Association of Diabetes Severity and Mortality with Lung Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Data Sources and Study Cohort
2.2. Patient Selection
Inclusion and Exclusion Criteria
2.3. PSM and Covariates
2.4. Sensitivity Analysis
2.5. Statistical Analysis
3. Results
3.1. PSM and Study Cohort
3.2. Prognostic Factors for All-Cause Death of Lung SqCLC after Multivariate Cox Regression Analysis
3.3. Sensitivity Analysis of All-Cause Mortality for Lung SqCLC between Mild and Moderate-to-Severe Diabetes Groups (Stratified by Sex and Age)
3.4. Kaplan–Meier Survival Curve of Mild and Moderate-to-Severe Diabetes Groups for of Lung SqCLC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
aHR | adjusted hazard ratio |
CI | confidence interval |
RCT | randomized controlled trial |
PSM | propensity score matching |
ICD-9-CM | International Classification of Diseases, Ninth Revision, Clinical Modification |
ICD-10-CM | International Classification of Diseases, Tenth Revision, Clinical Modification |
OS | overall survival |
CCI | Charlson comorbidity index |
IPTW | inverse probability of treatment weighting |
NTD | New Taiwan dollars |
y | years old |
aDCSI | adapted diabetes complications severity index |
HR | hazard ratio |
AMI | acute myocardial infarction |
TB | tuberculosis |
COPD | chronic obstructive pulmonary disease |
SqCLC | squamous cell carcinoma |
AJCC | American Joint Committee on Cancer |
CCRT | concurrent chemoradiotherapy |
RT | radiation therapy |
IGF-1 | insulin-like growth factor-1 |
NSCLC | non–small cell lung carcinoma |
References
- Dwivedi, M.; Pandey, A.R. Diabetes mellitus and its treatment: An overview. J. Adv. Pharmacol. 2020, 1, 48–58. [Google Scholar]
- Young, B.A.; Lin, E.; Von Korff, M.; Simon, G.; Ciechanowski, P.; Ludman, E.J.; Everson-Stewart, S.; Kinder, L.; Oliver, M.; Boyko, E.J.; et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am. J. Manag. Care 2008, 14, 15–23. [Google Scholar] [PubMed]
- Arvanitakis, Z.; Wilson, R.; Bennett, D. Diabetes mellitus, dementia, and cognitive function in older persons. J. Nutr. Health Aging 2006, 10, 287. [Google Scholar] [PubMed]
- Kakarlapudi, V.; Sawyer, R.; Staecker, H. The effect of diabetes on sensorineural hearing loss. Otol. Neurotol. 2003, 24, 382–386. [Google Scholar] [CrossRef]
- Vigneri, P.; Frasca, F.; Sciacca, L.; Pandini, G.; Vigneri, R. Diabetes and cancer. J. Endocr.-Relat. Cancer 2009, 16, 1103–1123. [Google Scholar] [CrossRef] [Green Version]
- Barone, B.B.; Yeh, H.C.; Snyder, C.F.; Peairs, K.S.; Stein, K.B.; Derr, R.L.; Wolff, A.C.; Brancati, F.L. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: A systematic review and meta-analysis. JAMA 2008, 300, 2754–2764. [Google Scholar] [CrossRef] [Green Version]
- Tsilidis, K.K.; Kasimis, J.C.; Lopez, D.S.; Ntzani, E.E.; Ioannidis, J.P. Type 2 diabetes and cancer: Umbrella review of meta-analyses of observational studies. BMJ 2015, 350, g7607. [Google Scholar] [CrossRef] [Green Version]
- Harding, J.L.; Shaw, J.E.; Peeters, A.; Cartensen, B.; Magliano, D.J. Cancer risk among people with type 1 and type 2 diabetes: Disentangling true associations, detection bias, and reverse causation. Diabetes Care 2015, 38, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and cancer: A consensus report. Diabetes Care 2010, 33, 1674–1685. [Google Scholar] [CrossRef] [Green Version]
- Torre, L.A.; Siegel, R.L.; Jemal, A. Lung cancer statistics. J. Lung Cancer Pers. Med. 2016, 1–19. [Google Scholar]
- Luo, J.; Hendryx, M.; Qi, L.; Ho, G.Y.; Margolis, K.L. Pre-existing diabetes and lung cancer prognosis. Br. J. Cancer 2016, 115, 76–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wicke, F.S.; Glushan, A.; Schubert, I.; Koster, I.; Lubeck, R.; Hammer, M.; Beyer, M.; Karimova, K. Performance of the adapted Diabetes Complications Severity Index translated to ICD-10. Am. J. Manag. Care 2019, 25, e45–e49. [Google Scholar] [PubMed]
