, D.; Vineberg, K.; Jolly, S.; Maturen, K.E.; Brock, K.K.; Prisciandaro, J.I. Deformable image registration-based contour propagation yields clinically acceptable plans for MRI-based cervical cancer brachytherapy planning. Brachytherapy 2018, 17, 360–367. [Google Scholar] [CrossRef]
- Van Heerden, L.E.; Visser, J.; Koedooder, K.; Rasch, C.R.N.; Pieters, B.R.; Bel, A. Role of deformable image registration for delivered dose accumulation of adaptive external beam radiation therapy and brachytherapy in cervical cancer. J. Contemp. Brachyther. 2018, 10, 542–550. [Google Scholar] [CrossRef]
- Abe, T.; Tamaki, T.; Makino, S.; Ebara, T.; Hirai, R.; Miyaura, K.; Kumazaki, Y.; Ohno, T.; Shikama, N.; Nakano, T.; et al. Assessing cumulative dose distributions in combined radiotherapy for cervical cancer using deformable image registration with pre-imaging preparations. Radiat. Oncol. 2014, 9, 1–8. [Google Scholar] [CrossRef][Green Version]
- Van de Kamer, J.B.; De Leeuw, A.A.C.; Moerland, M.A.; Jürgenliemk-Schulz, I.M. Determining DVH parameters for combined external beam and brachytherapy treatment: 3D biological dose adding for patients with cervical cancer. Radiother. Oncol. 2010, 94, 248–253. [Google Scholar] [CrossRef]
- Hayashi, K.; Isohashi, F.; Akino, Y.; Wakai, N.; Mabuchi, S.; Suzuki, O.; Seo, Y.; Ootani, Y.; Sumida, I.; Yoshioka, Y.; et al. Estimation of the total rectal dose of radical external beam and intracavitary radiotherapy for uterine cervical cancer using the deformable image registration method. J. Radiat. Res. 2014, 56, 546–552. [Google Scholar] [CrossRef]
- Tanderup, K.; Hellebust, T.P.; Lang, S.; Granfeldt, J.; Pötter, R.; Lindegaard, J.C.; Kirisits, C. Consequences of random and systematic reconstruction uncertainties in 3D image based brachytherapy in cervical cancer. Radiother. Oncol. 2008, 89, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Hellebust, T.P.; Kirisits, C.; Berger, D.; Pérez-Calatayud, J.; De Brabandere, M.; De Leeuw, A.; Dumas, I.; Hudej, R.; Lowe, G.; Wills, R.; et al. Recommendations from Gynaecological (GYN) GEC-ESTRO working group: Considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother. Oncol. 2010, 96, 153–160. [Google Scholar] [CrossRef]
- Hellebust, T.P.; Tanderup, K.; Bergstrand, E.S.; Knutsen, B.H.; Røislien, J.; Olsen, D.R. Reconstruction of a ring applicator using CT imaging: Impact of the reconstruction method and applicator orientation. Phys. Med. Biol. 2007, 52, 4893–4904. [Google Scholar] [CrossRef]
- Haack, S.; Nielsen, S.K.; Lindegaard, J.C.; Gelineck, J.; Tanderup, K. Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiother. Oncol. 2009, 91, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Schindel, J.; Muruganandham, M.; Pigge, F.C.; Anderson, J.; Kim, Y. Magnetic resonance imaging (MRI) markers for MRI-guided high-dose-rate brachytherapy: Novel marker-flange for cervical cancer and marker catheters for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2013, 86, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Steenbakkers, R.J.H.M.; Duppen, J.C.; Fitton, I.; Deurloo, K.E.I.; Zijp, L.J.; Comans, E.F.I.; Uitterhoeve, A.L.J.; Rodrigus, P.T.R.; Kramer, G.W.P.; Bussink, J.; et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: A three-dimensional analysis. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 435–448. [Google Scholar] [CrossRef]
- Petrič, P.; Hudej, R.; Rogelj, P.; Blas, M.; Tanderup, K.; Fidarova, E.; Kirisits, C.; Berger, D.; Dimopoulos, J.C.A.; Pötter, R.; et al. Uncertainties of target volume delineation in MRI guided adaptive brachytherapy of cervix cancer: A multi-institutional study. Radiother. Oncol. 2013, 107, 6–12. [Google Scholar] [CrossRef]
