The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Axl
2.1. Regulation of Axl
2.2. Axl Activation
3. The Role of Axl in the Hallmarks of Cancer
3.1. Proliferation and Survival
3.2. Invasion and Migration
3.3. EMT
3.4. Angiogenesis
3.5. Stem Cell Maintenance
3.6. Immune Checkpoint
4. Axl in Drug Resistance
4.1. Lung Cancer
4.2. Prostate Cancer
4.3. Breast Cancer
4.4. Liver Cancer
5. Axl as a Therapeutic Target
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Gottesman, M.M. Mechanisms of Cancer Drug Resistance. Annu. Rev. Med. 2002, 53, 615–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, M.K.; Mukhopadhyay, A.K. Tyrosine kinase—Role and significance in Cancer. Int. J. Med. Sci. 2004, 1, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, C.; O’Driscoll, L. Receptor Tyrosine Kinases and Drug Resistance: Development and Characterization of In Vitro Models of Resistance to RTK inhibitors. Methods Mol. Biol. 2015, 1233, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y. shan Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 1–12. [Google Scholar] [CrossRef]
- Gjerdrum, C.; Tiron, C.; Høiby, T.; Stefansson, I.; Haugen, H.; Sandal, T.; Collet, K.; Li, S.; McCormack, E.; Gjertsen, B.T.; et al. Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proc. Natl. Acad. Sci. USA 2010, 107, 1124–1129. [Google Scholar] [CrossRef] [Green Version]
- Dransfield, I.; Farnworth, S. Axl and Mer Receptor Tyrosine Kinases: Distinct and Nonoverlapping Roles in Inflammation and Cancer. In Apoptosis in Cancer Pathogenesis and Anti-Cancer Therapy; Springer International Publishing: Cham, Switzerland, 2016; Volume 930, pp. 113–131. ISBN 978-3-319-39404-6. [Google Scholar]
- Colavito, S.A. AXL as a Target in Breast Cancer Therapy. J. Oncol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Wei, Y.; Wei, X. AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol. Cancer 2019, 18, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Okimoto, R.A.; Bivona, T.G. AXL receptor tyrosine kinase as a therapeutic target in NSCLC. Lung Cancer Targets Ther. 2015, 6, 27–34. [Google Scholar]
- Rankin, E.B.; Fuh, K.C.; Taylor, T.E.; Krieg, A.J.; Musser, M.; Yuan, J.; Wei, K.; Kuo, C.J.; Longacre, T.A.; Amato, G.J. AXL is an Essential Factor and Therapeutic Target for Metastatic Ovarian Cancer. Cancer Res. 2010, 70, 7570–7579. [Google Scholar] [CrossRef] [Green Version]
- Korshunov, V.A. Axl-dependent sigaling: A clinical update. Clin. Sci. 2013, 122, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Caberoy, N.B.; Zhou, Y.; Li, W. Tubby and tubby-like protein 1 are new MerTK ligands for phagocytosis. EMBO J. 2010, 29, 3898–3910. [Google Scholar] [CrossRef] [Green Version]
- Axelrod, H.; Pienta, K.J. Axl as a mediator of cellular growth and survival. Oncotarget 2014, 5, 8818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.Z.; Chan, S.W.; Liu, A.M.; Wong, K.F.; Fan, S.T.; Chen, J.; Poon, R.T.; Zender, L.; Lowe, S.W.; Hong, W.; et al. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 2011. [Google Scholar] [CrossRef] [Green Version]
- Mudduluru, G.; Vajkoczy, P.; Allgayer, H. Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. Mol. Cancer Res. 2010, 8, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Bdarny, M.; Prasad, M.; Balaban, N.; Ben-Zion, J.; Dinur, A.B.; Grénman, R.; Cohen, L.; Elkabets, M. The AP-1 complex regulates AXL expression and determines sensitivity to PI3Kα inhibition in esophagus and head and neck squamous cell carcinoma. bioRxiv 2018, 415752. [Google Scholar] [CrossRef]
- Brand, T.M.; Lida, M.; Stein, A.P.; Corrgan, K.L.; Braverman, C.M.; Luthar, N.; Toulany, M.; Gill, P.S.; Salgia, R.; Kimple, R.J.; et al. AXL mediates resistance to cetuximab therapy. Cancer Res. 2014, 74, 5152–5164. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, C.A.; Singh, S.; Windle, B.; Yeudall, W.A.; Frum, R.; Grossman, S.R.; Deb, S.P.; Deb, S. Gain-of-Function Activity of Mutant p53 in Lung Cancer through Up-Regulation of Receptor Protein Tyrosine Kinase Axl. Genes Cancer 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, W.; Zhao, Y.; Jin, X.; Yu, D.; He, J.; Xie, D.; Duan, P. METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecol. Oncol. 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Black, J.R.M.; Sharma, R.; Stebbing, J.; Pinato, D.J. Gene of the month: Axl. J. Clin. Pathol. 2016, 69, 391–397. [Google Scholar] [CrossRef]
- Lin, S.H.; Wang, J.; Saintigny, P.; Wu, C.-C.; Giri, U.; Zhang, J.; Menju, T.; Diao, L.; Byers, L.; Weinstein, J.N.; et al. Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial–mesenchymal transition. BMC Genom. 2014, 15, 1079. [Google Scholar] [CrossRef] [Green Version]