- Chang, H.Y.; Weiner, J.P.; Richards, T.M.; Bleich, S.N.; Segal, J.B. Validating the adapted diabetes complications severity index in claims data. Am. J. Manag. Care 2012, 18, 721–726. [Google Scholar] [PubMed]
- Zhang, J.; Lu, C.Y.; Chen, H.M.; Wu, S.Y. Neoadjuvant chemotherapy or endocrine therapy for invasive ductal carcinoma of the breast with high hormone receptor positivity and human epidermal growth factor receptor 2 negativity. JAMA Netw. Open 2021, 4, e211785. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Y.; Chang, C.L.; Chen, C.I.; Huang, C.C. Comparison of acute and chronic surgical complications following robot-assisted, laparoscopic, and traditional open radical prostatectomy among men in Taiwan. JAMA Netw. Open 2021, 4, e2120156. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Hsu, C.H.; Lin, Y.C.; Wu, S.Y. Effects of 1-Year hospital volume on surgical margin and biochemical-failure-free survival in patients undergoing robotic versus nonrobotic radical prostatectomy: A nationwide cohort study from the national taiwan cancer database. Cancers 2021, 13, 488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, C.Y.; Qin, L.; Chen, H.M.; Wu, S.Y. Breast-conserving surgery with or without irradiation in women with invasive ductal carcinoma of the breast receiving preoperative systemic therapy: A cohort study. Breast 2020, 54, 139–147. [Google Scholar] [CrossRef]
- Auperin, A.; Le Pechoux, C.; Rolland, E.; Curran, W.J.; Furuse, K.; Fournel, P.; Belderbos, J.; Clamon, G.; Ulutin, H.C.; Paulus, R.; et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 2181–2190. [Google Scholar] [CrossRef]
- Vokes, E.E.; Herndon, J.E., 2nd; Kelley, M.J.; Cicchetti, M.G.; Ramnath, N.; Neill, H.; Atkins, J.N.; Watson, D.M.; Akerley, W.; Green, M.R.; et al. Induction chemotherapy followed by chemoradiotherapy compared with chemoradiotherapy alone for regionally advanced unresectable stage III Non-small-cell lung cancer: Cancer and Leukemia Group B. J. Clin. Oncol. 2007, 25, 1698–1704. [Google Scholar] [CrossRef]
- Belani, C.P.; Choy, H.; Bonomi, P.; Scott, C.; Travis, P.; Haluschak, J.; Curran, W.J., Jr. Combined chemoradiotherapy regimens of paclitaxel and carboplatin for locally advanced non-small-cell lung cancer: A randomized phase II locally advanced multi-modality protocol. J. Clin. Oncol. 2005, 23, 5883–5891. [Google Scholar] [CrossRef]
- Austin, P.C. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm. Stat. 2011, 10, 150–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Yung, Y.-F.; Stokes, M. Propensity Score Methods for Causal Inference with the PSMATCH Procedure. In Proceedings of the SAS Global Forum 2017 Conference, Orlando, FL, USA, 2–5 April 2017. [Google Scholar]
- Austin, P.C. The use of propensity score methods with survival or time-to-event outcomes: Reporting measures of effect similar to those used in randomized experiments. Stat. Med. 2014, 33, 1242–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergamino, M.; Rullan, A.J.; Saigi, M.; Peiro, I.; Montanya, E.; Palmero, R.; Ruffinelli, J.C.; Navarro, A.; Arnaiz, M.D.; Brao, I.; et al. Fasting plasma glucose is an independent predictor of survival in patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy. BMC Cancer 2019, 19, 165. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.X.; Fang, L.; Fang, Q.L.; Zheng, X.W.; Ding, H.Y.; Huang, P. Effect of hypoglycemic agents on survival outcomes of lung cancer patients with diabetes mellitus: A meta-analysis. Medicine 2018, 97, e0035. [Google Scholar] [CrossRef]
- Kurishima, K.; Watanabe, H.; Ishikawa, H.; Satoh, H.; Hizawa, N. Survival of patients with lung cancer and diabetes mellitus. Mol. Clin. Oncol 2017, 6, 907–910. [Google Scholar] [CrossRef] [Green Version]
- Oncology, National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Non-Small Cell Lung Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf (accessed on 30 September 2021).
