Role of Texture Analysis in Oropharyngeal Carcinoma: A Systematic Review of the Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Pico Question
2.2. Literature Searches
2.3. Inclusion and Exclusion Criteria
- -
- articles that did not deal with oropharyngeal tumours;
- -
- articles on the oropharynx not concerning cancer pathology;
- -
- articles on oropharyngeal carcinomas that did not mention texture analysis and/or radiomics.
2.4. Study Selection and Data Extraction
3. Results
4. Discussion
4.1. Use of Texture Analysis in the Evaluation of HPV Status
4.2. Use of Texture Analysis in the Diagnosis of Oropharyngeal Cancer
4.3. Use of Radiomics as a Prognostic Evaluation and in the Follow-Up of Oropharyngeal Cancer
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Database | Search String |
---|---|
Pubmed | (((“head neck”[Journal] OR (“head”[All Fields] AND “and”[All Fields] AND “neck”[All Fields]) OR “head and neck”[All Fields]) AND (“carcinoma”[MeSH Terms] OR “carcinoma”[All Fields] OR “carcinomas”[All Fields] OR “carcinoma s”[All Fields])) OR ((“head neck”[Journal] OR (“head”[All Fields] AND “and”[All Fields] AND “neck”[All Fields]) OR “head and neck”[All Fields]) AND “carcinoma”[MeSH Terms]) OR ((“palatine tonsil”[MeSH Terms] OR (“palatine”[All Fields] AND “tonsil”[All Fields]) OR “palatine tonsil”[All Fields] OR “tonsil”[All Fields] OR “tonsils”[All Fields] OR “tonsilitis”[All Fields] OR “tonsillitis”[MeSH Terms] OR “tonsillitis”[All Fields] OR “tonsillitides”[All Fields] OR “tonsills”[All Fields]) AND (“carcinoma”[MeSH Terms] OR “carcinoma”[All Fields] OR “carcinomas”[All Fields] OR “carcinoma s”[All Fields])) OR ((“palatine tonsil”[MeSH Terms] OR (“palatine”[All Fields] AND “tonsil”[All Fields]) OR “palatine tonsil”[All Fields] OR “tonsil”[All Fields] OR “tonsils”[All Fields] OR “tonsilitis”[All Fields] OR “tonsillitis”[MeSH Terms] OR “tonsillitis”[All Fields] OR “tonsillitides”[All Fields] OR “tonsills”[All Fields]) AND “carcinoma”[MeSH Terms]) OR (“oropharyngeal neoplasms”[MeSH Terms] OR (“oropharyngeal”[All Fields] AND “neoplasms”[All Fields]) OR “oropharyngeal neoplasms”[All Fields] OR (“oropharynx”[All Fields] AND “carcinoma”[All Fields]) OR “oropharynx carcinoma”[All Fields]) OR “oropharyngeal neoplasms”[MeSH Terms]) AND (“radiomic”[All Fields] OR “radiomics”[All Fields] OR ((“textural”[All Fields] OR “texturally”[All Fields] OR “texture”[All Fields] OR “texture s”[All Fields] OR “textured”[All Fields] OR “textures”[All Fields] OR “texturing”[All Fields] OR “texturization”[All Fields] OR “texturize”[All Fields] OR “texturized”[All Fields] OR “texturizing”[All Fields]) AND (“analysis”[MeSH Subheading] OR “analysis”[All Fields]))) |
Web of Science | Oral * OR Oropharyn * (All Fields) and Cancer * OR Carcinoma * OR Neoplasm * (All Fields) and Radiomic * OR texture analysis (All Fields) |
Scopus | (TITLE-ABS-KEY (oropharynx OR oral OR oropharyngeal) AND TITLE-ABS-KEY (cancer OR carcinoma OR neoplasm) AND TITLE-ABS-KEY (radiomic * OR “texture analysis”)) |
Appendix B
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- O’Rorke, M.A.; Ellison, M.V.; Murray, L.J.; Moran, M.; James, J.; Anderson, L.A. Human papillomavirus related head and neck cancer survival: A systematic review and meta-analysis. Oral Oncol. 2012, 48, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, G.; Cullen, K.; Bowie, J.; Thorpe, R.; Fakhry, C. Differences in oral sexual behaviors by gender, age, and race explain observed differences in prevalence of oral human papillomavirus infection. PLoS ONE 2014, 9, e86023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farsi, N.J.; Rousseau, M.C.; Schlecht, N.; Castonguay, G.; Allison, P.; Nguyen-Tan, P.F.; Soulieres, D.; Coutlee, F.; Hier, M.; Madathil, S.; et al. Aetiological heterogeneity of head and neck squamous cell carcinomas: The role of human papillomavirus infections, smoking and alcohol. Carcinogenesis 2017, 38, 1188–1195. [Google Scholar] [CrossRef]
- Tanaka, T.I.; Alawi, F. Human Papillomavirus and Oropharyngeal Cancer. Dent. Clin. N. Am. 2018, 62, 111–120. [Google Scholar] [CrossRef]
- Karpathiou, G.; Monaya, A.; Forest, F.; Froudarakis, M.; Casteillo, F.; Marc Dumollard, J.; Prades, J.M.; Peoc’h, M. p16 and p53 expression status in head and neck squamous cell carcinoma: A correlation with histological, histoprognostic and clinical parameters. Pathology 2016, 48, 341–348. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Engels, E.A.; Anderson, W.F.; Gillison, M.L. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J. Clin. Oncol. 2008, 26, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of Human Papillomavirus-Positive Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2015, 33, 3235–3242. [Google Scholar] [CrossRef] [Green Version]