- Paccez, J.D.; Duncan, K.; Sekar, D.; Correa, R.G.; Wang, Y.; Gu, X.; Bashin, M.; Chibale, K.; Libermann, T.A.; Zerbini, L.F. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis 2019, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Wang, X.; Xie, X.; Liao, Y.; Liu, N.; Liu, J.; Miao, N.; Shen, J.; Peng, T. lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 2017, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Miyamoto, M.; Oda, T.; Matsumura, K.; Negishi, L.; Nakato, R.; Suda, S.; Yokota, N.; Shirahige, K.; Akiyama, T. The novel lncRNA CALIC upregulates AXL to promote colon cancer metastasis. EMBO Rep. 2019, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Valverde, P. Effects of Gas6 and hydrogen peroxide in Axl ubiquitination and downregulation. Biochem. Biophys. Res. Commun. 2005, 333, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Hafizi, S.; Dahlback, B. Signalling and functional diversity within the Axl subfamily of receptor tyrosine kinases. Cytokine Growth Factor Rev. 2006, 17, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Tai, K.-Y.; Shieh, Y.-S.; Lee, C.-S.; Shiah, S.-G.; Wu, C.-W. Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-κB and Brg-1. Oncogene 2008, 27, 4044–4055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellosta, P.; Costa, M.; Lin, D.A.; Basilico, C. The receptor tyrosine kinase ARK mediates cell aggregation by homophilic binding. Mol. Cell. Biol. 1995. [Google Scholar] [CrossRef] [Green Version]
- Meyer, A.S.; Miller, M.A.; Gertler, F.B.; Lauffenburger, D.A. The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci. Signal. 2013. [Google Scholar] [CrossRef] [Green Version]
- Vouri, M.; Croucher, D.R.; Kennedy, S.P.; An, Q.; Pilkington, G.J.; Hafizi, S. Axl-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells. Oncogenesis 2016. [Google Scholar] [CrossRef] [Green Version]
- Goyette, M.A.; Duhamel, S.; Aubert, L.; Pelletier, A.; Savage, P.; Thibault, M.P.; Johnson, R.M.; Carmeliet, P.; Basik, M.; Gaboury, L.; et al. The Receptor Tyrosine Kinase AXL Is Required at Multiple Steps of the Metastatic Cascade during HER2-Positive Breast Cancer Progression. Cell Rep. 2018. [Google Scholar] [CrossRef]
- Huang, J.S.; Cho, C.Y.; Hong, C.C.; De Yan, M.; Hsieh, M.C.; Lay, J.D.; Lai, G.M.; Cheng, A.L.; Chuang, S.E. Oxidative Stress Enhances Axl-Mediated Cell Migration through an Akt1/Rac1-Dependent Mechanism; Elsevier: Amsterdam, The Netherlands, 2013; Volume 65, ISBN 8860372461. [Google Scholar]
- Oien, D.B.; Garay, T.; Eckstein, S.; Chien, J. Cisplatin and pemetrexed activate AXL and AXL inhibitor BGB324 enhances mesothelioma cell death from chemotherapy. Front. Pharmacol. 2018, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-H.; Yen, C.-Y.; Liu, S.-Y.; Chen, C.-K.; Chiang, C.-F.; Shiah, S.-G.; Chen, P.-H.; Shieh, Y.-S. Axl Is a Prognostic Marker in Oral Squamous Cell Carcinoma. Ann. Surg. Oncol. 2012, 19, S500–S508. [Google Scholar] [CrossRef] [PubMed]
- Corno, C.; Gatti, L.; Lanzi, C.; Zaffaroni, N.; Colombo, D.; Perego, P. Role of the Receptor Tyrosine Kinase Axl and its Targeting in Cancer Cells. Curr. Med. Chem. 2016, 23, 1496–1512. [Google Scholar] [CrossRef]
- Paccez, J.D.; Vogelsang, M.; Parker, M.I.; Zerbini, L.F. The receptor tyrosine kinase Axl in cancer: Biological functions and therapeutic implications. Int. J. Cancer 2014, 1033, 1024–1033. [Google Scholar] [CrossRef]
- Paccez, J.D.; Vasques, G.J.; Correa, R.G.; Vasconcellos, J.F.; Duncan, K.; Gu, X.; Bhasin, M.; Libermann, T.A.; Zerbini, L.F. The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene 2013, 32, 689–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, S.; Boysen, J.; Nelson, M.; Secreto, C.; Warner, S.L.; Bearss, D.J.; Lesnick, C.; Shanafelt, T.D.; Kay, N.E.; Ghosh, A.K. Targeted Axl inhibition primes chronic lymphocytic leukemia B cells to apoptosis and shows synergistic/additive effects in combination with BTK inhibitors. Clin. Cancer Res. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.; Liu, G.; Fu, W.; Hu, J.; Fu, K.; Jia, W. Axl promotes the proliferation, invasion and migration of Wilms’ tumor and can be used as a prognostic factor. OncoTargets. Ther. 2017, 10, 955–963. [Google Scholar] [CrossRef] [Green Version]