- Zhang, Y.; Sun, Y.; Pan, Y.; Li, C.; Shen, L.; Li, Y.; Luo, X.; Ye, T.; Wang, R.; Hu, H.; et al. Frequency of driver mutations in lung adenocarcinoma from female never-smokers varies with histologic subtypes and age at diagnosis. Clin. Cancer Res. 2012, 18, 1947–1953. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.N.; Yan, H.H.; Wang, J.; Chu, X.Y.; Liu, Z.D.; Shen, Y.; Ma, H.T.; Fu, X.N.; Hu, J.; Zhou, N.K.; et al. Real-World survival outcomes based on EGFR mutation status in Chinese patients with lung adenocarcinoma after complete resection: Results from the ICAN study. JTO Clin. Res. Rep. 2022, 3, 100257. [Google Scholar] [CrossRef]
- Morss, A.S.; Edelman, E.R. Glucose modulates basement membrane fibroblast growth factor-2 via alterations in endothelial cell permeability. J. Biol. Chem. 2007, 282, 14635–14644. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Jimenez, C.; Garcia-Martinez, J.M.; Chocarro-Calvo, A.; De la Vieja, A. A new link between diabetes and cancer: Enhanced WNT/beta-catenin signaling by high glucose. J. Mol. Endocrinol. 2014, 52, R51–R66. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Alex, J.M.; Bast, F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: Novel treatment strategies for cancer. Med. Oncol. 2014, 31, 805. [Google Scholar] [CrossRef]
- Cardillo, T.M.; Trisal, P.; Arrojo, R.; Goldenberg, D.M.; Chang, C.H. Targeting both IGF-1R and mTOR synergistically inhibits growth of renal cell carcinoma in vitro. BMC Cancer 2013, 13, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodt, P.; Samani, A.; Navab, R. Inhibition of the type I insulin-like growth factor receptor expression and signaling: Novel strategies for antimetastatic therapy. Biochem. Pharmacol. 2000, 60, 1101–1107. [Google Scholar] [CrossRef]
- Singh, R.K.; Gaikwad, S.M.; Jinager, A.; Chaudhury, S.; Maheshwari, A.; Ray, P. IGF-1R inhibition potentiates cytotoxic effects of chemotherapeutic agents in early stages of chemoresistant ovarian cancer cells. Cancer Lett. 2014, 354, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Wilky, B.A.; Rudek, M.A.; Ahmed, S.; Laheru, D.A.; Cosgrove, D.; Donehower, R.C.; Nelkin, B.; Ball, D.; Doyle, L.A.; Chen, H.; et al. A phase I trial of vertical inhibition of IGF signalling using cixutumumab, an anti-IGF-1R antibody, and selumetinib, an MEK 1/2 inhibitor, in advanced solid tumours. Br. J. Cancer 2015, 112, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Ma, Q.; Li, J.; Liu, H.; Li, W.; Ma, G.; Xu, Q.; Zhou, S.; Wu, E. High glucose promotes pancreatic cancer cell proliferation via the induction of EGF expression and transactivation of EGFR. PLoS ONE 2011, 6, e27074. [Google Scholar] [CrossRef]