- Augustin, J.G.; Lepine, C.; Morini, A.; Brunet, A.; Veyer, D.; Brochard, C.; Mirghani, H.; Pere, H.; Badoual, C. HPV Detection in Head and Neck Squamous Cell Carcinomas: What Is the Issue? Front. Oncol. 2020, 10, 1751. [Google Scholar] [CrossRef]
- Cantrell, S.C.; Peck, B.W.; Li, G.; Wei, Q.; Sturgis, E.M.; Ginsberg, L.E. Differences in imaging characteristics of HPV-positive and HPV-Negative oropharyngeal cancers: A blinded matched-pair analysis. AJNR Am. J. Neuroradiol. 2013, 34, 2005–2009. [Google Scholar] [CrossRef]
- Cancer Genome Atlas, N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, C.H.; Gillison, M.L. Human papillomavirus in head and neck cancer: Its role in pathogenesis and clinical implications. Clin. Cancer Res. 2009, 15, 6758–6762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.H.; Yeh, C.H.; Cheng, N.M.; Lin, C.Y.; Wang, H.M.; Ko, S.F.; Toh, C.H.; Yen, T.C.; Liao, C.T.; Ng, S.H. Cystic nodal metastasis in patients with oropharyngeal squamous cell carcinoma receiving chemoradiotherapy: Relationship with human papillomavirus status and failure patterns. PLoS ONE 2017, 12, e0180779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirsch, C.F.E.; Schmalfuss, I.M. Practical Tips for MR Imaging of Perineural Tumor Spread. Magn. Reson. Imaging Clin. N. Am. 2018, 26, 85–100. [Google Scholar] [CrossRef]
- Maraghelli, D.; Pietragalla, M.; Calistri, L.; Barbato, L.; Locatello, L.G.; Orlandi, M.; Landini, N.; Lo Casto, A.; Nardi, C. Techniques, Tricks, and Stratagems of Oral Cavity Computed Tomography and Magnetic Resonance Imaging. Appl. Sci. 2022, 12, 1473. [Google Scholar] [CrossRef]
- Petralia, G.; Summers, P.E.; Agostini, A.; Ambrosini, R.; Cianci, R.; Cristel, G.; Calistri, L.; Colagrande, S. Dynamic contrast-enhanced MRI in oncology: How we do it. Radiol. Med. 2020, 125, 1288–1300. [Google Scholar] [CrossRef]
- Iacobellis, F.; Di Serafino, M.; Brillantino, A.; Mottola, A.; Del Giudice, S.; Stavolo, C.; Festa, P.; Patlas, M.N.; Scaglione, M.; Romano, L. Role of MRI in early follow-up of patients with solid organ injuries: How and why we do it? Radiol. Med. 2021, 126, 1328–1334. [Google Scholar] [CrossRef]
- Qin, H.; Que, Q.; Lin, P.; Li, X.; Wang, X.R.; He, Y.; Chen, J.Q.; Yang, H. Magnetic resonance imaging (MRI) radiomics of papillary thyroid cancer (PTC): A comparison of predictive performance of multiple classifiers modeling to identify cervical lymph node metastases before surgery. Radiol. Med. 2021, 126, 1312–1327. [Google Scholar] [CrossRef]
- Mungai, F.; Verrone, G.B.; Pietragalla, M.; Berti, V.; Addeo, G.; Desideri, I.; Bonasera, L.; Miele, V. CT assessment of tumor heterogeneity and the potential for the prediction of human papillomavirus status in oropharyngeal squamous cell carcinoma. Radiol. Med. 2019, 124, 804–811. [Google Scholar] [CrossRef]
- Giannitto, C.; Esposito, A.A.; Spriano, G.; De Virgilio, A.; Avola, E.; Beltramini, G.; Carrafiello, G.; Casiraghi, E.; Coppola, A.; Cristofaro, V.; et al. An approach to evaluate the quality of radiological reports in Head and Neck cancer loco-regional staging: Experience of two Academic Hospitals. Radiol. Med. 2022, 127, 407–413. [Google Scholar] [CrossRef]
- Nardi, C.; Tomei, M.; Pietragalla, M.; Calistri, L.; Landini, N.; Bonomo, P.; Mannelli, G.; Mungai, F.; Bonasera, L.; Colagrande, S. Texture analysis in the characterization of parotid salivary gland lesions: A study on MR diffusion weighted imaging. Eur. J. Radiol. 2021, 136, 109529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kang, L.; Li, G.; Zhang, X.; Ren, J.; Shi, Z.; Li, J.; Yu, S. Computed tomography-based radiomics model for discriminating the risk stratification of gastrointestinal stromal tumors. Radiol. Med. 2020, 125, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Kirienko, M.; Ninatti, G.; Cozzi, L.; Voulaz, E.; Gennaro, N.; Barajon, I.; Ricci, F.; Carlo-Stella, C.; Zucali, P.; Sollini, M.; et al. Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas. Radiol. Med. 2020, 125, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Santone, A.; Brunese, M.C.; Donnarumma, F.; Guerriero, P.; Mercaldo, F.; Reginelli, A.; Miele, V.; Giovagnoni, A.; Brunese, L. Radiomic features for prostate cancer grade detection through formal verification. Radiol. Med. 2021, 126, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Karmazanovsky, G.; Gruzdev, I.; Tikhonova, V.; Kondratyev, E.; Revishvili, A. Computed tomography-based radiomics approach in pancreatic tumors characterization. Radiol. Med. 2021, 126, 1388–1395. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; Grassi, R.; Boldrini, L.; Vacca, G.; D’Ippolito, E.; Annunziata, S.; Farchione, A.; Belfiore, M.P.; Desideri, I.; et al. Delta radiomics: A systematic review. Radiol. Med. 2021, 126, 1571–1583. [Google Scholar] [CrossRef]