- Martinho, O.; Zucca, L.E.; Reis, R.M. AXL as a modulator of sunitinib response in glioblastoma cell lines. Exp. Cell Res. 2015, 332, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zajac, O.; Leclere, R.; Nicolas, A.; Meseure, D.; Marchiò, C.; Vincent-Salomon, A.; Roman-Roman, S.; Schoumacher, M.; Dubois, T. AXL Controls Directed Migration of Mesenchymal Triple-Negative Breast Cancer Cells. Cells 2020, 9, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Yang, L.; Szeto, P.; Zhang, Y.; Amarasinghe, K.; Li, J.; McLean, C.; Shackleton, M.; Harvey, K.F. The Hippo pathway oncoprotein YAP promotes melanoma cell invasion and spontaneous metastasis. Oncogene 2020, 39, 5267–5281. [Google Scholar] [CrossRef]
- Asiedu, M.K.; Beauchamp-Perez, F.D.; Ingle, J.N.; Behrens, M.D.; Radisky, D.C.; Knutson, K.L. AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Beitler, J.J.; Huang, W.; Chen, G.; Qian, G.; Magliocca, K.; Patel, M.; Chen, A.Y.; Zhang, J.; Nannapaneni, S.; et al. Honokiol radiosensitizes squamous cell carcinoma of the head and neck by downregulation of survivin. Clin. Cancer Res. 2018, 24, 858–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koorstra, J.-B.M.; Karikari, C.A.; Feldmann, G.; Bisht, S.; Rojas, P.L.; Offerhaus, G.J.A.; Alvarez, H.; Maitra, A. The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol. Ther. 2009, 8, 618–626. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Ko, D.; Min, H.-J.; Kim, S.B.; Ahn, H.-M.; Lee, Y.; Kim, S. TMPRSS4 induces invasion and proliferation of prostate cancer cells through induction of Slug and cyclin D1. Oncotarget 2016, 7, 50315–50332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Ye, X.; Tan, C.; Hongo, J.A.; Zha, J.; Liu, J.; Kallop, D.; Ludlam, M.J.C.; Pei, L. Axl as a potential therapeutic target in cancer: Role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 2009. [Google Scholar] [CrossRef] [Green Version]
- Rankin, E.B.; Giaccia, A.J. The receptor tyrosine kinase AXL in cancer progression. Cancers 2016, 8, 103. [Google Scholar] [CrossRef]
- Jin, Y.; Nie, D.; Li, J.; Du, X.; Lu, Y.; Li, Y.; Liu, C.; Zhou, J.; Pan, J. Gas6/AXL signaling regulates self-renewal of chronic myelogenous leukemia stem cells by stabilizing β-catenin. Clin. Cancer Res. 2017, 23, 2842–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.-C.C.; Lay, J.-D.D.; Huang, J.-S.S.; Cheng, A.-L.L.; Tang, J.-L.L.; Lin, M.-T.T.; Lai, G.-M.M.; Chuang, S.-E.E. Receptor tyrosine kinase AXL is induced by chemotherapy drugs and overexpression of AXL confers drug resistance in acute myeloid leukemia. Cancer Lett. 2008, 268, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, T.A.; Giaccia, A.J. Molecular pathways: Oncologic pathways and their role in T-cell exclusion and immune evasion—A new role for the AXL receptor tyrosine kinase. Clin. Cancer Res. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukita, Y.; Fujino, N.; Miyauchi, E.; Saito, R.; Fujishima, F.; Itakura, K.; Kyogoku, Y.; Okutomo, K.; Yamada, M.; Okazaki, T.; et al. Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Mol. Cancer 2019, 18, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilera, T.A.; Rafat, M.; Castellini, L.; Shehade, H.; Kariolis, M.S.; Hui, A.B.Y.; Stehr, H.; Von Eyben, R.; Jiang, D.; Ellies, L.G.; et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat. Commun. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Wang, M.; Zhao, H.; Cui, W. Function of Axl receptor tyrosine kinase in non-small cell lung cancer. Oncol. Lett. 2018, 15, 2726–2734. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, H.; Yamada, T.; Wang, R.; Tanimura, K.; Adachi, Y.; Nishiyama, A.; Tanimoto, A.; Takeuchi, S.; Araujo, L.H.; Boroni, M.; et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.R.; Kim, W.S.; Choi, Y.J.; Choi, C.M.; Rho, J.K.; Lee, J.C. Epithelial-mesenchymal transition leads to crizotinib resistance in H2228 lung cancer cells with EML4-ALK translocation. Mol. Oncol. 2013, 7, 1093–1102. [Google Scholar] [CrossRef]
- Linger, R.M.A.; Cohen, R.A.; Cummings, C.T.; Sather, S.; Migdall-Wilson, J.; Middleton, D.H.G.; Lu, X.; Barón, A.E.; Franklin, W.A.; Merrick, D.T.; et al. Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene 2013, 32, 3420–3431. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Li, J.; Jang, C.; Wang, J.; Xiong, J. The role of Axl in drug resistance and epithelial-to-mesenchymal transition of non-small cell lung carcinoma. Int. J. Clin. Exp. Pathol. 2014, 7, 6653–6661. [Google Scholar]