- De Rosa, V.; Iommelli, F.; Monti, M.; Fonti, R.; Votta, G.; Stoppelli, M.P.; Del Vecchio, S. Reversal of Warburg Effect and Reactivation of Oxidative Phosphorylation by Differential Inhibition of EGFR Signaling Pathways in Non-Small Cell Lung Cancer. Clin. Cancer Res. 2015, 21, 5110–5120. [Google Scholar] [CrossRef] [Green Version]
- van de Poll-Franse, L.V.; Houterman, S.; Janssen-Heijnen, M.L.; Dercksen, M.W.; Coebergh, J.W.; Haak, H.R. Less aggressive treatment and worse overall survival in cancer patients with diabetes: A large population based analysis. Int J. Cancer 2007, 120, 1986–1992. [Google Scholar] [CrossRef]
- De Giorgio, R.; Barbara, G.; Cecconi, A.; Corinaldesi, R.; Mancini, A.M. Diabetes is associated with longer survival rates in patients with malignant tumors. Arch. Intern. Med. 2000, 160, 2217. [Google Scholar] [CrossRef]
- Park, S.M.; Lim, M.K.; Shin, S.A.; Yun, Y.H. Impact of prediagnosis smoking, alcohol, obesity, and insulin resistance on survival in male cancer patients: National Health Insurance Corporation Study. J. Clin. Oncol. 2006, 24, 5017–5024. [Google Scholar] [CrossRef]
- Hatlen, P.; Gronberg, B.H.; Langhammer, A.; Carlsen, S.M.; Amundsen, T. Prolonged survival in patients with lung cancer with diabetes mellitus. J. Thorac. Oncol. 2011, 6, 1810–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shieh, S.H.; Probst, J.C.; Sung, F.C.; Tsai, W.C.; Li, Y.S.; Chen, C.Y. Decreased survival among lung cancer patients with co-morbid tuberculosis and diabetes. BMC Cancer 2012, 12, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storozhuk, Y.; Hopmans, S.N.; Sanli, T.; Barron, C.; Tsiani, E.; Cutz, J.C.; Pond, G.; Wright, J.; Singh, G.; Tsakiridis, T. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 2013, 108, 2021–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.X.; Yao, W.X.; Ge, J.; Peng, X.C.; Du, X.B.; Zhang, R.; Yao, B.; Xie, K.; Li, L.H.; Dong, H.; et al. Prognostic influence of metformin as first-line chemotherapy for advanced nonsmall cell lung cancer in patients with type 2 diabetes. Cancer 2011, 117, 5103–5111. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.J.; Rai, H.; Beukemann, M.; Xu, M.; Jain, A.; Sasidhar, M. The effect of metformin and thiazolidinedione use on lung cancer in diabetics. BMC Cancer 2012, 12, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, I.; Ferro, A.; Cohler, A.; Langenfeld, J.; Surakanti, S.G.; Aisner, J.; Zou, W.; Haffty, B.G.; Jabbour, S.K. Impact of metformin use on survival in locally-advanced, inoperable non-small cell lung cancer treated with definitive chemoradiation. J. Thorac. Dis. 2015, 7, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Gallagher, E.J.; Sigel, K.; Mhango, G.; Galsky, M.D.; Smith, C.B.; LeRoith, D.; Wisnivesky, J.P. Survival of patients with stage IV lung cancer with diabetes treated with metformin. Am. J. Respir Crit Care Med. 2015, 191, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Deaton, A.; Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 2018, 210, 2–21. [Google Scholar] [CrossRef]
