Perineural Invasion in Vulvar Squamous-Cell Carcinoma Is an Independent Risk Factor for Cancer-Specific Survival, but Not for Locoregional Recurrence: Results from a Single Tertiary Referral Center
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Clinicopathological Features
3.2. Survival Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, Y.; Smith, M.; Barlow, E.; Coffey, K.; Hacker, N.; Canfell, K. Vulvar Cancer in High-income Countries: Increasing Burden of Disease. Int. J. Cancer 2017, 141, 2174–2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, S.; Bucchi, L.; Baldacchini, F.; Giuliani, O.; Ravaioli, A.; Vattiato, R.; Preti, M.; Tumino, R.; Ferretti, S.; Biggeri, A.; et al. Incidence Trends of Vulvar Squamous Cell Carcinoma in Italy from 1990 to 2015. Gynecol. Oncol. 2020, 157, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Preti, M.; Rotondo, J.C.; Holzinger, D.; Micheletti, L.; Gallio, N.; McKay-Chopin, S.; Carreira, C.; Privitera, S.S.; Watanabe, R.; Ridder, R.; et al. Role of Human Papillomavirus Infection in the Etiology of Vulvar Cancer in Italian Women. Infect. Agent. Cancer 2020, 15, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, L.N.; Park, K.J.; Soslow, R.A.; Murali, R. Squamous Precursor Lesions of the Vulva: Current Classification and Diagnostic Challenges. Pathology 2016, 48, 291–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortekaas, K.E.; Bastiaannet, E.; van Doorn, H.C.; de Vos van Steenwijk, P.J.; Ewing-Graham, P.C.; Creutzberg, C.L.; Akdeniz, K.; Nooij, L.S.; van der Burg, S.H.; Bosse, T.; et al. Vulvar Cancer Subclassification by HPV and P53 Status Results in Three Clinically Distinct Subtypes. Gynecol. Oncol. 2020, 159, 649–656. [Google Scholar] [CrossRef]
- FIGO Committee on Gynecologic Oncology FIGO Staging for Carcinoma of the Vulva, Cervix, and Corpus Uteri. Int. J. Gynecol. Obstet. 2014, 125, 97–98. [CrossRef]
- Cancer Stat Facts: Vulvar Cancer. Available online: https://seer.cancer.gov/statfacts/html/vulva.html (accessed on 18 September 2021).
- Rogers, L.J.; Cuello, M.A. Cancer of the Vulva. Int. J. Gynecol. Obstet. 2018, 143, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Micheletti, L.; Preti, M. Surgery of the Vulva in Vulvar Cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2014, 28, 1074–1087. [Google Scholar] [CrossRef]
- Micheletti, L.; Haefner, H.; Zalewski, K.; MacLean, A.; Gomez Cherey, F.; Pereira, C.; Sluga, C.; Solé-Sedeno, J.M.; Vargas-Hernandez, V.M.; Preti, M. The International Society for the Study of Vulvovaginal Disease Surgical Oncological Procedure Definitions Committee “Surgical Terminology for Vulvar Cancer Treatment”. J. Low. Genit. Tract Dis. 2020, 24, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Bhatla, N.; Tomar, S.; Meena, J.; Sharma, D.N.; Kumar, L. Adjuvant Treatment in Cervical, Vaginal and Vulvar Cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2021. [Google Scholar] [CrossRef]
- Preti, M.; Ronco, G.; Ghiringhello, B.; Micheletti, L. Recurrent Squamous Cell Carcinoma of the Vulva: Clinicopathologic Determinants Identifying Low Risk Patients. Cancer 2000, 88, 1869–1876. [Google Scholar] [CrossRef]
- Rouzier, R.; Preti, M.; Haddad, B.; Martin, M.; Micheletti, L.; Paniel, B.-J. Development and Validation of a Nomogram for Predicting Outcome of Patients with Vulvar Cancer. Obstet. Gynecol. 2006, 107, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Te Grootenhuis, N.C.; Pouwer, A.-F.W.; de Bock, G.H.; Hollema, H.; Bulten, J.; van der Zee, A.G.J.; de Hullu, J.A.; Oonk, M.H.M. Prognostic Factors for Local Recurrence of Squamous Cell Carcinoma of the Vulva: A Systematic Review. Gynecol. Oncol. 2018, 148, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, T.; Mutch, D. Squamous Cell Carcinoma of the Vulva: A Review of Present Management and Future Considerations. Expert Rev. Anticancer Ther. 2019, 19, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Julia, C.J.; Hoang, L.N. A Review of Prognostic Factors in Squamous Cell Carcinoma of the Vulva: Evidence from the Last Decade. Semin. Diagn. Pathol. 2021, 38, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Gadducci, A.; Pistolesi, S.; Cosio, S.; Naccarato, A.G. Is Perineural Invasion a Novel Prognostic Factor Useful to Tailor Adjuvant Treatment in Patients Treated with Primary Surgery for Cervical and Vulvar Carcinoma? Anticancer Res. 2020, 40, 3031–3037. [Google Scholar] [CrossRef]