- Dimopoulos, J.C.A.; Petrow, P.; Tanderup, K.; Petric, P.; Berger, D.; Kirisits, C.; Pedersen, E.M.; Van Limbergen, E.; Haie-Meder, C.; Pötter, R. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy. Radiother. Oncol. 2012, 103, 113–122. [Google Scholar] [CrossRef]
- Fotina, I.; Lütgendorf-Caucig, C.; Stock, M.; Pötter, R.; Georg, D. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlenther. Onkol. 2012, 188, 160–167. [Google Scholar] [CrossRef]
- Njeh, C.F. Tumor delineation: The weakest link in the search for accuracy in radiotherapy. J. Med. Phys. 2008, 33, 136–140. [Google Scholar] [CrossRef]
- Haie-Meder, C.; Pötter, R.; Van Limbergen, E.; Briot, E.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Hellebust, T.P.; Kirisits, C.; Lang, S.; et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): Concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother. Oncol. 2005, 74, 235–245. [Google Scholar] [CrossRef]
- Pötter, R.; Haie-Meder, C.; Van Limbergen, E.; Barillot, I.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Erickson, B.; Lang, S.; Nulens, A.; et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother. Oncol. 2006, 78, 67–77. [Google Scholar] [CrossRef]
- Petric, P.; Dimopoulos, J.; Kirisits, C.; Berger, D.; Hudej, R.; Pötter, R. Inter- and intraobserver variation in HR-CTV contouring: Intercomparison of transverse and paratransverse image orientation in 3D-MRI assisted cervix cancer brachytherapy. Radiother. Oncol. 2008, 89, 164–171. [Google Scholar] [CrossRef]
- Dimopoulos, J.C.A.; De Vos, V.; Berger, D.; Petric, P.; Dumas, I.; Kirisits, C.; Shenfield, C.B.; Haie-Meder, C.; Pötter, R. Inter-observer comparison of target delineation for MRI-assisted cervical cancer brachytherapy: Application of the GYN GEC-ESTRO recommendations. Radiother. Oncol. 2009, 91, 166–172. [Google Scholar] [CrossRef]
- Petric, P.; Hudej, R.; Rogelj, P.; Blas, M.; Segedin, B.; Logar, H.; Dimopoulos, J. Comparison of 3D MRI with high sampling efficiency and 2D multiplanar MRI for contouring in cervix cancer brachytherapy. Radiol. Oncol. 2012, 46, 242–251. [Google Scholar] [CrossRef]
- Rijkmans, E.C.; Nout, R.A.; Rutten, I.H.H.M.; Ketelaars, M.; Neelis, K.J.; Laman, M.S.; Coen, V.L.M.A.; Gaarenstroom, K.N.; Kroep, J.R.; Creutzberg, C.L. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. Gynecol. Oncol. 2014, 135, 231–238. [Google Scholar] [CrossRef]
- Tanderup, K.; Beddar, S.; Andersen, C.E.; Kertzscher, G.; Cygler, J.E. In vivo dosimetry in brachytherapy. Med. Phys. 2013, 40. [Google Scholar] [CrossRef]
- Therriault-Proulx, F.; Beddar, S.; Beaulieu, L. On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy. Med. Phys. 2013, 40. [Google Scholar] [CrossRef]
- Tanderup, K.; Christensen, J.J.; Granfeldt, J.; Lindegaard, J.C. Geometric stability of intracavitary pulsed dose rate brachytherapy monitored by in vivo rectal dosimetry. Radiother. Oncol. 2006, 79, 87–93. [Google Scholar] [CrossRef]
- Nakano, T.; Suchowerska, N.; Bilek, M.M.; McKenzie, D.R.; Ng, N.; Kron, T. High dose-rate brachytherapy source localization: Positional resolution using a diamond detector. Phys. Med. Biol. 2003, 48, 2133–2146. [Google Scholar] [CrossRef]
- Fonseca, G.P.; Johansen, J.G.; Smith, R.L.; Beaulieu, L.; Beddar, S.; Kertzscher, G.; Verhaegen, F.; Tanderup, K. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Phys. Imaging Radiat. Oncol. 2020, 16, 1–11. [Google Scholar] [CrossRef]
- Van Gellekom, M.P.R.; Canters, R.A.M.; Dankers, F.J.W.M.; Loopstra, A.; van der Steen-Banasik, E.M.; Haverkort, M.A.D. In vivo dosimetry in gynecological applications—A feasibility study. Brachytherapy 2018, 17, 146–153. [Google Scholar] [CrossRef]
- Johansen, J.G.; Rylander, S.; Buus, S.; Bentzen, L.; Hokland, S.B.; Søndergaard, C.S.; With, A.K.M.; Kertzscher, G.; Tanderup, K. Time-resolved in vivo dosimetry for source tracking in brachytherapy. Brachytherapy 2018, 17, 122–132. [Google Scholar] [CrossRef]