- Zhang, Z.; Lee, J.C.; Lin, L.; Olivas, V.; Au, V.; LaFramboise, T.; Abdel-Rahman, M.; Wang, X.; Levine, A.D.; Rho, J.K.; et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet. 2012, 44, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-Z.; Wang, Z.-J.; De, W.; Zheng, M.; Xu, W.-Z.; Wu, H.-F.; Armstrong, A.; Zhu, J.-G. Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer. Oncotarget 2017, 8, 41064–41077. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Greger, J.; Shi, H.; Liu, Y.; Greshock, J.; Annan, R.; Halsey, W.; Sathe, G.M.; Martin, A.-M.M.; Gilmer, T.M.; et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: Activation of AXL. Cancer Res. 2009, 69, 6871–6879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creedon, H.; Gómez-Cuadrado, L.; Tarnauskaite, Ž.; Balla, J.; Canel, M.; MacLeod, K.G.; Serrels, B.; Fraser, C.; Unciti-Broceta, A.; Tracey, N.; et al. Identification of novel pathways linking epithelial-to-mesenchymal transition with resistance to HER2-targeted therapy. Oncotarget 2016, 7, 11539–11552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Jia, L.; Liu, C.; Gong, Y.; Ren, D.; Wang, N.; Zhang, X.; Zhao, Y. Axl as a downstream effector of TGF-β1 via PI3K/Akt-PAK1 signaling pathway promotes tumor invasion and chemoresistance in breast carcinoma. Tumor Biol. 2015, 36, 1115–1127. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, X.; Jiang, L.; Yang, F.; Zhang, Z.; Jia, L. Differential expression of Axl and correlation with invasion and multidrug resistance in cancer cells. Cancer Investig. 2012, 30, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Gusenbauer, S.; Vlaicu, P.; Ullrich, A. HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene 2013, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pinato, D.J.; Brown, M.W.; Trousil, S.; Aboagye, E.O.; Beaumont, J.; Zhang, H.; Coley, H.M.; Mauri, F.A.; Sharma, R. Integrated analysis of multiple receptor tyrosine kinases identifies Axl as a therapeutic target and mediator of resistance to sorafenib in hepatocellular carcinoma. Br. J. Cancer 2019. [Google Scholar] [CrossRef] [Green Version]
- Giles, K.M.; Kalinowski, F.C.; Candy, P.A.; Epis, M.R.; Zhang, P.M.; Redfern, A.D.; Stuart, L.M.; Goodal, G.J.; Leedman, P.J. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol. Cancer Ther. 2013, 12, 2541–2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkabets, M.; Pazarentzos, E.; Juric, D.; Sheng, Q.; Raphael, A.; Brook, S.; Benzaken, A.O.; Rodon, J.; Morse, N.; Yan, J.; et al. AXL mediates resistance to PI3Kα inhibition by activating the EGFR/PKC/mTOR axis in head and neck and esophageal squamous cell carcinomas. Cancer Cell 2015, 27, 533–546. [Google Scholar] [CrossRef] [Green Version]
- Brand, T.M.; Stein, A.P.; Corrigan, K.L.; Braverman, C.M.; Coan, J.; Pearson, H.E.; Bahrar, H.; Fowler, T.L.; Bednarz, B.P.; Saha, S.; et al. AXL is a logical molecular target in head and neck squamous cell carcinoma. Clin. Cancer Res. 2015, 21, 2601–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, M.-S.; Yang, P.-W.; Wong, L.-F.; Lee, J.-M. The AXL receptor tyrosine kinase is associated with adverse prognosis and distant metastasis in esophageal squamous cell carcinoma. Oncotarget 2016, 7, 36956–36970. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, D.; Cooke, L.; Riley, C.; Swart, R.; Simons, B.; Croce, K.D.; Wisner, L.; Iorio, M.; Shakalya, K.; Garewal, H.; et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 2007, 26, 3909–3919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debruyne, D.N.; Bhatnagar, N.; Sharma, B.; Luther, W.; Moore, N.F.; Cheung, N.-K.; Gray, N.S.; George, R.E. ALK inhibitor resistance in ALK F1174L -driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene 2015, 35, 3681–3691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, F.; Hurlburt, W.; Greer, A.; Reeves, K.A.; Hillerman, S.; Chang, H.; Fargnoli, J.; Finckenstein, F.G.; Gottardis, M.M.; Carboni, J.M. Differential Mechanisms of Acquired Resistance to Insulin- like Growth Factor-I Receptor Antibody Therapy or to a Small-Molecule Inhibitor, BMS-754807, in a Human Rhabdomyosarcoma Model. Cancer Res. AACR 2010, 70, 7221–7232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, I.K.; Mundy-Bosse, B.; Whitman, S.P.; Zhang, X.; Warner, S.L.; Bearss, D.J.; Blum, W.; Marcucci, G.; Caligiuri, M.A. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. Leukemia 2015, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Ou, W.; Meng, F.; Zhou, H.; Wang, A. Targeting HSP90 in ovarian cancers with multiple receptor tyrosine kinase coactivation. Mol. Cancer 2011. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung cancer. N. Engl. J. Med. 2008, 359, 1367–1380. [Google Scholar] [CrossRef] [Green Version]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. (Eds.) SEER Cancer Statistics Review, 1975–2017; National Cancer Institute: Bethesda, MD, USA, 2020. Available online: https://seer.cancer.gov/csr/1975_2017/ (accessed on 15 January 2021).