- Schmitd, L.B.; Scanlon, C.S.; D’Silva, N.J. Perineural Invasion in Head and Neck Cancer. J. Dent. Res. 2018, 97, 742–750. [Google Scholar] [CrossRef]
- Deborde, S.; Omelchenko, T.; Lyubchik, A.; Zhou, Y.; He, S.; McNamara, W.F.; Chernichenko, N.; Lee, S.-Y.; Barajas, F.; Chen, C.-H.; et al. Schwann Cells Induce Cancer Cell Dispersion and Invasion. J. Clin. Investig. 2016, 126, 1538–1554. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Shao, J.; Liu, Z.; Pan, J.; Li, B.; Yang, Y.; He, Y.; Han, Y.; Li, Z. Occurrence and Prognostic Value of Perineural Invasion in Esophageal Squamous Cell Cancer: A Retrospective Study. Ann. Surg. Oncol. 2021, 29, 586–597. [Google Scholar] [CrossRef]
- Chatzistefanou, I.; Lubek, J.; Markou, K.; Ord, R.A. The Role of Perineural Invasion in Treatment Decisions for Oral Cancer Patients: A Review of the Literature. J. Cranio-Maxillofac. Surg. 2017, 45, 821–825. [Google Scholar] [CrossRef]
- Karia, P.S.; Morgan, F.C.; Ruiz, E.S.; Schmults, C.D. Clinical and Incidental Perineural Invasion of Cutaneous Squamous Cell Carcinoma: A Systematic Review and Pooled Analysis of Outcomes Data. JAMA Dermatol. 2017, 153, 781. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, R.; Wang, Y.; Yu, M. Perineural Invasion as a Prognostic Factor in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Acta Otolaryngol. 2019, 139, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.E.; Hoegler, K.M.; Khachemoune, A. Review of Perineural Invasion in Keratinocyte Carcinomas. Am. J. Clin. Dermatol. 2021, 22, 653–666. [Google Scholar] [CrossRef]
- Preti, M.; Borella, F.; Gallio, N.; Bertero, L.; Heller, D.S.; Vieira-Baptista, P.; Cosma, S.; Bevilacqua, F.; Privitera, S.; Micheletti, L.; et al. Superficially Invasive Vulvar Squamous Cell Carcinoma: A 37-Year-Long Experience of a Tertiary Referral Center. Cancers 2021, 13, 3859. [Google Scholar] [CrossRef] [PubMed]
- Liebig, C.; Ayala, G.; Wilks, J.A.; Berger, D.H.; Albo, D. Perineural Invasion in Cancer: A Review of the Literature. Cancer 2009, 115, 3379–3391. [Google Scholar] [CrossRef]
- Baiocchi, G.; Mantoan, H.; de Brot, L.; Badiglian-Filho, L.; Kumagai, L.Y.; Faloppa, C.C.; da Costa, A.A.B.A. How Important Is the Pathological Margin Distance in Vulvar Cancer? Eur. J. Surg. Oncol. 2015, 41, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.K.; Sugiyama, V.; Pham, H.; Gu, M.; Rutgers, J.; Osann, K.; Cheung, M.K.; Berman, M.L.; Disaia, P.J. Margin Distance and Other Clinico-Pathologic Prognostic Factors in Vulvar Carcinoma: A Multivariate Analysis. Gynecol. Oncol. 2007, 104, 636–641. [Google Scholar] [CrossRef]
- Micheletti, L.; Preti, M.; Cintolesi, V.; Corvetto, E.; Privitera, S.; Palmese, E.; Benedetto, C. Prognostic Impact of Reduced Tumor-Free Margin Distance on Long-Term Survival in FIGO Stage IB/II Vulvar Squamous Cell Carcinoma. J. Gynecol. Oncol. 2018, 29, e61. [Google Scholar] [CrossRef] [Green Version]
- Groenen, S.M.A.; Timmers, P.J.; Burger, C.W. Recurrence Rate in Vulvar Carcinoma in Relation to Pathological Margin Distance. Int. J. Gynecol. Cancer 2010, 20, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Oonk, M.H.M.; Planchamp, F.; Baldwin, P.; Bidzinski, M.; Brännström, M.; Landoni, F.; Mahner, S.; Mahantshetty, U.; Mirza, M.; Petersen, C.; et al. European Society of Gynaecological Oncology Guidelines for the Management of Patients with Vulvar Cancer. Int. J. Gynecol. Cancer 2017, 27, 832–837. [Google Scholar] [CrossRef]
- Mazzotta, M.; Pizzuti, L.; Krasniqi, E.; Di Lisa, F.S.; Cappuzzo, F.; Landi, L.; Sergi, D.; Pelle, F.; Cappelli, S.; Botti, C.; et al. Role of Chemotherapy in Vulvar Cancers: Time to Rethink Standard of Care? Cancers 2021, 13, 4061. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN). NCCN Guidelines Vulvar Cancer Version 1. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/vulvar.pdf (accessed on 18 September 2021).