- Palatresi, D.; Fedeli, F.; Danti, G.; Pasqualini, E.; Castiglione, F.; Messerini, L.; Massi, D.; Bettarini, S.; Tortoli, P.; Busoni, S.; et al. Correlation of CT radiomic features for GISTs with pathological classification and molecular subtypes: Preliminary and monocentric experience. Radiol. Med. 2022, 127, 117–128. [Google Scholar] [CrossRef]
- Granata, V.; Fusco, R.; De Muzio, F.; Cutolo, C.; Setola, S.V.; Grassi, R.; Grassi, F.; Ottaiano, A.; Nasti, G.; Tatangelo, F.; et al. Radiomics textural features by MR imaging to assess clinical outcomes following liver resection in colorectal liver metastases. Radiol. Med. 2022. [Google Scholar] [CrossRef]
- Lubner, M.G.; Smith, A.D.; Sandrasegaran, K.; Sahani, D.V.; Pickhardt, P.J. CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 2017, 37, 1483–1503. [Google Scholar] [CrossRef]
- Scapicchio, C.; Gabelloni, M.; Barucci, A.; Cioni, D.; Saba, L.; Neri, E. A deep look into radiomics. Radiol. Med. 2021, 126, 1296–1311. [Google Scholar] [CrossRef]
- Coppola, F.; Faggioni, L.; Regge, D.; Giovagnoni, A.; Golfieri, R.; Bibbolino, C.; Miele, V.; Neri, E.; Grassi, R. Artificial intelligence: Radiologists’ expectations and opinions gleaned from a nationwide online survey. Radiol. Med. 2021, 126, 63–71. [Google Scholar] [CrossRef]
- Benedetti, G.; Mori, M.; Panzeri, M.M.; Barbera, M.; Palumbo, D.; Sini, C.; Muffatti, F.; Andreasi, V.; Steidler, S.; Doglioni, C.; et al. CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors. Radiol. Med. 2021, 126, 745–760. [Google Scholar] [CrossRef] [PubMed]
- Satake, H.; Ishigaki, S.; Ito, R.; Naganawa, S. Radiomics in breast MRI: Current progress toward clinical application in the era of artificial intelligence. Radiol. Med. 2022, 127, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Autorino, R.; Gui, B.; Panza, G.; Boldrini, L.; Cusumano, D.; Russo, L.; Nardangeli, A.; Persiani, S.; Campitelli, M.; Ferrandina, G.; et al. Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy. Radiol. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Davnall, F.; Yip, C.S.; Ljungqvist, G.; Selmi, M.; Ng, F.; Sanghera, B.; Ganeshan, B.; Miles, K.A.; Cook, G.J.; Goh, V. Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 2012, 3, 573–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, J.P.; Rose, C.J.; Waterton, J.C.; Carano, R.A.; Parker, G.J.; Jackson, A. Imaging intratumor heterogeneity: Role in therapy response, resistance, and clinical outcome. Clin. Cancer Res. 2015, 21, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Grassi, R.; Miele, V.; Giovagnoni, A. Artificial intelligence: A challenge for third millennium radiologist. Radiol. Med. 2019, 124, 241–242. [Google Scholar] [CrossRef] [Green Version]
- Neri, E.; Coppola, F.; Miele, V.; Bibbolino, C.; Grassi, R. Artificial intelligence: Who is responsible for the diagnosis? Radiol. Med. 2020, 125, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Linares-Espinos, E.; Hernandez, V.; Dominguez-Escrig, J.L.; Fernandez-Pello, S.; Hevia, V.; Mayor, J.; Padilla-Fernandez, B.; Ribal, M.J. Methodology of a systematic review. Actas Urol. Esp. 2018, 42, 499–506. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 187–359. [Google Scholar]
- Buch, K.; Fujita, A.; Li, B.; Kawashima, Y.; Qureshi, M.M.; Sakai, O. Using Texture Analysis to Determine Human Papillomavirus Status of Oropharyngeal Squamous Cell Carcinomas on CT. AJNR Am. J. Neuroradiol. 2015, 36, 1343–1348. [Google Scholar] [CrossRef] [Green Version]
- Fujita, A.; Buch, K.; Li, B.; Kawashima, Y.; Qureshi, M.M.; Sakai, O. Difference Between HPV-Positive and HPV-Negative Non-Oropharyngeal Head and Neck Cancer: Texture Analysis Features on CT. J. Comput. Assist. Tomogr. 2016, 40, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, S.; Ning, S.; Zwart, C.M.; Wood, C.P.; Weindling, S.M.; Wu, T.; Mitchell, J.R.; Li, J.; Hoxworth, J.M. Computed Tomography-Based Texture Analysis to Determine Human Papillomavirus Status of Oropharyngeal Squamous Cell Carcinoma. J. Comput. Assist. Tomogr. 2018, 42, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Zhang, Y.; Yu, Y.; Huang, C.; Liu, R.; Li, T.; Yang, L.; Morris, J.S.; Baladandayuthapani, V.; Zhu, H. Radiomic analysis in prediction of Human Papilloma Virus status. Clin. Transl. Radiat. Oncol. 2017, 7, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, B.; Huang, J.; Yang, Y.; Jin, W.; Johnson, P.; Wang, L.; Yang, F. Radiomics Predicts for Distant Metastasis in Locally Advanced Human Papillomavirus-Positive Oropharyngeal Squamous Cell Carcinoma. Cancers 2021, 13, 5689. [Google Scholar] [CrossRef]