- Jänne, P.A.; Yang, J.C.-H.; Kim, D.-W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.-J.; Kim, S.-W.; Su, W.-C.; Horn, L.; et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 1689–1699. [Google Scholar] [CrossRef]
- Dungo, R.T.; Keating, G.M. Afatinib: First global approval. Drugs 2013, 73, 1503–1515. [Google Scholar] [CrossRef]
- Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004, 350, 2129–2139. [Google Scholar] [CrossRef] [PubMed]
- Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byers, L.A.; Diao, L.; Wang, J.; Saintigny, P.; Girard, L.; Peyton, M.; Shen, L.; Fan, Y.; Giri, U.; Tumula, P.K.; et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res. 2013, 19, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Pang, T.; Gao, M.; Kang, H.; Ding, W.; Sun, X.; Zhao, Y.; Zhu, W.; Tang, X.; Yao, Y.; et al. HPV E6 induces eIF4E transcription to promote the proliferation and migration of cervical cancer. FEBS Lett. 2013, 587, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.; Choi, C.-M.; Rho, J.K.; Jang, S.J.; Park, Y.S.; Chun, S.-M.; Kim, W.S.; Lee, J.-S.; Kim, S.-W.; Lee, D.H.; et al. Mechanisms of acquired resistance to EGFR-tyrosine kinase inhibitor in Korean patients with lung cancer. BMC Cancer 2013, 13, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.; Zhang, Z.; Miao, L.; Yang, Z.; Yang, J.; Wang, Y.Y.; Qian, D.; Cai, H.; Wang, Y.Y. Anexelekto (AXL) Increases Resistance to EGFR-TKI and Activation of AKT and ERK1/2 in Non-Small Cell Lung Cancer Cells. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2016, 24, 295–303. [Google Scholar] [CrossRef]
- Du, W.; Sun, L.; Liu, T.; Zhu, J.; Zeng, Y.; Zhang, Y.; Wang, X.; Liu, Z.; Huang, J.A. The miR_625_3p/AXL axis induces non_T790M acquired resistance to EGFR_TKI via activation of the TGF_β/Smad pathway and EMT in EGFR_mutant non_small cell lung cancer. Oncol. Rep. 2020. [Google Scholar] [CrossRef] [Green Version]
- Jeong, I.; Song, J.; Bae, S.Y.; Lee, S.K. Overcoming the Intrinsic Gefitinib-resistance via Downregulation of AXL in Non-small Cell Lung Cancer. J. Cancer Prev. 2019, 24, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Jackman, D.; Pao, W.; Riely, G.J.; Engelman, J.A.; Kris, M.G.; Jänne, P.A.; Lynch, T.; Johnson, B.E.; Miller, V.A. Clinical Definition of Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2010, 28, 357–360. [Google Scholar] [CrossRef]
- Wu, Z.; Bai, F.; Fan, L.; Pang, W.; Han, R.; Wang, J.; Liu, Y.; Yan, X.; Duan, H.; Xing, L. Coexpression of receptor tyrosine kinase AXL and EGFR in human primary lung adenocarcinomas. Hum. Pathol. 2015, 46, 1935–1944. [Google Scholar] [CrossRef]
- Suda, K.; Mizuuchi, H.; Sato, K.; Takemoto, T.; Iwasaki, T.; Mitsudomi, T. The insulin-like growth factor 1 receptor causes acquired resistance to erlotinib in lung cancer cells with the wild-type epidermal growth factor receptor. Int. J. Cancer 2014, 135, 1002–1006. [Google Scholar] [CrossRef] [PubMed]
- Thienelt, C.D.; Bunn, P.A.; Hanna, N.; Rosenberg, A.; Needle, M.N.; Long, M.E.; Gustafson, D.L.; Kelly, K. Multicenter phase I/II study of cetuximab with paclitaxel and carboplatin in untreated patients with stage IV non-small-cell lung cancer. J. Clin. Oncol. 2005, 23, 8786–8793. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J. The EGFR as a target for anticancer therapy--focus on cetuximab. Eur. J. Cancer 2001, 37 (Suppl. 4), S16–S22. [Google Scholar] [CrossRef]
- Brand, T.M.; Iida, M.; Wheeler, D.L. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Cancer Biol. Ther. 2011, 11, 777–792. [Google Scholar] [CrossRef] [Green Version]
- Terry, S.; Abdou, A.; Engelsen, A.S.T.; Buart, S.; Dessen, P.; Corgnac, S.; Collares, D.; Meurice, G.; Gausdal, G.; Baud, V.; et al. AXL Targeting Overcomes Human Lung Cancer Cell Resistance to NK- and CTL-Mediated Cytotoxicity. Cancer Immunol. Res. 2019, 7, 1789–1802. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Denis, L.; Murphy, G.P. Overview of phase III trials on combined androgen treatment in patients with metastatic prostate cancer. Cancer 1993, 72, 3888–3895. [Google Scholar] [CrossRef]
