Expression of SEC62 Oncogene in Benign, Malignant and Borderline Melanocytic Tumors—Unmasking the Wolf in Sheep’s Clothing?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Characteristics and Tissue Samples
2.2. Immunohistochemical Analysis
2.3. Statistical Analysis
3. Results
3.1. Impact of SEC62 Expression Level on the Prognosis of Melanoma Patients
3.2. Correlation of SEC62 Expression with Clinical and Histopathological Features
3.3. SEC62 Expression in Different Melanocytic Tumors
3.4. Correlation of SEC62 Expression with Clark Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFX | atypical fibroxanthoma |
ALM | acral lentiginous melanoma |
BSA | bovine serum albumin |
CN | congenital nevi |
ER | endoplasmic reticulum |
FFPE | formalin-fixed paraffin-embedded |
HNSCC | head and neck squamous cell carcinoma |
IRS | immunoreactive score |
LMM | lentigo maligna melanoma |
MCAM | melanoma cell adhesion molecule |
MET | melanoma metastases |
MM | malignant melanoma |
NMM | nodular malignant melanoma |
n.s. | nonsignificant |
NSCLC | non-small cell lung cancer |
OS | overall survival |
PBS | phosphate-buffered saline |
PFS | progression free survival |
SERCA | sarcoplasmic/endoplasmic reticulum calcium ATPase |
SMM | superficial spreading malignant melanoma |
SN | Spitz nevi |
TFP | trifluoperazine |
TG | thapsigargin |
References
- Conti, B.J.; Devaraneni, P.K.; Yang, Z.; David, L.L.; Skach, W.R. Cotranslational stabilization of Sec62/63 within the ER Sec61 translocon is controlled by distinct substrate-driven translocation events. Mol. Cell 2015, 58, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Kraft, R.; Kostka, S.; Prehn, S.; Meyer, H.-A.; Grau, H.; Kalies, K.-U.; Hartmann, E. Mammalian Sec61 Is Associated with Sec62 and Sec63. J. Biol. Chem. 2000, 275, 14550–14557. [Google Scholar] [CrossRef] [Green Version]
- Lakkaraju, A.K.K.; Thankappan, R.; Mary, C.; Garrison, J.L.; Taunton, J.; Strub, K. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol. Biol. Cell 2012, 23, 2712–2722. [Google Scholar] [CrossRef]
- Lang, S.; Benedix, J.; Fedeles, S.V.; Schorr, S.; Schirra, C.; Schäuble, N.; Jalal, C.; Greiner, M.; Haßdenteufel, S.; Tatzelt, J.; et al. Different effects of Sec61α, Sec62 and Sec63 depletion on transport of polypeptides into the endoplasmic reticulum of mammalian cells. J. Cell Sci. 2012, 125, 1958–1969. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.; De Escauriaza, M.D.; Lajoie, P.; Theis, M.; Jung, M.; Müller, A.; Burgard, C.; Greiner, M.; Snapp, E.L.; Dudek, J.; et al. Evolutionary Gain of Function for the ER Membrane Protein Sec62 from Yeast to Humans. Mol. Biol. Cell 2010, 21, 691–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdmann, F.; Schäuble, N.; Lang, S.; Jung, M.; Honigmann, A.; Ahmad, M.; Dudek, J.; Benedix, J.; Harsman, A.; Kopp, A.; et al. Interaction of calmodulin with Sec61α limits Ca2+leakage from the endoplasmic reticulum. EMBO J. 2010, 30, 17–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, S.; Erdmann, F.; Jung, M.; Wagner, R.; Cavalie, A.; Zimmermann, R. Sec61 complexes form ubiquitous ER Ca2+ leak channels. Channels 2011, 5, 228–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linxweiler, M.; Schorr, S.; Schäuble, N.; Jung, M.; Linxweiler, J.; Langer, F.; Schäfers, H.-J.; Cavalié, A.; Zimmermann, R.; Greiner, M. Targeting cell migration and the endoplasmic reticulum stress response with calmodulin antagonists: A clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells. BMC Cancer 2013, 13, 574. [Google Scholar] [CrossRef] [Green Version]