- Song, B.; Yang, K.; Garneau, J.; Lu, C.; Li, L.; Lee, J.; Stock, S.; Braman, N.M.; Koyuncu, C.F.; Toro, P.; et al. Radiomic Features Associated With HPV Status on Pretreatment Computed Tomography in Oropharyngeal Squamous Cell Carcinoma Inform Clinical Prognosis. Front. Oncol. 2021, 11, 744250. [Google Scholar] [CrossRef]
- Miller, T.A.; Robinson, K.R.; Li, H.; Seiwert, T.Y.; Haraf, D.J.; Lan, L.; Giger, M.L.; Ginat, D.T. Prognostic value of pre-treatment CT texture analysis in combination with change in size of the primary tumor in response to induction chemotherapy for HPV-positive oropharyngeal squamous cell carcinoma. Quant. Imaging Med. Surg. 2019, 9, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Kuno, H.; Qureshi, M.M.; Chapman, M.N.; Li, B.; Andreu-Arasa, V.C.; Onoue, K.; Truong, M.T.; Sakai, O. CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy. AJNR Am. J. Neuroradiol. 2017, 38, 2334–2340. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.Y.; Lee, J.Y.; Lee, Y.J.; Park, D.W.; Tae, K.; Choi, Y.Y. CT texture analysis of tonsil cancer: Discrimination from normal palatine tonsils. PLoS ONE 2021, 16, e0255835. [Google Scholar] [CrossRef]
- Haider, S.P.; Mahajan, A.; Zeevi, T.; Baumeister, P.; Reichel, C.; Sharaf, K.; Forghani, R.; Kucukkaya, A.S.; Kann, B.H.; Judson, B.L.; et al. PET/CT radiomics signature of human papilloma virus association in oropharyngeal squamous cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2978–2991. [Google Scholar] [CrossRef]
- Haider, S.P.; Zeevi, T.; Baumeister, P.; Reichel, C.; Sharaf, K.; Forghani, R.; Kann, B.H.; Judson, B.L.; Prasad, M.L.; Burtness, B.; et al. Potential Added Value of PET/CT Radiomics for Survival Prognostication beyond AJCC 8th Edition Staging in Oropharyngeal Squamous Cell Carcinoma. Cancers 2020, 12, 1778. [Google Scholar] [CrossRef]
- Choi, Y.; Nam, Y.; Jang, J.; Shin, N.Y.; Ahn, K.J.; Kim, B.S.; Lee, Y.S.; Kim, M.S. Prediction of Human Papillomavirus Status and Overall Survival in Patients with Untreated Oropharyngeal Squamous Cell Carcinoma: Development and Validation of CT-Based Radiomics. AJNR Am. J. Neuroradiol. 2020, 41, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Choi, Y.S.; Sohn, B.; Ahn, S.S.; Lee, S.K.; Yang, J.; Kim, J. Squamous Cell Carcinoma and Lymphoma of the Oropharynx: Differentiation Using a Radiomics Approach. Yonsei Med. J. 2020, 61, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Bae, Y.J.; Choi, B.S.; Jung, Y.H.; Jeong, W.J.; Kim, H.; Sunwoo, L.; Jung, C.; Kim, J.H. Texture Analysis of Multi-Shot Echo-planar Diffusion-Weighted Imaging in Head and Neck Squamous Cell Carcinoma: The Diagnostic Value for Nodal Metastasis. J. Clin. Med. 2019, 8, 1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Ha, E.J.; Roh, J.; Lee, S.J.; Jang, J.Y. Technical feasibility of radiomics signature analyses for improving detection of occult tonsillar cancer. Sci. Rep. 2021, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Bogowicz, M.; Riesterer, O.; Ikenberg, K.; Stieb, S.; Moch, H.; Studer, G.; Guckenberger, M.; Tanadini-Lang, S. Computed Tomography Radiomics Predicts HPV Status and Local Tumor Control After Definitive Radiochemotherapy in Head and Neck Squamous Cell Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Leijenaar, R.T.; Bogowicz, M.; Jochems, A.; Hoebers, F.J.; Wesseling, F.W.; Huang, S.H.; Chan, B.; Waldron, J.N.; O’Sullivan, B.; Rietveld, D.; et al. Development and validation of a radiomic signature to predict HPV (p16) status from standard CT imaging: A multicenter study. Br. J. Radiol. 2018, 91, 20170498. [Google Scholar] [CrossRef]
- Bos, P.; van den Brekel, M.W.M.; Gouw, Z.A.R.; Al-Mamgani, A.; Waktola, S.; Aerts, H.; Beets-Tan, R.G.H.; Castelijns, J.A.; Jasperse, B. Clinical variables and magnetic resonance imaging-based radiomics predict human papillomavirus status of oropharyngeal cancer. Head Neck 2021, 43, 485–495. [Google Scholar] [CrossRef]
- Mes, S.W.; van Velden, F.H.P.; Peltenburg, B.; Peeters, C.F.W.; Te Beest, D.E.; van de Wiel, M.A.; Mekke, J.; Mulder, D.C.; Martens, R.M.; Castelijns, J.A.; et al. Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures. Eur. Radiol. 2020, 30, 6311–6321. [Google Scholar] [CrossRef]