- Austin, P.C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.L.; Collins, G.S.; Spence, J.; Daures, J.P.; Devereaux, P.J.; Landais, P.; Le Manach, Y. Double-adjustment in propensity score matching analysis: Choosing a threshold for considering residual imbalance. BMC Med. Res. Methodol. 2017, 17, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Kim, H.J.; Lonjon, G.; Zhu, Y.; on behalf of AME Big-Data Clinical Trial Collaborative Group. Balance diagnostics after propensity score matching. Ann. Transl. Med. 2019, 7, 16. [Google Scholar] [CrossRef]
- Bertaglia, V.; Vallone, S.; Pacchiana, M.V.; Novello, S. Advanced squamous lung cancer: Therapeutic options, future directions, unmet needs and results of a monocentric survey. Lung Cancer Manag. 2017, 6, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Carrera, P.M.; Kantarjian, H.M.; Blinder, V.S. The financial burden and distress of patients with cancer: Understanding and stepping-up action on the financial toxicity of cancer treatment. CA Cancer J. Clin. 2018, 68, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Tas, F.; Ciftci, R.; Kilic, L.; Karabulut, S. Age is a prognostic factor affecting survival in lung cancer patients. Oncol. Lett. 2013, 6, 1507–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, T.A.; Chen, P.H.; Wu, P.F.; Wang, T.N.; Chang, P.Y.; Ko, A.M.; Huang, M.S.; Ko, Y.C. Important prognostic factors for the long-term survival of lung cancer subjects in Taiwan. BMC Cancer 2008, 8, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
aDCSI 0–1 | aDCSI ≥ 2 | ||||
---|---|---|---|---|---|
N = 2871 | % | N = 2871 | p-Value | ||
Sex | |||||
Female | 970 | 33.79% | 988 | 34.41% | 0.6163 |
Male | 1901 | 66.21% | 1883 | 65.59% | |
Age | 73.18 ± 10.94 | 74.73 ± 10.32 | 0.1019 | ||
Age group (y) | |||||
Age ≤ 65 | 541 | 18.84% | 541 | 18.84% | 0.9015 |
65 < Age ≤ 75 | 804 | 28.00% | 804 | 28.00% | |
75 < Age ≤ 85 | 1165 | 40.58% | 1147 | 39.95% | |
Age > 85 | 361 | 12.57% | 379 | 13.20% | |
AJCC clinical stage | |||||
Stage I | 143 | 4.98% | 143 | 4.98% | 1.0000 |
Stage II | 280 | 9.75% | 280 | 9.75% | |
Stage IIIA | 725 | 25.25% | 725 | 25.25% | |
Stage IIIB/C | 1723 | 60.01% | 1723 | 60.01% | |
Income level (NTD) | |||||
Low-income | 41 | 1.43% | 44 | 1.53% | 0.8372 |
≤10,000 | 968 | 33.72% | 970 | 33.79% | |
10,001–15,000 | 718 | 25.01% | 726 | 25.29% | |
15,001–20,000 | 918 | 31.97% | 914 | 31.83% | |
20,001–30,000 | 112 | 3.90% | 111 | 3.87% | |
30,001–45,000 | 68 | 2.37% | 65 | 2.26% | |
>45,000 | 46 | 1.60% | 41 | 1.43% | |
Urbanization | |||||
Rural | 982 | 34.20% | 1014 | 35.32% | 0.3752 |
Urban | 1889 | 65.80% | 1857 | 64.68% | |
CCI Score | |||||