- Butler, W.M.; Merrick, G.S. Clinical Practice and Quality Assurance Challenges in Modern Brachytherapy Sources and Dosimetry. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71. [Google Scholar] [CrossRef]
- Williamson, J.F.; Dunscombe, P.B.; Sharpe, M.B.; Thomadsen, B.R.; Purdy, J.A.; Deye, J.A. Quality Assurance Needs for Modern Image-Based Radiotherapy: Recommendations From 2007 Interorganizational Symposium on “Quality Assurance of Radiation Therapy: Challenges of Advanced Technology”. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71. [Google Scholar] [CrossRef]
- Venselaar, J.; Pérez-Calatayud, J. (Eds.) A Practical Guide to Quality Control of Brachytherapy Equipment European Guidelines for Quality Assurance in Radiotherapy; Booklet No. 8; ESTRO: Brussels, Belgium, 2004. [Google Scholar]
- Rivard, M.J.; Coursey, B.M.; DeWerd, L.A.; Hanson, W.F.; Huq, M.S.; Ibbott, G.S.; Mitch, M.G.; Nath, R.; Williamson, J.F. Update of AAPM Task Group No. 43 Report: A Revised AAPM Protocol for Brachytherapy Dose Calculations. Med. Phys. 2004, 31, 633–674. [Google Scholar] [CrossRef] [PubMed]
- Kubo, H.D.; Glasgow, G.P.; Pethel, T.D.; Thomadsen, B.R.; Williamson, J.F. High Dose-Rate Brachytherapy Treatment Delivery: Report of the AAPM Radiation Therapy Committee Task Group No. 59. Med. Phys. 1998, 25, 375–403. [Google Scholar] [CrossRef]
- ACR—AAPM Technical Standard for The Performance of Highdose-Rate Brachytherapy Physics. Available online: https://www.acr.org/-/media/ACR/Files/Practice-Parameters/HDR-BrachyTS.pdf (accessed on 15 February 2021).
- Implementation of High Dose Rate Brachytherapy in Limited Resource Settings. Available online: https://www.iaea.org/publications/10355/implementation-of-high-dose-rate-brachytherapy-in-limited-resource-settings (accessed on 15 February 2021).
- The Transition from 2-D Brachytherapy to 3-D High Dose Rate Brachytherapy. Available online: https://www.iaea.org/publications/10982/the-transition-from-2-d-brachytherapy-to-3-d-high-dose-rate-brachytherapy-training-material (accessed on 15 February 2021).
- Wortman, B.G.; Astreinidou, E.; Laman, M.S.; van der Steen-Banasik, E.M.; Lutgens, L.C.H.W.; Westerveld, H.; Koppe, F.; Slot, A.; van den Berg, H.A.; Nowee, M.E.; et al. Brachytherapy Quality Assurance in the PORTEC-4a Trial for Molecular-Integrated Risk Profile Guided Adjuvant Treatment of Endometrial Cancer. Radiother. Oncol. 2021, 155, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Kirisits, C.; Federico, M.; Nkiwane, K.; Fidarova, E.; Jürgenliemk-Schulz, I.; de Leeuw, A.; Lindegaard, J.; Pötter, R.; Tanderup, K. Quality Assurance in MR Image Guided Adaptive Brachytherapy for Cervical Cancer: Final Results of the EMBRACE Study Dummy Run. Radiother. Oncol. 2015, 117, 548–554. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soror, T.; Siebert, F.-A.; Lancellotta, V.; Placidi, E.; Fionda, B.; Tagliaferri, L.; Kovács, G. Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments. Cancers 2021, 13, 912. https://doi.org/10.3390/cancers13040912
Soror T, Siebert F-A, Lancellotta V, Placidi E, Fionda B, Tagliaferri L, Kovács G. Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments. Cancers. 2021; 13(4):912. https://doi.org/10.3390/cancers13040912
Chicago/Turabian StyleSoror, Tamer, Frank-André Siebert, Valentina Lancellotta, Elisa Placidi, Bruno Fionda, Luca Tagliaferri, and György Kovács. 2021. "Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments" Cancers 13, no. 4: 912. https://doi.org/10.3390/cancers13040912
APA StyleSoror, T., Siebert, F.-A., Lancellotta, V., Placidi, E., Fionda, B., Tagliaferri, L., & Kovács, G. (2021). Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments. Cancers, 13(4), 912. https://doi.org/10.3390/cancers13040912