- Morrison, J.; Baldwin, P.; Buckley, L.; Cogswell, L.; Edey, K.; Faruqi, A.; Ganesan, R.; Hall, M.; Hillaby, K.; Reed, N.; et al. British Gynaecological Cancer Society (BGCS) Vulval Cancer Guidelines: Recommendations for Practice. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 252, 502–525. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zheng, Q.; Lu, Z.; Wang, L.; Ding, L.; Xia, L.; Zhang, H.; Wang, M.; Chen, Y.; Li, G. Role of the Nervous System in Cancers: A Review. Cell Death Discov. 2021, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Bakst, R.L.; Glastonbury, C.M.; Parvathaneni, U.; Katabi, N.; Hu, K.S.; Yom, S.S. Perineural Invasion and Perineural Tumor Spread in Head and Neck Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 1109–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.; Shi, S.; Xu, J.; Zhang, B.; Qin, Y.; Ji, S.; Xu, W.; Liu, J.; Liu, L.; Liu, C.; et al. New Insights into Perineural Invasion of Pancreatic Cancer: More than Pain. Biochim. Biophys. Acta BBA Rev. Cancer 2016, 1865, 111–122. [Google Scholar] [CrossRef]
- Deng, J.; You, Q.; Gao, Y.; Yu, Q.; Zhao, P.; Zheng, Y.; Fang, W.; Xu, N.; Teng, L. Prognostic Value of Perineural Invasion in Gastric Cancer: A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e88907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeter, T.; Bogaard, M.; Vlatkovic, L.; Waaler, G.; Servoll, E.; Nesland, J.M.; Axcrona, K.; Axcrona, U. The Relationship between Perineural Invasion, Tumor Grade, Reactive Stroma and Prostate Cancer-Specific Mortality: A Clinicopathologic Study on a Population-Based Cohort: Perineural Invasion, Reactive Stroma, and Prognosis. Prostate 2016, 76, 207–214. [Google Scholar] [CrossRef]
- Cui, L.; Shi, Y.; Zhang, G.N. Perineural Invasion as a Prognostic Factor for Cervical Cancer: A Systematic Review and Meta-Analysis. Arch. Gynecol. Obstet. 2015, 292, 13–19. [Google Scholar] [CrossRef]
- Holthoff, E.R.; Jeffus, S.K.; Gehlot, A.; Stone, R.; Erickson, S.W.; Kelly, T.; Quick, C.M.; Post, S.R. Perineural Invasion Is an Independent Pathologic Indicator of Recurrence in Vulvar Squamous Cell Carcinoma. Am. J. Surg. Pathol. 2015, 39, 1070–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnürch, H.G.; Ackermann, S.; Alt, C.D.; Barinoff, J.; Böing, C.; Dannecker, C.; Gieseking, F.; Günthert, A.; Hantschmann, P.; Horn, L.C.; et al. Diagnosis, Therapy and Follow-up Care of Vulvar Cancer and Its Precursors. Guideline of the DGGG and DKG (S2k-Level, AWMF Registry Number 015/059, November 2015. Geburtshilfe Frauenheilkd 2016, 76, 1035–1049. [Google Scholar] [CrossRef] [Green Version]
- Chi, A.C.; Katabi, N.; Chen, H.-S.; Cheng, Y.-S.L. Interobserver Variation Among Pathologists in Evaluating Perineural Invasion for Oral Squamous Cell Carcinoma. Head Neck Pathol. 2016, 10, 451–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.; Cheng, Y.-S.L.; Katabi, N.; Nguyen, S.A.; Chen, H.-S.; Morgan, P.; Zhang, K.; Chi, A.C. Interobserver Variation in Evaluating Perineural Invasion for Oral Squamous Cell Carcinoma: Phase 2 Survey Study. Head Neck Pathol. 2021, 15, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Yao, D.