Non-Canonical Kinases and Substrates in Cancer Progression
Funding
Conflicts of Interest
References
- Colmenero-Repiso, A.; Gómez-Muñoz, M.; Rodríguez-Prieto, I.; Amador-Álvarez, A.; Henrich, K.; Pascual-Vaca, D.; Okonechnikov, K.; Rivas, E.; Westermann, F.; Pardal, R.; et al. Identification of VRK1 as a New Neuroblastoma Tumor Progression Marker Regulating Cell Proliferation. Cancers 2020, 12, 3465. [Google Scholar] [CrossRef] [PubMed]
- García-González, R.; Morejón-García, P.; Campillo-Marcos, I.; Salzano, M.; Lazo, P. VRK1 Phosphorylates Tip60/KAT5 and Is Required for H4K16 Acetylation in Response to DNA Damage. Cancers 2020, 12, 2986. [Google Scholar] [CrossRef] [PubMed]
- Ortega-García, M.; Mesa, A.; Moya, E.; Rueda, B.; Lopez-Ordoño, G.; García, J.; Conde, V.; Redondo-Cerezo, E.; Lopez-Hidalgo, J.; Jiménez, G.; et al. Uncovering Tumour Heterogeneity through PKR and nc886 Analysis in Metastatic Colon Cancer Patients Treated with 5-FU-Based Chemotherapy. Cancers 2020, 12, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boni, J.; Rubio-Perez, C.; López-Bigas, N.; Fillat, C.; de la Luna, S. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers 2020, 12, 2106. [Google Scholar] [CrossRef] [PubMed]
- Reglero, C.; Lafarga, V.; Rivas, V.; Albitre, Á.; Ramos, P.; Berciano, S.; Tapia, O.; Martínez-Chantar, M.; Mayor, F., Jr.; Penela, P. GRK2-Dependent HuR Phosphorylation Regulates HIF1α Activation under Hypoxia or Adrenergic Stress. Cancers 2020, 12, 1216. [Google Scholar] [CrossRef] [PubMed]
- Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers 2020, 12, 731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamón, C.; Dávila, B.; García, M.; Sánchez, C.; Kovacs, M.; Trias, E.; Barbeito, L.; Gabay, M.; Zeineh, N.; Gavish, M.; et al. Sunitinib-Containing Carborane Pharmacophore with the Ability to Inhibit Tyrosine Kinases Receptors FLT3, KIT and PDGFR-β, Exhibits Powerful In Vivo Anti-Glioblastoma Activity. Cancers 2020, 12, 3423. [Google Scholar] [CrossRef] [PubMed]
- Mayoral-Varo, V.; Sánchez-Bailón, M.; Calcabrini, A.; García-Hernández, M.; Frezza, V.; Martín, M.; González, V.; Martín-Pérez, J. The Relevance of the SH2 Domain for c-Src Functionality in Triple-Negative Breast Cancer Cells. Cancers 2021, 13, 462. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega, F.M. Non-Canonical Kinases and Substrates in Cancer Progression. Cancers 2021, 13, 1628. https://doi.org/10.3390/cancers13071628
Vega FM. Non-Canonical Kinases and Substrates in Cancer Progression. Cancers. 2021; 13(7):1628. https://doi.org/10.3390/cancers13071628
Chicago/Turabian StyleVega, Francisco M. 2021. "Non-Canonical Kinases and Substrates in Cancer Progression" Cancers 13, no. 7: 1628. https://doi.org/10.3390/cancers13071628
APA StyleVega, F. M. (2021). Non-Canonical Kinases and Substrates in Cancer Progression. Cancers, 13(7), 1628. https://doi.org/10.3390/cancers13071628