- Cozzi, L.; Franzese, C.; Fogliata, A.; Franceschini, D.; Navarria, P.; Tomatis, S.; Scorsetti, M. Predicting survival and local control after radiochemotherapy in locally advanced head and neck cancer by means of computed tomography based radiomics. Strahlenther Onkol 2019, 195, 805–818. [Google Scholar] [CrossRef]
- Dang, M.; Lysack, J.T.; Wu, T.; Matthews, T.W.; Chandarana, S.P.; Brockton, N.T.; Bose, P.; Bansal, G.; Cheng, H.; Mitchell, J.R.; et al. MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. AJNR Am. J. Neuroradiol. 2015, 36, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Tomita, H.; Yamashiro, T.; Heianna, J.; Nakasone, T.; Kimura, Y.; Mimura, H.; Murayama, S. Nodal-based radiomics analysis for identifying cervical lymph node metastasis at levels I and II in patients with oral squamous cell carcinoma using contrast-enhanced computed tomography. Eur. Radiol. 2021, 31, 7440–7449. [Google Scholar] [CrossRef]
- Mitamura, K.; Norikane, T.; Yamamoto, Y.; Ihara-Nishishita, A.; Kobata, T.; Fujimoto, K.; Takami, Y.; Kudomi, N.; Hoshikawa, H.; Nishiyama, Y. Texture Indices of 18F-FDG PET/CT for Differentiating Squamous Cell Carcinoma and Non-Hodgkin’s Lymphoma of the Oropharynx. Acta Med. Okayama 2021, 75, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.M.; Fang, Y.H.; Chang, J.T.; Huang, C.G.; Tsan, D.L.; Ng, S.H.; Wang, H.M.; Lin, C.Y.; Liao, C.T.; Yen, T.C. Textural features of pretreatment 18F-FDG PET/CT images: Prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J. Nucl. Med. 2013, 54, 1703–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, N.M.; Fang, Y.H.; Lee, L.Y.; Chang, J.T.; Tsan, D.L.; Ng, S.H.; Wang, H.M.; Liao, C.T.; Yang, L.Y.; Hsu, C.H.; et al. Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Fung, N.; Faraji, F.; Kang, H.; Fakhry, C. The role of human papillomavirus on the prognosis and treatment of oropharyngeal carcinoma. Cancer Metastasis Rev. 2017, 36, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Dahlstrom, K.R.; Calzada, G.; Hanby, J.D.; Garden, A.S.; Glisson, B.S.; Li, G.; Roberts, D.B.; Weber, R.S.; Sturgis, E.M. An evolution in demographics, treatment, and outcomes of oropharyngeal cancer at a major cancer center: A staging system in need of repair. Cancer 2013, 119, 81–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddalo, M.; Buglione, M.; Pasinetti, N.; Triggiani, L.; Pegurri, L.; Magli, A.; Magrini, S.M.; Murphy, B.A. A pilot study on the Vanderbilt head and neck symptom survey Italian version (VHNSS-IT) to test its feasibility and utility in routine clinical practice. Radiol. Med. 2020, 125, 423–431. [Google Scholar] [CrossRef]
- Maddalo, M.; Buglione, M.; Pasinetti, N.; Triggiani, L.; Costa, L.; Magrini, S.M.; Murphy, B.A. The linguistic validation process of the Vanderbilt Head and Neck Symptom Survey—Italian Version (VHNSS-IT). Radiol. Med. 2020, 125, 228–235. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Yasui, T.; Morii, E.; Yamamoto, Y.; Yoshii, T.; Takenaka, Y.; Nakahara, S.; Todo, T.; Inohara, H. Human papillomavirus and cystic node metastasis in oropharyngeal cancer and cancer of unknown primary origin. PLoS ONE 2014, 9, e95364. [Google Scholar] [CrossRef]
- Assadsangabi, R.; Babaei, R.; Songco, C.; Ivanovic, V.; Bobinski, M.; Chen, Y.J.; Nabavizadeh, S.A. Multimodality oncologic evaluation of superficial neck and facial lymph nodes. Radiol. Med. 2021, 126, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, D.; Begum, S.; Westra, W.H.; Khan, Z.; Sciubba, J.; Pai, S.I.; Califano, J.A.; Tufano, R.P.; Koch, W.M. Cystic lymph node metastasis in patients with head and neck cancer: An HPV-associated phenomenon. Head Neck 2008, 30, 898–903. [Google Scholar] [CrossRef] [PubMed]
- Trotta, B.M.; Pease, C.S.; Rasamny, J.J.; Raghavan, P.; Mukherjee, S. Oral cavity and oropharyngeal squamous cell cancer: Key imaging findings for staging and treatment planning. Radiographics 2011, 31, 339–354. [Google Scholar] [CrossRef]
- Park, M.; Kim, J.; Choi, Y.S.; Lee, S.K.; Koh, Y.W.; Kim, S.H.; Choi, E.C. Application of Dynamic Contrast-Enhanced MRI Parameters for Differentiating Squamous Cell Carcinoma and Malignant Lymphoma of the Oropharynx. AJR Am. J. Roentgenol. 2016, 206, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Mungai, F.; Verrone, G.B.; Bonasera, L.; Bicci, E.; Pietragalla, M.; Nardi, C.; Berti, V.; Mazzoni, L.N.; Miele, V. Imaging biomarkers in the diagnosis of salivary gland tumors: The value of lesion/parenchyma ratio of perfusion-MR pharmacokinetic parameters. Radiol. Med. 2021, 126, 1345–1355. [Google Scholar] [CrossRef]