-S.; Wei, Y.-S.; Wei, C.-H.; Chen, X.-Y. Prognostic Significance of Perineural Invasion in Vulvar Squamous Cell Carcinoma. Cancer Manag. Res. 2019, 11, 4461–4469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, F.; Forte, S.; Ardighieri, L.; Bonetti, E.; Fernando, B.; Sartori, E.; Odicino, F. Multivariate Analysis of Prognostic Factors in Primary Squamous Cell Vulvar Cancer: The Role of Perineural Invasion in Recurrence and Survival. Eur. J. Surg. Oncol. 2019, 45, 2115–2119. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, K.A.; Hoffman, H.T.; Zimmerman, M.B.; Robinson, R.A. Perineural and Vascular Invasion in Oral Cavity Squamous Carcinoma: Increased Incidence on Re-Review of Slides and by Using Immunohistochemical Enhancement. Arch. Pathol. Lab. Med. 2005, 129, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, M.P.; Sood, A.K.; Dos Reis, R.; Ramalingam, P.; Chen, C.; Frumovitz, M.; Jhingran, A.; Pitcher, B.; Ramirez, P.T.; Schmeler, K.M. Perineural Invasion (PNI) in Vulvar Carcinoma: A Review of 421 Cases. Gynecol. Oncol. 2019, 152, 101–105. [Google Scholar] [CrossRef]
- Gadducci, A.; Pistolesi, S.; Cosio, S.; Comunale, C.; Fanucchi, A.; Naccarato, A.G. Perineural Invasion Correlates with Common Pathological Variables and Clinical Outcomes of Patients With Squamous Cell Carcinoma of the Vulva Treated With Primary Radical Surgery and Inguinal-Femoral Lymphadenectomy. Vivo Athens Greece 2021, 35, 1051–1056. [Google Scholar] [CrossRef]
- Rowley, K.C.; Gallion, H.H.; Donaldson, E.S.; van Nagell, J.R.; Higgins, R.V.; Powell, D.E.; Kryscio, R.J.; Pavlik, E.J. Prognostic Factors in Early Vulvar Cancer. Gynecol. Oncol. 1988, 31, 43–49. [Google Scholar] [CrossRef]
- Pour, P.M.; Egami, H.; Takiyama, Y. Patterns of growth and metastases of induced pancreatic cancer in relation to the prognosis and its clinical implications. Gastroenterology 1991, 100, 529–536. [Google Scholar] [CrossRef]
- Eibl, G.; Reber, H.A. A xenograft nude mouse model for perineural invasion and recurrence in pancreatic cancer. Pancreas 2005, 31, 258–262. [Google Scholar] [CrossRef]
- Howlader, N.; Ries, L.A.G.; Mariotto, A.B.; Reichman, M.E.; Ruhl, J.; Cronin, K.A. Improved Estimates of Cancer-Specific Survival Rates from Population-Based Data. J. Natl. Cancer Inst. 2010, 102, 1584–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariotto, A.B.; Noone, A.-M.; Howlader, N.; Cho, H.; Keel, G.E.; Garshell, J.; Woloshin, S.; Schwartz, L.M. Cancer Survival: An Overview of Measures, Uses, and Interpretation. J. Natl. Cancer Inst. Monogr. 2014, 49, 145–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerma, E.; Matias-Guiu, X.; Lee, S.J.; Prat, J. Squamous Cell Carcinoma of the Vulva: Study of Ploidy, HPV, P53, and PRb. Int. J. Gynecol. Pathol. 1999, 18, 191–197. [Google Scholar] [CrossRef]
- Micheletti, L.; Bogliatto, F.; Massobrio, M. Groin Lymphadenectomy with Preservation of Femoral Fascia: Total Inguinofemoral Node Dissection for Treatment of Vulvar Carcinoma. World J. Surg. 2005, 29, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Gil, Z.; Cavel, O.; Kelly, K.; Brader, P.; Rein, A.; Gao, S.P.; Carlson, D.L.; Shah, J.P.; Fong, Y.; Wong, R.J. Paracrine Regulation of Pancreatic Cancer Cell Invasion by Peripheral Nerves. J. Natl. Cancer Inst. 2010, 102, 107–118. [Google Scholar] [CrossRef]