- Ringel, I.; Horwitz, S.B. Studies with RP 56976 (taxotere): A semisynthetic analogue of taxol. J. Natl. Cancer Inst. 1991, 83, 288–291. [Google Scholar] [CrossRef]
- Bumbaca, B.; Li, W. Taxane resistance in castration-resistant prostate cancer: Mechanisms and therapeutic strategies. Acta Pharm. Sin. B 2018, 8, 518–529. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2018. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhang, W.; Liu, J.; He, J.; Cao, R.; Chen, X.; Peng, X.; Xu, H.; Zhao, Q.; Zhong, J.; et al. Therapeutic activity of DCC-2036, a novel tyrosine kinase inhibitor, against triple-negative breast cancer patient-derived xenografts by targeting AXL/MET. Int. J. Cancer 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldas-Lopes, E.; Cerchietti, L.; Ahn, J.H.; Clement, C.C.; Robles, A.I.; Rodina, A.; Moulick, K.; Taldone, T.; Gozrnan, A.; Guo, Y.; et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl. Acad. Sci. USA 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.A.; Oudin, M.J.; Sullivan, R.J.; Wang, S.J.; Meyer, A.S.; Im, H.; Frederick, D.T.; Tadros, J.; Griffith, L.G.; Lee, H.; et al. Reduced proteolytic shedding of receptor tyrosine kinases is a post-translational mechanism of kinase inhibitor resistance. Cancer Discov. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Jin, H.; Wang, N.; Fan, S.; Wang, Y.; Zhang, Y.; Wei, L.; Tao, X.; Gu, D.; Zhao, F.; et al. Gas6/Axl axis contributes to chemoresistance and metastasis in breast cancer through Akt/GSK-3β/β- catenin signaling. Theranostics 2016. [Google Scholar] [CrossRef]
- Center, M.M.; Jemal, A. International trends in liver cancer incidence rates. Cancer Epidemiol. Biomark. Prev. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, A.; Saborowski, A. Current strategies for the treatment of intermediate and advanced hepatocellular carcinoma. Cancer Treat. Rev. 2020, 82, 101946. [Google Scholar] [CrossRef] [Green Version]
- Reichl, P.; Dengler, M.; van Zijl, F.; Huber, H.; Führlinger, G.; Reichel, C.; Sieghart, W.; Peck-Radosavljevic, M.; Grubinger, M.; Mikulits, W. Axl activates autocrine transforming growth factor-β signaling in hepatocellular carcinoma. Hepatology 2015. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Jeng, Y.M.; Chen, Y.L.; Chung, L.; Yuan, R.H. Gas6/Axl pathway promotes tumor invasion through the transcriptional activation of slug in hepatocellular carcinoma. Carcinogenesis 2014. [Google Scholar] [CrossRef] [Green Version]
- Giannelli, G.; Villa, E.; Lahn, M. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014, 74, 1890–1894. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Wen, J.Y.; Jia, C.C.; Wang, T.T.; Li, X.; Dong, M.; Lin, Q.; Chen, Z.H.; Ma, X.K.; Wei, L.; et al. MicroRNA-34a-5p enhances sensitivity to chemotherapy by targeting AXL in hepatocellular carcinoma MHCC-97L cells. Oncol. Lett. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, C.O.N.; Tong, M.; Chung, K.P.S.; Zhou, L.; Che, N.; Tang, K.H.; Ding, J.; Lau, E.Y.T.; Ng, I.O.L.; Ma, S.; et al. Overriding Adaptive Resistance to Sorafenib Through Combination Therapy With Src Homology 2 Domain–Containing Phosphatase 2 Blockade in Hepatocellular Carcinoma. Hepatology 2020. [Google Scholar] [CrossRef] [PubMed]
- Felip, E.; Brunsvig, P.; Vinolas, N.; Ponce Aix, S.; Carcereny Costa, E.; Dómine Gomez, M.; Trigo Perez, J.M.; Arriola, E.; Campelo, R.G.; Spicer, J.F.; et al. A phase II study of bemcentinib (BGB324), a first-in-class highly selective AXL inhibitor, with pembrolizumab in pts with advanced NSCLC: OS for stage I and preliminary stage II efficacy. J. Clin. Oncol. 2019. [Google Scholar] [CrossRef]
- Yang, G.; Sau, C.; Lai, W.; Cichon, J.; Li, W. An engineered Axl decoy receptor effectively silences the Gas6/Axl signaling axis. Nat. Chem. Biol. 2014, 10, 977–983. [Google Scholar] [CrossRef]