- Pietragalla, M.; Nardi, C.; Bonasera, L.; Mungai, F.; Taverna, C.; Novelli, L.; De Renzis, A.G.D.; Calistri, L.; Tomei, M.; Occhipinti, M.; et al. The role of diffusion-weighted and dynamic contrast enhancement perfusion-weighted imaging in the evaluation of salivary glands neoplasms. Radiol. Med. 2020, 125, 851–863. [Google Scholar] [CrossRef]
- Lian, S.; Zhang, C.; Chi, J.; Huang, Y.; Shi, F.; Xie, C. Differentiation between nasopharyngeal carcinoma and lymphoma at the primary site using whole-tumor histogram analysis of apparent diffusion coefficient maps. Radiol. Med. 2020, 125, 647–653. [Google Scholar] [CrossRef]
- Ng, S.H.; Yen, T.C.; Liao, C.T.; Chang, J.T.; Chan, S.C.; Ko, S.F.; Wang, H.M.; Wong, H.F. 18F-FDG PET and CT/MRI in oral cavity squamous cell carcinoma: A prospective study of 124 patients with histologic correlation. J. Nucl. Med. 2005, 46, 1136–1143. [Google Scholar]
- D’Amico, A. Review of clinical practice utility of positron emission tomography with 18F-fluorodeoxyglucose in assessing tumour response to therapy. Radiol. Med. 2015, 120, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Jensen, D.H.; Hedback, N.; Specht, L.; Hogdall, E.; Andersen, E.; Therkildsen, M.H.; Friis-Hansen, L.; Norrild, B.; von Buchwald, C. Human papillomavirus in head and neck squamous cell carcinoma of unknown primary is a common event and a strong predictor of survival. PLoS ONE 2014, 9, e110456. [Google Scholar] [CrossRef]
- De Felice, F.; Musio, D.; Tombolini, V. Weekly hypofractionated radiation therapy in elderly non-resectable cutaneous squamous cell carcinoma of the head and neck region. Radiol. Med. 2021, 126, 620–622. [Google Scholar] [CrossRef] [PubMed]
- De Felice, F.; D’Angelo, E.; Ingargiola, R.; Iacovelli, N.A.; Alterio, D.; Franco, P.; Bonomo, P.; Merlotti, A.; Bacigalupo, A.; Maddalo, M.; et al. A snapshot on radiotherapy for head and neck cancer patients during the COVID-19 pandemic: A survey of the Italian Association of Radiotherapy and Clinical Oncology (AIRO) head and neck working group. Radiol. Med. 2021, 126, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Merlotti, A.; Bruni, A.; Borghetti, P.; Ramella, S.; Scotti, V.; Trovo, M.; Chiari, R.; Lohr, F.; Ricardi, U.; Bria, E.; et al. Sequential chemo-hypofractionated RT versus concurrent standard CRT for locally advanced NSCLC: GRADE recommendation by the Italian Association of Radiotherapy and Clinical Oncology (AIRO). Radiol. Med. 2021, 126, 1117–1128. [Google Scholar] [CrossRef]
- M. D. Anderson Cancer Center Head; Neck Quantitative Imaging Working Group. Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients. Sci. Rep. 2018, 8, 1524. [Google Scholar] [CrossRef] [PubMed]
- Min Park, Y.; Yol Lim, J.; Woo Koh, Y.; Kim, S.H.; Chang Choi, E. Prediction of treatment outcome using MRI radiomics and machine learning in oropharyngeal cancer patients after surgical treatment. Oral Oncol. 2021, 122, 105559. [Google Scholar] [CrossRef] [PubMed]
Indexing Terms | Publications (N) |
---|---|
Pubmed | |
#01 Head and neck carcinoma | 60,209 |
#02 Head and neck carcinoma [MeSH terms] | 44,169 |
#03 Oropharynx carcinoma | 14,310 |
#04 Oropharynx carcinoma [MeSH terms] | 9420 |
#05 Tonsil carcinoma | 1716 |
#06 Tonsil carcinoma [MeSH terms] | 1171 |
#07 Radiomics | 5415 |
#08 Texture analysis | 19,649 |
#09= #01 OR #02 OR #03 OR #04 OR #05 OR #06 | 68,885 |
#10= #07 OR #08 | 24,155 |
#11= #09 AND #10 | 228 |
Web of Science | |
#01 Oral * | 959,363 |
#02 Oropharyn * | 30,346 |
#03= #01 OR #02 | 979,026 |
#04 Cancer * | 3,463,149 |
#05 Carcinoma * | 959,434 |
#06 Neoplasm * | 211,729 |
#07= #04 OR #05 OR #06 | 3,849,511 |
#08 radiomic * | 7657 |
#09 Texture analysis | 79,538 |
#10= #08 OR #09 | 85,527 |
#11= #03 AND #07 AND #10 | 241 |
Scopus | |
#01 Oropharynx | 28,764 |
#02 Oral | 1,263,096 |
#03 Oropharyngeal | 25,707 |
#04= #01 OR #02 OR #03 | 1,292,826 |
#05 Cancer | 3,486,977 |
#06 Carcinoma | 1,251,963 |
#07 Neoplasm | 1,073,234 |
#08= #05 OR #06 OR #07 | 4,127,810 |
#09 Radiomic * | 6629 |
#10 “Texture Analysis” | 14,579 |
#11= #09 OR #10 | 20,693 |
#12= #04 AND #08 AND #11 | 132 |
Study | Sample Size | HNSCC Type | Histologic Type | Imaging Technique | Scans | Therapy |
---|---|---|---|---|---|---|
Kim T-Y et al., 2021 [49] | 64 | OPSCC | SCC of the Palatine tonsil | F-FDGPET/CECT | \ | \ |
Buch K et al., 2015 [41] | 40 | OPSCC | HPV+ SCC | CECT | \ | \ |
Fujita A et al., 2015 [42] | 46 | OPSCC | HPV+ SCC | CECT | \ | \ |
Bogowicz M et al., 2017 [56] | 93 | HNSCC | HPV+ SCC | CECT | \ | RTCT |
Ranjbar S et al. [43] | 107 | OPSCC | HPV+ SCC | CECT | \ | \ |