- Demir, I.E.; Boldis, A.; Pfitzinger, P.L.; Teller, S.; Brunner, E.; Klose, N.; Kehl, T.; Maak, M.; Lesina, M.; Laschinger, M.; et al. Investigation of Schwann Cells at Neoplastic Cell Sites Before the Onset of Cancer Invasion. J. Natl. Cancer Inst. 2014, 106, dju184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantovani, G.; Fragomeni, S.M.; Inzani, F.; Fagotti, A.; Della Corte, L.; Gentileschi, S.; Tagliaferri, L.; Zannoni, G.F.; Scambia, G.; Garganese, G. Molecular Pathways in Vulvar Squamous Cell Carcinoma: Implications for Target Therapeutic Strategies. J. Cancer Res. Clin. Oncol. 2020, 146, 1647–1658. [Google Scholar] [CrossRef]
- Woelber, L.; Mathey, S.; Prieske, K.; Kuerti, S.; Hillen, C.; Burandt, E.; Coym, A.; Mueller, V.; Schmalfeldt, B.; Jaeger, A. Targeted Therapeutic Approaches in Vulvar Squamous Cell Cancer (VSCC): Case Series and Review of the Literature. Oncol. Res. 2021, 28, 645–659. [Google Scholar] [CrossRef]
- Borella, F.; Preti, M.; Bertero, L.; Collemi, G.; Castellano, I.; Cassoni, P.; Cosma, S.; Carosso, A.R.; Bevilacqua, F.; Gallio, N.; et al. Is There a Place for Immune Checkpoint Inhibitors in Vulvar Neoplasms? A State of the Art Review. Int. J. Mol. Sci. 2020, 22, 190. [Google Scholar] [CrossRef]
Variable | All Patients N = 223 | PNI-Negative N = 90 | PNI-Positive N = 133 | p-Value | |
---|---|---|---|---|---|
Mean age at diagnosis (range) | 69 ± 11 (27–89) | 70 ± 13 (27–89) | 69 ± 12 (39–86) | 0.68 | |
Age ≤ 70 years | Yes | 106 (47%) | 39 (37%) | 67 (63%) | 0.302 |
No | 117 (53%) | 51 (44%) | 66 (56%) | ||
FIGO stage | I–II | 115 (52%) | 57 (50%) | 58 (50%) | 0.004 |
III | 108 (48%) | 33 (31%) | 75 (69%) | ||
Mean tumor size (mm) (range) | 29 ± 18 (1–130) | 22 ± 14 (1–80) | 32 ± 19 (5–130) | <0.001 | |
Tumor size ≤ 29 mm (mean value) | Yes | 118 (53%) | 61 (52%) | 57 (48%) | <0.001 |
No | 105 (47%) | 29 (28%) | 76 (72%) | ||
Tumor size < 20 mm | Yes | 78 (35%) | 44 (56%) | 34 (44%) | 0.001 |
No | 145 (65%) | 46 (32%) | 99 (68%) | ||
Tumor size < 40 mm | Yes | 163 (73%) | 78 (48%) | 85 (52%) | <0.001 |
No | 60 (27%) | 12 (20%) | 48 (80%) | ||
DOI (mean) | 8 ± 6.5 (2–55) | 6 ± 5 (2–23) | 9 ± 7 (2–55) | 0.001 | |
DOI < 8 mm (mean value) | Yes | 131 (59%) | 65 (50%) | 66 (50%) | 0.001 |
No | 92 (41%) | 25 (27%) | 67 (73%) | ||
Surgical margin (tumor on margin) (missing 22) | Yes | 31 (25%) | 12 (39%) | 19 (61%) | 0.94 |
No | 170 (85%) | 37 (39%) | 103 (61%) | ||
Surgical margin < 3 mm (missing 22) | Yes | 60 (30%) | 24 (40%) | 36 (60%) | 0.89 |
No | 141 (70%) | 55 (39%) | 86 (61%) | ||
Surgical margin < 5 mm (missing 22) | Yes | 93 (46%) | 34 (37%) | 59 (63%) | 0.46 |
No | 108 (54%) | 45 (42%) | 63 (58%) | ||
Unifocal lesion | Yes | 200 (90%) | 83 (41%) | 117 (59%) | 0.30 |
No | 23 (10%) | 7 (30%) | 16 (70%) | ||
Positive lymph nodes | 0–1 | 167 (75%) | 78 (47%) | 89 (53%) | 0.001 |
>1 | 56 (25%) | 12 (21%) | 44 (79%) | ||