- Rodon Ahnert, J.; Taylor, M.H.; O’Reilly, E.M.; Zhang, J.; Doebele, R.C.; Ben, Y.; Sharp, L.L.; Boyle, W.J.; Chang, C.; Frey, G.; et al. A phase 1/2 dose-escalation and expansion study of a conditionally active anti-AXL humanized monoclonal antibody (BA3011) in patients with advanced solid tumors. J. Clin. Oncol. 2018. [Google Scholar] [CrossRef]
- Ameratunga, M.; Harvey, R.D.; Mau-Sørensen, M.; Thistlethwaite, F.; Forssmann, U.; Gupta, M.; Johannsdottir, H.; Ramirez-Andersen, T.; Bohlbro, M.L.; Losic, N.; et al. First-in-human, dose-escalation, phase (ph) I trial to evaluate safety of anti-Axl antibody-drug conjugate (ADC) enapotamab vedotin (EnaV) in solid tumors. J. Clin. Oncol. 2019. [Google Scholar] [CrossRef]
- Duan, Y.; Luo, L.; Qiao, C.; Li, X.; Wang, J.; Liu, H.; Zhou, T.; Shen, B.; Lv, M.; Feng, J. A novel human anti-AXL monoclonal antibody attenuates tumour cell migration. Scand. J. Immunol. 2019, 90, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.A.; Hur, J.Y.; Kim, Y.; Im, J.H.; Jin, S.H.; Ryu, S.H.; Choi, C. Efficacy of newly discovered DNA aptamers targeting AXL in a lung cancer cell with acquired resistance to Erlotinib. Transl. Cancer Res. 2021, 10, 1025–1033. [Google Scholar] [CrossRef]
- Cerchia, L.; Esposito, C.L.; Camorani, S.; Rienzo, A.; Stasio, L.; Insabato, L.; Affuso, A.; De Franciscis, V. Targeting Axl with an high-affinity inhibitory aptamer. Mol. Ther. 2012, 20, 2291–2303. [Google Scholar] [CrossRef] [Green Version]
Cancer Type | Drug (s) | Drug Target (s) | Model (Human, Animal, Cell Line) | Refs. |
---|---|---|---|---|
NSCLC | Erlotinib, Gefitinib | EGFR | Human | [57] |
Cetuximab | EGFR | Cell line | [19] | |
Osimertinib | EGFR | Cell line | [58] | |
Crizotinib | ALK, c-Met | Cell line | [59] | |
Cisplatin | Interferes with DNA damage repair mechanism | Cell line | [60] | |
Doxorubicin | Inhibition of DNA topoisomerase II activity | Cell line | [60] | |
Etoposide | Inhibition of DNA topoisomerase II activity | Cell line | [60] | |
Paclitaxel | Microtubule polymer stabilizer | Cell line | [61] | |
Vincristine | Binds to tubulin and inhibits the formation of microtubules | Cell line | [61] | |
EGFR-mutant NSCLC | Erlotinib | EGFR | Mouse, cell line | [62] |
Prostate | Docetaxel | Inhibitor of depolymerisation of microtubules | Cell line | [63] |
Breast | Lapatinib | EGFR, HER2 | Cell line | [64] |
Erlotinib | EGFR | Cell line | [31] | |
AZD8931 (Sapitinib) | EGFR, HER2, HER3 | Cell line | [65] | |
Fluorouracil | Inhibits DNA/RNA replication | Cell line | [66] | |
Paclitaxel | Tubulin Inhibitor (Microtubule polymer stabilizer) | Cell line | [67] | |
Liver | Erlotinib, Gefitinib | EGFR | Cell line | [68] |
Sorafenib | Raf-1, B-Raf, VEGFR, PDGFR, Flt-3 and c-KIT | Cell line | [69] | |
Head and neck squamous cell carcinoma | Cetuximab | EGFR | PDX | [19] |
Erlotinib, Gefitinib | EGFR | Cell line | [70] | |
BYL719 | PI3Kα | Cell line | [71] | |
Cisplatin, Carboplatin | Interferes with DNA damage repair mechanism | Cell line | [72] | |
ESCC | Lapatinib | EGFR, HER2 | Cell line | [73] |
Gastrointestinal stromal tumour | Imatinib mesylate | v-Abl, c-KIT, PDGFR | Cell line | [74] |
Neuroblastoma | TAE684, LDK378 | ALK | Cell line | [75] |
Rhabdomyosarcoma | MAB391 | IGF-IR | Cell line | [76] |
Acute myeloid leukaemia | PKC412 | PKCα/β/γ, Syk, Flk-1, AKT, PKA, c-Kit, c-Fgr, c-Src, FLT3, PDFRβ, and VEGFR1/2 | Cell line | [77] |
AC220 | FLT3 | Cell line | [77] | |
Doxorubicin plus cytosine arabinoside | Inhibition of DNA topoisomerase II activity and synthesis of DNA | Human, Cell line | [53] | |
Cisplatin | Interferes with DNA damage repair mechanism | Cell line | [53] |
Drug | Clinical Trial No | Phase | Cancer Type | Monotherapy/Combination |
---|---|---|---|---|
Bemcentinib (BGB324, R428) | NCT03184558 | II | TNBC | +Pembrolizumab |
NCT02424617 | I/II | NSCLC | +Erlotinib | |
NCT03824080 | II | AML, MDS | Monotherapy | |
NCT03649321 | Ib/II | Pancreatic cancer | ±Nab-paclitaxel/gemcitabine/cisplatin | |
NCT02488408 | Ib/II | AML, MDS | ±Cytarabine/decitabine | |
NCT02872259 | Ib/II | Metastatic melanoma | +Pembrolizumab; +Dabrafenib and trametinib | |
NCT03184571 | II | NSCLC | +Pembrolizumab | |