≥1 | 2341 | 81.54% | 2341 | 81.54% | 1.000 |
Comorbidities | |||||
COPD | 1948 | 67.85% | 1995 | 69.49% | 0.1812 |
Chronic bronchitis | 1541 | 53.67% | 1544 | 53.78% | 0.9284 |
Emphysema | 247 | 8.60% | 232 | 8.08% | 0.9357 |
Acute upper respiratory tract infection | 1243 | 43.30% | 1271 | 44.27% | 0.4564 |
Asthma | 1130 | 39.36% | 1151 | 40.09% | 0.6920 |
Pneumoconiosis | 67 | 2.33% | 54 | 1.88% | 0.2323 |
Cardiovascular diseases | 1537 | 54.54% | 1544 | 53.78% | 0.8205 |
AMI | 208 | 7.24% | 216 | 7.52% | 0.8727 |
Stroke | 324 | 11.28% | 325 | 11.32% | 0.9441 |
TB | 395 | 13.76% | 397 | 13.83% | 0.9047 |
Obesity | 74 | 2.58% | 70 | 2.44% | 0.8407 |
Current smoking habit | 1109 | 38.63% | 1110 | 38.67% | 0.9451 |
Alcohol-related disease | 431 | 15.01% | 434 | 15.11% | 0.7929 |
Diabetic medication use | |||||
Metformin | 1546 | 53.85% | 1682 | 58.59% | 0.0003 |
Sulfonylurea | 1553 | 54.09% | 1714 | 59.70% | <0.0001 |
Meglitinide | 298 | 10.38% | 355 | 12.37% | 0.0178 |
α-glucosidase inhibitors | 468 | 16.30% | 632 | 22.01% | <0.0001 |
Thiazolidinediones | 289 | 10.07% | 449 | 15.64% | <0.0001 |
Dipeptidyl peptidase-4 inhibitors | 226 | 7.87% | 370 | 12.89% | <0.0001 |
Glucagon-like peptide-1 | 201 | 7.00% | 374 | 13.02% | <0.0001 |
SGLT2 inhibitors | 231 | 8.05% | 402 | 14.00% | <0.0001 |
Insulin | 482 | 16.79% | 696 | 24.24% | <0.0001 |
Number of diabetic medications taken | <0.0001 | ||||
0 | 765 | 26.65% | 522 | 18.18% | |
1 | 478 | 16.65% | 530 | 18.46% | |
2 | 413 | 14.39% | 352 | 12.26% | |
≥3 | 1215 | 42.32% | 1467 | 51.10% | |
Diabetes Duration, Years; (Mean ± SD) | 4.63 ± 2.15 | 4.43 ± 2.13 | 0.8926 | ||
1–1.99 year | 142 | 4.95% | 148 | 5.15% | |
2–2.99 years | 281 | 9.79% | 285 | 9.93% | |
3–3.99 years | 724 | 25.22% | 727 | 25.32% | |
4–4.99 years | 1001 | 34.87% | 999 | 34.80% | |
≥5 years | 723 | 25.18% | 712 | 24.80% | |
Death | 1907 | 66.42% | 2035 | 70.88% | 0.0003 |
Mean follow-up, Year; (Mean ± SD) | 2.44 ± 3.24 | 2.18 ± 2.83 | <0.0001 | ||
Median follow-up, Year; Median (IQR, Q1, Q2) | 1.37 (0.41, 3.87) | 1.13 (0.30, 3.77) | 0.0019 |
aHR * | 95% CI | p-Value | ||
---|---|---|---|---|
aDCSI scores (Ref. aDCSI: 0–1) | ||||
aDCSI ≥2 | 1.17 | 1.08 | 1.28 | 0.0005 |
Sex (Ref. female) | ||||
Male | 1.19 | 1.10 | 1.34 | 0.0002 |
Age (y; Ref. ≤ 65) | ||||
65 < Age ≤ 75 | 1.33 | 1.13 | 1.57 | 0.0004 |
75 < Age ≤ 85 | 2.03 | 1.76 | 2.37 | <0.0001 |
Age > 85 | 3.12 | 2.60 | 3.71 | <0.0001 |
AJCC clinical stage (Ref. Stage I) | ||||
Stage II | 1.01 | 0.60 | 1.04 | 0.3644 |
Stage IIIA | 1.11 | 0.89 | 1.36 | 0.2262 |
Stage IIIB/C | 1.17 | 0.66 | 1.97 | 0.2120 |
Income level, NTD (Ref. low income) | ||||
≤10,000 | 0.87 | 0.65 | 1.20 | 0.4762 |
10,001–15,000 | 0.85 | 0.63 | 1.20 | 0.4159 |
15,001–20,000 | 0.81 | 0.59 | 1.12 | 0.1876 |