Extracapsular spread | Yes | 29 (27%) | 5 (17%) | 24 (83%) | 0.06 |
No | 80 (73%) | 29 (36%) | 51 (64%) | ||
Bilateral groin involvement | Yes | 35 (32%) | 9 (26%) | 26 (74%) | 0.39 |
No | 74 (68%) | 25 (34%) | 49 (66%) | ||
Associated lichen sclerosus | Yes | 126 (57%) | 46 (36%) | 80 (64%) | 0.18 |
No | 97 (43%) | 44 (45%) | 53 (55%) | ||
Associated VIN | No | 165 (75%) | 60 (35%) | 105 (64%) | 0.09 |
V-HSIL | 28 (12%) | 13 (46%) | 15 (54%) | ||
Differentiated | 30 (13%) | 17 (57%) | 13 (43%) | ||
LVI | Yes | 38 (17%) | 9 (23%) | 29 (76%) | 0.02 |
No | 185 (83%) | 81 (44%) | 104 (56%) | ||
Radiotherapy | Yes | 84 (38%) | 28 (33%) | 56 (67%) | 0.09 |
No | 139 (62%) | 62 (45%) | 77 (55%) | ||
Cisplatin | Yes | 17 (8%) | 9 (53%) | 8 (47%) | 0.27 |
No | 206 (92%) | 81 (39%) | 125 (61%) |
Variable | No LRR N = 133 | LRR N = 90 | p-Value | Alive, or Dead from Other Cause N = 172 | Dead from Disease N = 51 | p-Value | |
---|---|---|---|---|---|---|---|
Mean age at diagnosis (standard deviation, range) | 69.5 ± 12.7 (27–89) | 69.2 ± 9.6 (43–86) | 0.88 | 69.5 ± 12.0 (27–89) | 61.5 ± 9.7 (43–86) | 0.86 | |
Age ≤ 70 years | Yes | 62 (58%) | 44 (42%) | 0.74 | 91 (78%) | 26 (22%) | 0.92 |
No | 71 (61%) | 46 (39%) | 81 (76%) | 25 (26%) | |||
FIGO stage | I-II | 70 (61%) | 44 (39%) | 0.51 | 95 (83%) | 19 (17%) | 0.02 |
III | 63 (58%) | 46 (42%) | 77 (71%) | 32 (29%) | |||
Mean tumor size (mm) (standard deviation, range) | 30.4 ± 18.9 (1–130) | 25.9 ± 15.9 (1–80) | 0.07 | 28.2 ± 18.2 (1–130) | 28.2 ± 16.7 (7–80) | 0.54 | |
Tumor size ≤ 29 mm (mean value) | Yes | 64 (54%) | 54 (46%) | 0.08 | 94 (79%) | 24 (21%) | 0.34 |
No | 69 (66%) | 36 (34%) | 78 (73%) | 27 (27%) | |||
Tumor size < 20 mm | Yes | 42 (54%) | 36 (46%) | 0.19 | 63 (81%) | 15 (19%) | 0.34 |
No | 91 (63%) | 54 (37%) | 109 (75%) | 36 (25%) | |||
Tumor size < 40 mm | Yes | 92 (56%) | 71 (44%) | 0.10 | 126 (77%) | 37 (23%) | 0.92 |
No | 41 (68%) | 19 (32%) | 46 (77%) | 14 (23%) | |||
Mean DOI (mm) (standard deviation, range) | 8.4 ± 6.2 (2–40) | 7.3 ± 6.9 (2–55) | 0.23 | 7.8 ± 5.9 (2–40) | 8.8 ± 8.2 (2–55) | 0.34 | |
Depth of invasion < 8 mm (mean value) | Yes | 73 (56%) | 58 (44%) | 0.15 | 105 (80%) | 26 (20%) | 0.20 |
No | 60 (65%) | 32 (35%) | 67 (73%) | 25 (27%) | |||
Surgical margin (tumor on margin) (missing 22) | Yes | 14 (45%) | 17 (55%) | 0.10 | 18 (58%) | 13 (42%) | 0.01 |
No | 103 (61%) | 67 (39%) | 134 (79%) | 36 (21%) | |||
Surgical margin < 3 mm (missing 22) | Yes | 34 (57%) | 26 (43%) | 0.77 | 43 (72%) | 17 (28%) | 0.39 |
No | 83 (59%) | 58 (41%) | 109 (77%) | 32 (23%) | |||
Surgical margin < 5 mm (missing 22) | Yes | 53 (57%) | 40 (43%) | 0.74 | 68 (73%) | 25 (27%) | 0.44 |
No | 64 (59%) | 44 (41%) | 84 (78%) | 24 (22%) | |||
Unifocal lesion | Yes | 118 (59%) | 82 (41%) | 0.56 | 153 (76%) | 47 (24%) | 0.51 |
No | 15 (65%) | 8 (35%) | 19 (83%) | 4 (17%) | |||
Positive lymph nodes | 0–1 | 100 (60%) | 67 (40%) | 0.90 | 135 (81%) | 32 (19%) | 0.02 |
>1 | 33 (59%) | 23 (41%) | 37 (66%) | 19 (34%) | |||
Extracapsular spread | Yes | 20 (69%) | 9 (31%) | 0.15 | 22 (76%) | 7 (24%) | 0.47 |
No | 43 (54%) | 37 (46%) | 55 (69%) | 25 (31%) | |||