NCT03965494 | I | Glioblastoma | Monotherapy, before and after surgery | |
Dubermatinib (TP-0903) | NCT03572634 | I/II | CLL | ±Ibrutinib |
NCT02729298 | I | Advanced solid tumours (Advanced solid tumours, EGFR positive NSCLC, Colorectal carcinoma, Recurrent ovarian carcinoma, BRAF-mutated melanoma | Monotherapy | |
DS-1205 | NCT03255083 | I | Metastatic or unresectable EGFR-mutant NSCLC | +Osimertinib |
NCT03599518 | I | Metastatic or unresectable EGFR-mutant NSCLC | +Gefitinib | |
BA3011 (CAB-AXL-ADC) | NCT03425279 | I/II | Solid tumours (NSCLC, Pancreatic cancer, Melanoma, Ewing sarcoma, Osteosarcoma, Leiomyosarcoma, Synovial sarcoma, Liposarcoma, Soft tissue sarcoma, Bone sarcoma, Refractory sarcoma) | ±Nivolumab |
NCT04681131 | II | NSCLC | ±PD-1 inhibitor | |
Enapotamab vedotin (HuMax-AXL-ADC) | NCT02988817 | I/II | Ovarian, Cervical, Endometrial, NSCLC, Thyroid, Melanoma, Sarcoma | Monotherapy |
CCT301-38 | NCT03393936 | I/II | Recurrent or refractory stage IV renal cell carcinoma | Monotherapy |
SLC-391 | NCT04004442 | I | Solid tumours | Monotherapy |
AVB-S6-500 | NCT04004442 | I/II | Advanced urothelial carcinoma | Monotherapy |
NCT03639246 | Ib/II | Platinum-resistant recurrent ovarian cancer | +Pegylated liposomal-doxorubicin or paclitaxel | |
NCT04019288 | I/II | Platinum-resistant or recurrent Ovarian, Fallopian tube, or Primary peritoneal cancer | +Durvalumab (MEDI4736) | |
NCT03607955 | Ib | Stage III or IV Epithelial ovarian, Primary peritoneal, or Fallopian tube cancer receiving neoadjuvant chemotherapy | +Paclitaxel and carboplatin |
Drug | Target (s) | Clinical Trial No | Phase | Cancer Type | Monotherapy/Combination |
---|---|---|---|---|---|
Sitravatinib (MGCD516) | VEGFR, PDGFR c-KIT, DDR2, EPHA, FLT3, MET, TYRO3, Axl, and MER | NCT03680521 | II | Clear cell RCC | +Nivolumab |
NCT03906071 | III | Metastatic NSCLC | +Nivolumab, Docetaxel | ||
NCT04123704 | II | Metastatic TBNC | Monotherapy | ||
NCT02978859 | II | Advanced liposarcoma and other soft tissue sarcomas | Monotherapy | ||
NCT03606174 | II | Urothelial carcinoma | +Nivolumab | ||
NCT03941873 | I/II | Hepatocellular carcinoma, Gastric/Gastroesophageal junction cancer | ±Tislelizumab | ||
NCT03575598 | I | HNSCC, Squamous cell carcinoma mouth, Squamous cell carcinoma of the oral cavity | +Nivolumab | ||
NCT02219711 | I/Ib | Advanced solid tumours | Monotherapy | ||
BMS-777607 (ASLAN002) | c-Met, Axl, RON, TYRO3 | NCT00605618 | I/II | Advanced solid tumours | Monotherapy |
NCT01721148 | I | Advanced metastatic tumours | Monotherapy | ||
RXDX-106 (CEP-40783) | Axl, TYRO3, MER, c-Met | NCT03454243 | I | Advanced or metastatic solid tumours | Monotherapy |
LY2801653 (Merestinib) | c-Met, Axl, RON, MER | NCT02711553 | II | Advanced or metastatic biliary tract cancer | Ramucirumab or merestinib or placebo, +cisplatin and gemcitabine |
NCT02920996 | II | NSCLC | Monotherapy | ||
NCT03027284 | I | Advanced or metastatic cancer | ±other anti-cancer agents | ||
Q702 | Axl, MER, CSF1R | NCT04648254 | I | Advanced solid tumour | Monotherapy |
ONO-7475 | Axl, MER | NCT03176277 | I/II | Elapsed or refractory AML | ±Venetoclax |
INCB081776 | Axl, MER | NCT03522142 | I | Advanced solid tumour | ±INCMGA00012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wium, M.; Ajayi-Smith, A.F.; Paccez, J.D.; Zerbini, L.F. The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications. Cancers 2021, 13, 1521. https://doi.org/10.3390/cancers13071521
Wium M, Ajayi-Smith AF, Paccez JD, Zerbini LF. The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications. Cancers. 2021; 13(7):1521. https://doi.org/10.3390/cancers13071521
Chicago/Turabian StyleWium, Martha, Aderonke F. Ajayi-Smith, Juliano D. Paccez, and Luiz F. Zerbini. 2021. "The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications" Cancers 13, no. 7: 1521. https://doi.org/10.3390/cancers13071521
APA StyleWium, M., Ajayi-Smith, A. F., Paccez, J. D., & Zerbini, L. F. (2021). The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications. Cancers, 13(7), 1521. https://doi.org/10.3390/cancers13071521