- Schauble, N.; Lang, S.; Jung, M.; Cappel, S.; Schorr, S.; Ulucan, O.; Linxweiler, J.; Dudek, J.; Blum, R.; Helms, V.; et al. BiP-mediated closing of the Sec61 channel limits Ca2+ leakage from the ER. EMBO J. 2012, 31, 3282–3296. [Google Scholar] [CrossRef] [Green Version]
- Bockmühl, U.; Schwendel, A.; Dietel, M.; Petersen, I. Distinct patterns of chromosomal alterations in high- and low-grade head and neck squamous cell carcinomas. Cancer Res. 1996, 56, 5325–5329. [Google Scholar]
- Sheu, J.J.-C.; Lee, C.-H.; Ko, J.-Y.; Tsao, G.S.; Wu, C.-C.; Fang, C.-Y.; Tsai, F.-J.; Hua, C.-H.; Chen, C.-L.; Chen, J.-Y. Chromosome 3p12.3-p14.2 and 3q26.2-q26.32 Are Genomic Markers for Prognosis of Advanced Nasopharyngeal Carcinoma. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2709–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, V.; Kindich, R.; Kamradt, J.; Jung, M.; Müller, M.; Schulz, W.A.; Engers, R.; Unteregger, G.; Stöckle, M.; Zimmermann, R.; et al. Genomic and Expression Analysis of the 3q25-q26 Amplification Unit Reveals TLOC1/SEC62 as a Probable Target Gene in Prostate Cancer. Mol. Cancer Res. 2006, 4, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Yeh, K.-T.; Liu, T.-C.; Chang, J.-G. Molecular cytogenetic characterization of esophageal cancer detected by comparative genomic hybridization. J. Clin. Lab. Anal. 2010, 24, 167–174. [Google Scholar] [CrossRef]
- Allen, D.G.; White, D.J.; Hutchins, A.M.; Scurry, J.P.; Tabrizi, S.N.; Garland, S.M.; E Armes, J. Progressive genetic aberrations detected by comparative genomic hybridization in squamous cell cervical cancer. Br. J. Cancer 2000, 83, 1659–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heselmeyer, K.; Macville, M.; Schröck, E.; Blegen, H.; Hellström, A.C.; Shah, K.; Auer, G.; Ried, T. Advanced-stage cervical carcinomas are defined by a recurrent pattern of chromosomal aberrations revealing high genetic instability and a consistent gain of chromosome arm 3q. GenesChromosom. Cancer 1997, 19, 233–240. [Google Scholar] [CrossRef]
- Haverty, P.M.; Hon, L.S.; Kaminker, J.S.; Chant, J.; Zhang, Z. High-resolution analysis of copy number alterations and associated expression changes in ovarian tumors. BMC Med. Genom. 2009, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Takacs, F.Z.; Radosa, J.C.; Linxweiler, M.; Kasoha, M.; Bohle, R.M.; Bochen, F.; Unger, C.; Solomayer, E.-F.; Schick, B.; Juhasz-Böss, I. Identification of 3q oncogene SEC62 as a marker for distant metastasis and poor clinical outcome in invasive ductal breast cancer. Arch. Gynecol. Obs. 2019, 299, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Dehan, E.; Ben-Dor, A.; Liao, W.; Lipson, D.; Frimer, H.; Rienstein, S.; Simansky, D.; Krupsky, M.; Yaron, P.; Friedman, E.; et al. Chromosomal aberrations and gene expression profiles in non-small cell lung cancer. Lung Cancer 2007, 56, 175–184. [Google Scholar] [CrossRef]