Leijenaar RTH et al., 2018 [57] | 778 | OPSCC | HPV+ SCC | CECT | \ | RTCT |
Yu K et al., 2017 [44] | 315 | OPSCC | HPV+ SCC | CECT | \ | \ |
Choi Y et al., 2020 [52] | 86 | OPSCC | SCC | CECT | \ | Untreated |
Mungai F et al., 2019 [19] | 50 | OPSCC | HPV+ SCC | CECT | \ | RT |
Dang M et al., 2015 [61] | 16 | OPSCC | HPV+ SCC | MRI | Axial fast spin-echo T2-weighted imaging with fat saturation, axial fast spin-echo T1W1 with gadolinium, axial diffusion-weighted imaging | \ |
Bos P et al., 2021 [58] | 153 | OPSCC | HPV+ SCC | MRI | T1 weighted post contrast; post contrast 3dT1W | \ |
Bae S et al., 2020 [53] | 87 | OPSCC | HNSCC and lymphoma | MRI | Contrast-enhanced T1 and T2 | \ |
Park J-H et al., 2019 [54] | 36 | HNSCC | Nodal metastases of SCC | MRI | ADC data of msEPI-DWI | \ |
Tomita H et al., 2021 [62] | 23 | OPSCC | Nodal metastases of SCC | CECT | \ | \ |
Lee J-H et al., 2021 [55] | 39 | OPSCC | SCC of the Palatine tonsil | MRI | T1, T2, Contrast-enhanced T1, ADC | \ |
Rich B et al., 2021 [45] | 225 | OPSCC | Locally advanced HPV+ SCC | FBCT | \ | Curative intentive RT or CT |
Song B et al., 2021 [46] | 582 | OPSCC | HPV+ SCC | CECT | \ | RT |
Miller et al., 2019 [47] | 38 | OPSCC | HPV+ SCC | CT | \ | Induction CT |
Mes et al., 2020 [59] | 323 | HNSCC | SCC | MRI | T1 for feature extraction, STIR for segmentation | \ |
Kuno H et al., 2017 [48] | 62 | HNSCC | SCC | F-FDGPET/CECT | \ | CT |
Cozzi L et al., 2019 [60] | 110 | HNSCC | SCC | CECT | \ | RT |
Cheng N. M. et al., 2013 [64] | 70 | OPSCC | SCC HPV+ | F-FDGPET/CECT | \ | CTRT |
Cheng N. M. et al., 2015 [65] | 88 | OPSCC | SCC | F-FDGPET/CECT | \ | \ |
Haider S. P. et al., 2020 [50] | 435 primary lesions 741 lymph nodes | OPSCC | SCC | F-FDGPET + non contrast CT | \ | \ |
Haider S. P. et al., 2020 [51] | 311 | OPSCC | SCC | F-FDGPET/CECT | \ | \ |
Mitamura K. et al., 2021 [63] | 27 SCC 25 NHL | OPSCC NHL | SCC + NHL | F-FDGPET/CECT | \ | \ |
Study | Segmentation | Relevant Texture Information | Software or Analysis Type | Free Software |
---|---|---|---|---|
Kim T-Y et al., 2021 [49] | ROI CT, VOI PET | Tumor side showed lower mean value for SSF 2-6, higher SD and entropy, lower skewness with SSF 0-4, higher kurtosis. | TexRAD and MIM software (software version unavailable) | No |
Buch K et al., 2015 [41] | ROI CT | Histogram feature and histogram feature entropy show significant difference between HPV+ and − tumors. | In-house-developed using Mathlab (software version unavailable) | \ |
Fujita A et al., 2015 [42] | ROI CT | Mean, median, entropy, geometric mean, IQR; contrast, correlation, energy; LRHGE, skewness, kurtosis; L2, L5, L6, L7, L8 showed significant differences between HPV+ and – tumors. | In-house-developed (software version unavailable) | \ |
Bogowicz M et al., 2017 [56] | GTV defined for RT | A radiomic signature that correlate significantly with an increased local control was identified, while a more heterogeneous ct density distribution correlates with less local control. | In-house-developed (software version unavailable) | \ |
Ranjbar S et al., [43] | ROI CT | Histogram mean and entropy and GLCM entropy significantly differentiate between HPV+ and HPV− tumors. | OsiriX 6.5 | No |
Leijenaar RTH et al., 2018 [57] | GTV defined for RT | Radiomic analysis of images could help infer the molecular information of OPSCC | In-house-developed using Matlab 2014 | \ |
Yu K et al., 2017 [44] | ROI CT | MeanBreadth and SphericalDisproportion correlate with HPV positivity in OPSCC | IBEX (software version unavailable) | Yes |
Choi Y et al., 2020 [52] | Semiautomated ROI definition | Identification of a radiomic signature that correlates with HPV positivity; radiomics score and T staging associated with survival rate and prognosis | Syngo.via frontier software (software version unavailable) | No |
Mungai F et al., 2019 [19] | VOI CT | Mean value; second order GLRLM (LRE, LRLGE, LRHGE, GLNUr, SRHGE); LZE, LZLGE, LZHGE, GLNUz, NGLDM PARAMETERS show variably significant correlation with HPV positivity in OPSCC. | LIFEx 3.40 | Yes |
Dang M et al., 2015 [61] | ROI MRI | Average value of local spectrum, SD of local spectrum, maximum value of local spectrum correlate significantly with p53 status of tumor. | OsiriX+ FTFT-2D tool (software version unavailable) | No |
Bos P et al., 2021 [58] | ROI | Clinical evaluation and radiomic study correlate significantly with HPV positivity. | PyRadiomics 2.2.0 | Yes |
Bae S et al. 2020 [53] | Semiautomated ROI definition | There were 19 radiomics features selected as valuable for the distinction between HNSCC and lymphoma. | R software 3.5.1 | Yes |