Bilateral groin involvement | Yes | 20 (57%) | 15 (43%) | 0.92 | 21 (60%) | 14 (40%) | 0.13 |
No | 43 (58%) | 31 (42%) | 56 (76%) | 18 (24%) | |||
Associated lichen sclerosus | Yes | 71 (56%) | 55 (44%) | 74 (76%) | 23 (24%) | 0.79 | |
No | 62 (64%) | 35 (36%) | 98 (78%) | 28 (22%) | |||
Associated VIN | No | 98 (59%) | 67 (41%) | 0.52 | 125 (76%) | 40 (24%) | 0.51 |
V-HSIL | 19 (68%) | 9 (32%) | 24 (86%) | 4 (14%) | |||
Differentiated | 16 (53%) | 14 (47%) | 23 (77%) | 7 (23%) | |||
LVI | Yes | 23 (64%) | 13 (36%) | 0.60 | 28 (74%) | 10 (26%) | 0.48 |
No | 106 (59%) | 73 (41%) | 144 (78%) | 41 (22%) | |||
PNI | Yes | 75 (56%) | 58 (44%) | 0.22 | 93 (70%) | 40 (30%) | 0.002 |
No | 58 (62%) | 32 (36%) | 79 (88%) | 11 (12%) | |||
Radiotherapy | Yes | 49 (58%) | 35 (42%) | 0.75 | 64 (76%) | 20 (24%) | 0.79 |
No | 84 (60%) | 55 (40%) | 108 (77%) | 31 (23%) | |||
Cisplatin | Yes | 12 (71%) | 5 (29%) | 15 (88%) | 2 (12%) | ||
No | 121 (59%) | 85 (41%) | 157 (76%) | 49 (24%) |
Variable | LRR | CSS | |||||
---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
Age | 1.006 | 0.98—1.02 | 0.50 | 1.008 | 0.98–1.03 | 0.56 | |
Age > 70 | 1.10 | 0.73–1.67 | 0.63 | 1.13 | 0.65–1.94 | 0.67 | |
FIGO Stage III | 1.58 | 1.04–2.46 | 0.03 | 2.55 | 1.45–4.50 | 0.001 | |
Mean tumor size | 0.99 | 0.98–1.005 | 0.20 | 1.007 | 0.99–1.02 | 0.34 | |
Tumor size > 30 mm | 1.28 | 0.84–1.96 | 0.24 | 1.37 | 0.79–2.37 | 0.25 | |
Tumor size ≥ 20 mm | 1.09 | 0.72–1.67 | 0.66 | 1.55 | 0.85–2.83 | 0.15 | |
Tumor size ≥ 40 mm | 1.3 | 0.83–2.30 | 0.20 | 1.16 | 0.63–2.11 | 0.62 | |
DOI | 1.004 | 0.96–1.05 | 0.83 | 1.05 | 1.01–1.10 | 0.009 | |
DOI ≥ 8 mm | 0.94 | 0.61–1.45 | 0.80 | 1.82 | 1.05–3.16 | 0.03 | |
Surgical margin (tumor on margin) | 1.28 | 0.80–2.05 | 0.28 | 1.88 | 1.10–3.55 | 0.04 | |
Surgical margin < 3 mm | 1.27 | 0.83–1.96 | 0.26 | 1.48 | 0.82–2.67 | 0.23 | |
Surgical margin < 5 mm | 1.19 | 0.60–1.88 | 0.29 | 1.41 | 0.80–2.48 | 0.23 | |
Unifocal lesion | 1.21 | 0.58–2.58 | 0.60 | 0.77 | 0.28–2.14 | 0.62 | |
Positive lymph nodes | 1.08 | 0.71–1.65 | 0.70 | 2.84 | 1.59–5.06 | 0.007 | |
Extracapsular spread | 1.28 | 0.61–2.66 | 0.50 | 1.01 | 0.68–2.07 | 0.52 | |
Bilateral groin involvement | 1.27 | 0.67–2.31 | 0.48 | 2.06 | 1.02–4.16 | 0.04 | |
Associated lichen sclerosus | 1.08 | 0.71–1.65 | 0.70 | 1.19 | 0.68–2.07 | 0.52 | |
Associated VIN | No | 1 | |||||
V-HSIL | 0.91 | 0.45–1.82 | 0.78 | 0.99 | 0.46–2.23 | 0.99 | |
Differentiated | 1.2 | 0.67–2.13 | 0.53 | 0.72 | 0.21–2.47 | 0.61 | |
LVI | 1.09 | 0.61–1.92 | 0.77 | 1.17 | 0.58–2.34 | 0.65 | |
PNI | 1.31 | 0.85–2.03 | 0.21 | 2.75 | 1.41–5.36 | 0.003 | |
Radiotherapy | 0.70 | 0.52–1.21 | 0.29 | 1.28 | 0.72–2.25 | 0.39 | |
Cisplatin | 0.97 | 0.46–2.06 | 0.93 | 0.86 | 0.55–1.34 | 0.50 |
Variable | CSS | ||
---|---|---|---|
HR | 95% CI | p-Value | |
FIGO Stage III | 1.84 | 0.90–3.76 | 0.09 |
DOI ≥ 8 mm | 1.25 | 0.46–3.41 | 0.66 |
Surgical margin (positive) | 3.13 | 1.37–7.13 | 0.007 |
Positive lymph nodes | 1.28 | 0.44–3.71 | 0.97 |
Bilateral groin involvement | 1.23 | 0.43–3.55 | 0.70 |
PNI | 2.99 | 1.17–7.63 | 0.02 |
Author | N. of Patients | Setting | Mean Follow-Up | PNI Prevalence | Detection Methods | Survival Outcomes |