- Bochen, F.; Adisurya, H.; Wemmert, S.; Lerner, C.; Greiner, M.; Zimmermann, R.; Hasenfus, A.; Wagner, M.; Smola, S.; Pfuhl, T.; et al. Effect of 3q oncogenes SEC62 and SOX2 on lymphatic metastasis and clinical outcome of head and neck squamous cell carcinomas. Oncotarget 2016, 8, 4922–4934. [Google Scholar] [CrossRef] [Green Version]
- Linxweiler, M.; Linxweiler, J.; Barth, M.; Benedix, J.; Jung, V.; Kim, Y.-J.; Bohle, R.M.; Zimmermann, R.; Greiner, M. Sec62 Bridges the Gap from 3q Amplification to Molecular Cell Biology in Non–Small Cell Lung Cancer. Am. J. Pathol. 2012, 180, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Wemmert, S.; Lindner, Y.; Linxweiler, J.; Wagenpfeil, S.; Bohle, R.; Niewald, M.; Schick, B. Initial evidence for Sec62 as a prognostic marker in advanced head and neck squamous cell carcinoma. Oncol. Lett. 2016, 11, 1661–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linxweiler, M.; Schick, B.; Zimmermann, R. Let’s talk about Secs: Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct. Target. 2017, 2, 17002. [Google Scholar] [CrossRef]
- Weng, L.; Du, J.; Zhou, Q.; Cheng, B.; Li, J.; Zhang, D.; Ling, C. Identification of cyclin B1 and Sec62 as biomarkers for recurrence in patients with HBV-related hepatocellular carcinoma after surgical resection. Mol. Cancer 2012, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Fumagalli, F.; Noack, J.; Bergmann, T.J.; Cebollero, P.E.; Pisoni, G.B.; Fasana, E.; Fregno, I.; Galli, C.; Loi, M.; Soldà, T.; et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat. Cell Biol. 2016, 18, 1173–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greiner, M.; Kreutzer, B.; Jung, V.; Grobholz, R.; Hasenfus, A.; Stöhr, R.F.; Tornillo, L.; Dudek, J.; Stöckle, M.; Unteregger, G.; et al. Silencing of the SEC62 gene inhibits migratory and invasive potential of various tumor cells. Int. J. Cancer 2010, 128, 2284–2295. [Google Scholar] [CrossRef] [PubMed]
- Greiner, M.; Kreutzer, B.; Lang, S.; Jung, V.; Cavalié, A.; Unteregger, G.; Zimmermann, R.; Wullich, B. Sec62 protein level is crucial for the ER stress tolerance of prostate cancer. Prostate 2011, 71, 1074–1083. [Google Scholar] [CrossRef]
- Hagerstrand, D.; Tong, A.; Schumacher, S.E.; Ilic, N.; Shen, R.R.; Cheung, H.W.; Vazquez, F.; Shrestha, Y.; Kim, S.Y.; Giacomelli, A.O.; et al. Systematic Interrogation of 3q26 Identifies TLOC1 and SKIL as Cancer Drivers. Cancer Discov. 2013, 3, 1044–1057. [Google Scholar] [CrossRef] [Green Version]
- Linxweiler, M.; Bochen, F.; Schick, B.; Wemmert, S.; Al Kadah, B.; Greiner, M.; Hasenfus, A.; Bohle, R.-M.; Juhasz-Böss, I.; Solomayer, E.-F.; et al. Identification of SEC62 as a potential marker for 3q amplification and cellular migration in dysplastic cervical lesions. BMC Cancer 2016, 16, 676. [Google Scholar] [CrossRef] [Green Version]