20,001–30,000 | 0.71 | 0.44 | 1.05 | 0.1291 |
30,001–45,000 | 0.62 | 0.46 | 1.03 | 0.0589 |
>45,000 | 0.45 | 0.25 | 1.04 | 0.0598 |
Urbanization (Ref. rural) | ||||
Urban | 0.97 | 0.87 | 1.09 | 0.7351 |
CCI Scores (Ref. CCI = 0) | ||||
CCI ≥ 1 | 1.01 | 0.89 | 1.15 | 0.9212 |
Comorbidities | ||||
COPD (Ref. No) | 0.96 | 0.85 | 1.05 | 0.1932 |
Chronic bronchitis (Ref. No) | 0.94 | 0.86 | 1.03 | 0.1153 |
Emphysema (Ref. No) | 1.01 | 0.92 | 1.09 | 0.9301 |
Acute upper respiratory tract infection (Ref. No) | 1.17 | 0.87 | 1.66 | 0.2404 |
Asthma (Ref. No) | 1.04 | 0.81 | 1.31 | 0.9156 |
Pneumoconiosis (Ref. No) | 1.00 | 0.87 | 1.12 | 0.8635 |
Cardiovascular diseases (Ref. No) | 1.20 | 0.89 | 1.68 | 0.2441 |
AMI (Ref. No) | 1.15 | 0.86 | 1.40 | 0.3830 |
Stroke (Ref. No) | 1.02 | 0.76 | 1.20 | 0.8721 |
TB (Ref. No) | 1.04 | 0.80 | 1.14 | 0.5311 |
Obesity (Ref. No) | 1.11 | 0.80 | 1.51 | 0.3420 |
Current Smoking (Ref. No) | 1.20 | 0.94 | 1.50 | 0.2261 |
Alcohol-related disease (Ref. No) | 1.25 | 0.90 | 1.51 | 0.3313 |
Diabetic medication use | ||||
Metformin | 0.82 | 0.66 | 1.08 | 0.1282 |
Sulfonylurea | 0.99 | 0.70 | 1.15 | 0.6544 |
Meglitinide | 0.97 | 0.89 | 1.10 | 0.6761 |
α-glucosidase inhibitors | 1.02 | 0.91 | 1.17 | 0.4553 |
Thiazolidinediones | 1.01 | 0.82 | 1.20 | 0.9241 |
Dipeptidyl peptidase-4 inhibitors | 1.03 | 0.95 | 1.28 | 0.1029 |
Glucagon-like peptide-1 | 0.95 | 0.90 | 1.04 | 0.1382 |
SGLT2 inhibitors | 0.97 | 0.90 | 1.03 | 0.1764 |
Insulin | 1.02 | 0.94 | 1.06 | 0.7253 |
Number of diabetic medications taken (Ref. No antidiabetic drug) | ||||
1 | 1.14 | 0.81 | 1.29 | 0.2352 |
2 | 1.32 | 0.87 | 1.57 | 0.3486 |
≥3 | 1.23 | 0.90 | 1.43 | 0.3527 |
Diabetes Duration (Ref. 1–1.99 years) | ||||
2–2.99 years | 1.01 | 0.92 | 1.32 | 0.2932 |
3–3.99 years | 1.04 | 0.88 | 1.09 | 0.6948 |
4–4.99 years | 1.08 | 0.90 | 1.16 | 0.2537 |
≥5 years | 1.09 | 0.81 | 1.21 | 0.9216 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.-H.; Chen, W.-M.; Chen, M.; Shia, B.-C.; Wu, S.-Y. Association of Diabetes Severity and Mortality with Lung Squamous Cell Carcinoma. Cancers 2022, 14, 2553. https://doi.org/10.3390/cancers14102553
Su C-H, Chen W-M, Chen M, Shia B-C, Wu S-Y. Association of Diabetes Severity and Mortality with Lung Squamous Cell Carcinoma. Cancers. 2022; 14(10):2553. https://doi.org/10.3390/cancers14102553
Chicago/Turabian StyleSu, Chih-Hsiung, Wan-Ming Chen, Mingchih Chen, Ben-Chang Shia, and Szu-Yuan Wu. 2022. "Association of Diabetes Severity and Mortality with Lung Squamous Cell Carcinoma" Cancers 14, no. 10: 2553. https://doi.org/10.3390/cancers14102553
APA StyleSu, C. -H., Chen, W. -M., Chen, M., Shia, B. -C., & Wu, S. -Y. (2022). Association of Diabetes Severity and Mortality with Lung Squamous Cell Carcinoma. Cancers, 14(10), 2553. https://doi.org/10.3390/cancers14102553