---|---|---|---|---|---|---|
Rowley [50] | 22 | Early-stage VSCC (≤2 cm in diameter and <5 mm DOI) | 41 months | 9.1% (9/22) | H/E | Associated with lymph nodal involvement (p < 0.01) |
Lerma [55] | 71 | VSCC (stage I–IV) | 21.4% (15/71) | H/E | Shorter survival (p < 0.05) at univariate analysis | |
Holthoff [41] | 103 (94 primary VSCC, 9 recurrent VSCC) | Invasive VSCC (stage IB–IV) | 28 months (of 49 patients) | 52.4% (54/103) | H/E + S100/AE1/3 | Independent predictor of recurrence at multivariate analysis (OR: 2.613, p = 0.045) |
Long [45] | 105 | Invasive VSCC (stage IB–IV) | 45 months | 28.6% (30/105) | H/E + S100 | Shorter DFS (HR: 2.93, p = 0.018) and OS (HR: 3.04, p = 0.020) at univariate analysis |
Salcedo [48] | 421 | VSCC (stage I–IV) | 67.1 months | 7.6% (32/421) | H/E | Independent prognostic factor for OS (HR 2.71; CI: 95% 1.78–4.13; p < 0.001) and recurrence-free survival (HR 1.64; CI: 95% 1.08–2.48; p = 0.020) at multivariate analysis |
Ferrari [46] | 74 | VSCC (stage I–IV) | 45 months | 31.1% (23/74) | H/E, S100/AE 1/3 in doubtful cases | Independent prognostic factor for earlier recurrence (HR: 2.74; CI 95% 1.10–7.13; p = 0.03) and OS (HR: 4.93; CI 95% 1.33–18.35; p = 0.01) at multivariate analysis |
Gadducci [49] | 64 | VSCC (stage I–III) | 33 months | 25% (16/64) | H/E, S100 in some cases | Prognostic factor for overall recurrence rate (p = 0.014), inguinal and/or distant recurrence rate (p = 0.001), DFS (p = 0.018), and OS (p = 0.031) at univariate analysis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micheletti, L.; Borella, F.; Preti, M.; Frau, V.; Cosma, S.; Privitera, S.; Bertero, L.; Benedetto, C. Perineural Invasion in Vulvar Squamous-Cell Carcinoma Is an Independent Risk Factor for Cancer-Specific Survival, but Not for Locoregional Recurrence: Results from a Single Tertiary Referral Center. Cancers 2022, 14, 124. https://doi.org/10.3390/cancers14010124
Micheletti L, Borella F, Preti M, Frau V, Cosma S, Privitera S, Bertero L, Benedetto C. Perineural Invasion in Vulvar Squamous-Cell Carcinoma Is an Independent Risk Factor for Cancer-Specific Survival, but Not for Locoregional Recurrence: Results from a Single Tertiary Referral Center. Cancers. 2022; 14(1):124. https://doi.org/10.3390/cancers14010124
Chicago/Turabian StyleMicheletti, Leonardo, Fulvio Borella, Mario Preti, Valentina Frau, Stefano Cosma, Sebastiana Privitera, Luca Bertero, and Chiara Benedetto. 2022. "Perineural Invasion in Vulvar Squamous-Cell Carcinoma Is an Independent Risk Factor for Cancer-Specific Survival, but Not for Locoregional Recurrence: Results from a Single Tertiary Referral Center" Cancers 14, no. 1: 124. https://doi.org/10.3390/cancers14010124
APA StyleMicheletti, L., Borella, F., Preti, M., Frau, V., Cosma, S., Privitera, S., Bertero, L., & Benedetto, C. (2022). Perineural Invasion in Vulvar Squamous-Cell Carcinoma Is an Independent Risk Factor for Cancer-Specific Survival, but Not for Locoregional Recurrence: Results from a Single Tertiary Referral Center. Cancers, 14(1), 124. https://doi.org/10.3390/cancers14010124