- Körbel, C.; Linxweiler, M.; Bochen, F.; Wemmert, S.; Schick, B.; Meyer, M.; Maurer, H.; Menger, M.D.; Zimmermann, R.; Greiner, M. Treatment of SEC62 over-expressing tumors by Thapsigargin and Trifluoperazine. Biomol. Concepts 2018, 9, 53–63. [Google Scholar] [CrossRef]
- Müller, C.S.L.; Kreie, L.; Bochen, F.; Pfuhl, T.; Smola, S.; Gräber, S.; Vogt, T.; Schick, B.; Linxweiler, M. Expression of 3q oncogene SEC62 in atypical fibroxanthoma-immunohistochemical analysis of 41 cases and correlation with clinical, viral and histopathologic features. Oncol. Lett. 2019, 17, 1768–1776. [Google Scholar] [PubMed] [Green Version]
- Weinstein, D.; Leininger, J.; Hamby, C.; Safai, B. Diagnostic and Prognostic Biomarkers in Melanoma. J. Clin. Aesthetic Derm. 2014, 7, 13–24. [Google Scholar]
- Hyams, D.M.; Cook, R.W.; Buzaid, A.C. Identification of risk in cutaneous melanoma patients: Prognostic and predictive markers. J. Surg. Oncol. 2018, 119, 175–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. Ca. A Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remmele, W.; Stegner, H.E. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 1987, 8, 138–140. [Google Scholar] [PubMed]
- Wang, L.; Rao, M.; Fang, Y.; Hameed, M.; Viale, A.; Busam, K.; Jhanwar, S.C. A Genome-Wide High-Resolution Array-CGH Analysis of Cutaneous Melanoma and Comparison of Array-CGH to FISH in Diagnostic Evaluation. J. Mol. Diagn. 2013, 15, 581–591. [Google Scholar] [CrossRef]
Characteristics | Melanoma Patients n = 93 | |
---|---|---|
n | % | |
Sex | ||
male | 38 | 40.9 |
female | 55 | 59.1 |
Tumor size | ||
pT1 | 19 | 20.4 |
pT2 | 23 | 24.7 |
pT3 | 28 | 30.1 |
pT4 | 23 | 24.7 |
Lymph nodes | ||
pN0 | 66 | 71 |
pN1 | 27 | 29 |
Metastases | ||
cM0 | 77 | 82.8 |
cM1 | 16 | 17.2 |
Ulceration | ||
no | 29 | 31.2 |
yes | 64 | 68.8 |
Subtypes | ||
SSM | 29 | 31.2 |
LMM | 5 | 5.4 |
ALM | 8 | 8.6 |
NMM | 42 | 45.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, C.S.L.; Pföhler, C.; Wahl, M.; Bochen, F.; Körner, S.; Kühn, J.P.; Bozzato, A.; Schick, B.; Linxweiler, M. Expression of SEC62 Oncogene in Benign, Malignant and Borderline Melanocytic Tumors—Unmasking the Wolf in Sheep’s Clothing? Cancers 2021, 13, 1645. https://doi.org/10.3390/cancers13071645
Müller CSL, Pföhler C, Wahl M, Bochen F, Körner S, Kühn JP, Bozzato A, Schick B, Linxweiler M. Expression of SEC62 Oncogene in Benign, Malignant and Borderline Melanocytic Tumors—Unmasking the Wolf in Sheep’s Clothing? Cancers. 2021; 13(7):1645. https://doi.org/10.3390/cancers13071645
Chicago/Turabian StyleMüller, Cornelia S. L., Claudia Pföhler, Maria Wahl, Florian Bochen, Sandrina Körner, Jan Philipp Kühn, Alessandro Bozzato, Bernhard Schick, and Maximilian Linxweiler. 2021. "Expression of SEC62 Oncogene in Benign, Malignant and Borderline Melanocytic Tumors—Unmasking the Wolf in Sheep’s Clothing?" Cancers 13, no. 7: 1645. https://doi.org/10.3390/cancers13071645
APA StyleMüller, C. S. L., Pföhler, C., Wahl, M., Bochen, F., Körner, S., Kühn, J. P., Bozzato, A., Schick, B., & Linxweiler, M. (2021). Expression of SEC62 Oncogene in Benign, Malignant and Borderline Melanocytic Tumors—Unmasking the Wolf in Sheep’s Clothing? Cancers, 13(7), 1645. https://doi.org/10.3390/cancers13071645