Park J-H et al., 2019 [54] | ROI MRI | Complexity, energy and roundness features help discern reactive nodes from metastases in HNSCC. | IBEX (software version unavailable) | Yes |
Tomita H et al., 2021 [62] | ROI CT | GLCM entropy, GLCM energy and diameter help discern reactive nodes from metastases in HNSCC. | LIFEx (software version unavailable) | Yes |
Lee J-H et al., 2021 [55] | semiautomated VOI definition | The representative values of shape features, fractal analyses and moment features on ADC scans allow for a diagnostic performance of OPSCC of the palatine tonsil that is comparable to that of F-FDG-PET/CT | PyRadiomics 1.0 | Yes |
Rich B et al., 2021 [45] | GTV defined for RT | The model identified at a level of excellence the patients who went on to develop distant metastases. | SMOTE, ADASYN, borderline SMOTE (software version unavailable) | Yes |
Song B et al., 2021 [46] | Manual ROI and GTV | There were 15 features that predicted HPV correlation; A 3 feature signature predicted DFS. | \ | \ |
Miller et al., 2019 [47] | Manual ROI | Skewness and entropy features increase accuracy in progression prediction in patients treated with CT. | In-house-Developed (software version unavailable) | \ |
Mes et al., 2020 [59] | Semiautomated ROI definition | The integration of radiomic and clinical models outperforms the standard clinical prognostic model for HNSCC. | Velocity AI and In-house-developed software (software version unavailable) | \ |
Kuno H et al., 2017 [48] | Semiautomated ROI | Significant predictors of outcome of chemotherapy in patients with SCC were 3 histogram features and 4 gray-level run-length features. | In-house-developed MATLAB based software (software version unavailable) | \ |
Cozzi L et al., 2019 [60] | GTV defined for RT | A signature with 3 features was identified as predictive of overall survival in HNSCC; a 2 feature signature was predictive for local control. | LIFEx (software version unavailable) | Yes |
Cheng N. M. et al., 2013 [64] | Semiautomated VOI selection | Age, tumor TLG, and uniformity independently associated with PFS and DSS; TLG, uniformity, and HPV positivity significantly associated with OS. New prognostic scoring system based on TLG and uniformity. | PMOD 3.3 | No |
Cheng N. M. et al., 2015 [65] | Semiautomated VOI selection | ZSNU identified as an independent predictor of PFS and DSS. Prognostic stratification system based on TLG, uniformity and ZNSU | In-House-Developed matlab based software (software version unavailable) | \ |
Haider S. P. et al., 2020 [50] | Manual ROI selection | PET-based radiomics signatures yield similar classification performance to CT-based models with a trend suggesting improved predictive performance when combined. | 3D-Slicer version 4.10.1 | Yes |
Haider S. P. et al., 2020 [51] | Manual ROI selection | 1037 PET and 1037 CT radiomic features quantifying lesion shape, imaging intensity, and texture patterns from primary tumors and metastatic cervical lymph nodes integrated to devise novel machine-learning models for OPSCC PFS and OS. | 3D-Slicer version 4.10.1 | Yes |
Mitamura K. et al., 2021 [63] | Semiautomated VOI selection | SUVmax, MTV, and TLG did not differ significantly between the SCC and NHL groups. LGZE and HGZE significantly different between the SCC and NHL; LGZE the most discriminative (55.6% sensitivity, 88.0% specificity) | LIFEx (Software version unavailable) | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bicci, E.; Nardi, C.; Calamandrei, L.; Pietragalla, M.; Cavigli, E.; Mungai, F.; Bonasera, L.; Miele, V. Role of Texture Analysis in Oropharyngeal Carcinoma: A Systematic Review of the Literature. Cancers 2022, 14, 2445. https://doi.org/10.3390/cancers14102445
Bicci E, Nardi C, Calamandrei L, Pietragalla M, Cavigli E, Mungai F, Bonasera L, Miele V. Role of Texture Analysis in Oropharyngeal Carcinoma: A Systematic Review of the Literature. Cancers. 2022; 14(10):2445. https://doi.org/10.3390/cancers14102445
Chicago/Turabian StyleBicci, Eleonora, Cosimo Nardi, Leonardo Calamandrei, Michele Pietragalla, Edoardo Cavigli, Francesco Mungai, Luigi Bonasera, and Vittorio Miele. 2022. "Role of Texture Analysis in Oropharyngeal Carcinoma: A Systematic Review of the Literature" Cancers 14, no. 10: 2445. https://doi.org/10.3390/cancers14102445
APA StyleBicci, E., Nardi, C., Calamandrei, L., Pietragalla, M., Cavigli, E., Mungai, F., Bonasera, L., & Miele, V. (2022). Role of Texture Analysis in Oropharyngeal Carcinoma: A Systematic Review of the Literature. Cancers, 14(10), 2445. https://doi.org/10.3390/cancers14102445