Associations between Smoking and Alcohol and Follicular Lymphoma Incidence and Survival: A Family-Based Case-Control Study in Australia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Exposure Variables
2.3. Case Clinical and Outcome Data
2.4. Statistical Analysis
2.4.1. FL Incidence
2.4.2. FL Mortality
3. Results
3.1. FL Incidence
3.2. Case All-Cause Mortality
3.3. Case FL-Specific Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekström-Smedby, K. Epidemiology and etiology of non-Hodgkin lymphoma: A review. Acta Oncol. 2006, 45, 258–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federico, M.; Barrigón, M.D.C.; Marcheselli, L.; Tarantino, V.; Manni, M.; Sarkozy, C.; Alonso-Álvarez, S.; Wondergem, M.; Cartron, G.; Lopez-Guillermo, A.; et al. Rituximab and the risk of transformation of follicular lymphoma: A retrospective pooled analysis. Lancet Haematol. 2018, 5, e359–e367. [Google Scholar] [CrossRef]
- Morton, L.M.; Slager, S.L.; Cerhan, J.R.; Wang, S.S.; Vajdic, C.M.; Skibola, C.F.; Sampson, J.N.; Bracci, P.M.; de Sanjosé, S.; Smedby, K.E.; et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: The InterLymph Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014, 2014, 130–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsujimoto, Y.; Gorham, J.; Cossman, J.; Jaffe, E.; Croce, C.M. The t(14;18) Chromosome Translocations Involved in B-Cell Neoplasms Result from Mistakes in VDJ Joining. Science 1985, 229, 1390–1393. [Google Scholar] [CrossRef]
- Horsman, E.D.; Gascoyne, R.D.; Coupland, R.W.; Coldman, A.J.; Adomat, A.S. Comparison of cytogenetic analysis, southern analysis, and polymerase chain reaction for the detection of t(14; 18) in follicular lymphoma. Am. J. Clin. Pathol. 1995, 103, 472–478. [Google Scholar] [CrossRef]
- Roulland, S.; Kelly, R.S.; Morgado, E.; Sungalee, S.; Solal-Celigny, P.; Colombat, P.; Jouve, N.; Palli, D.; Pala, V.; Tumino, R.; et al. t(14;18) Translocation: A Predictive Blood Biomarker for Follicular Lymphoma. J. Clin. Oncol. 2014, 32, 1347–1355. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.; Liu, Y.; Cortopassi, G.A. Occurrence of bcl-2 Oncogene Translocation With Increased Frequency in the Peripheral Blood of Heavy Smokers. JNCI J. Natl. Cancer Inst. 1995, 87, 223–224. [Google Scholar] [CrossRef]
- Odutola, M.; Nnakelu, E.; Giles, G.G.; Van Leeuwen, M.T.; Vajdic, C.M. Lifestyle and risk of follicular lymphoma: A systematic review and meta-analysis of observational studies. Cancer Causes Control 2020, 31, 979–1000. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.S.; Reynolds, P.; Chang, E.T.; Ma, H.; Sullivan-Halley, J.; Clarke, C.A.; Bernstein, L. Cigarette Smoking, Passive Smoking, and Non-Hodgkin Lymphoma Risk: Evidence From the California Teachers Study. Am. J. Epidemiol. 2011, 174, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Ollberding, N.J.; Evens, A.M.; Aschebrook-Kilfoy, B.; Caces, D.B.D.; Weisenburger, D.D.; Smith, S.M.; Chiu, B.C.-H. Pre-diagnosis cigarette smoking and overall survival in non-Hodgkin lymphoma. Br. J. Haematol. 2013, 163, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Geyer, S.M.; Morton, L.M.; Habermann, T.M.; Allmer, C.; Davis, S.; Cozen, W.; Cerhan, J.R.; Severson, R.K.; Wang, S.S.; Maurer, M.J.; et al. Smoking, alcohol use, obesity, and overall survival from non-Hodgkin lymphoma: A population-based study. Cancer 2010, 116, 2993–3000. [Google Scholar] [CrossRef] [PubMed]
- Battaglioli, T.; Gorini, G.; Costantini, A.S.; Crosignani, P.; Miligi, L.; Nanni, O.; Vineis, P.; Stagnaro, E.; Tumino, R. Cigarette smoking and alcohol consumption as determinants of survival in non-Hodgkin’s lymphoma: A population-based study. Ann. Oncol. 2006, 17, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zheng, T.; Foss, F.M.; Ma, S.; Holford, T.R.; Boyle, P.; Leaderer, B.; Zhao, P.; Dai, M.; Zhang, Y. Alcohol consumption and non-Hodgkin lymphoma survival. J. Cancer Surviv. 2010, 4, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talamini, R.; Polesel, J.; Spina, M.; Chimienti, E.; Serraino, D.; Zucchetto, A.; Zanet, E.; Franceschi, S.; Tirelli, U. The impact of tobacco smoking and alcohol drinking on survival of patients with non-Hodgkin lymphoma. Int. J. Cancer 2008, 122, 1624–1629. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. National, State and Territory Population. March 2021. Available online: https://www.abs.gov.au/statistics/people/population/national-state-and-territory-population/mar-2021#states-and-territories (accessed on 26 October 2021).
- Turner, J.J.; Hughes, A.M.; Kricker, A.; Milliken, S.; Grulich, A.; Kaldor, J.; Armstrong, B. WHO non-Hodgkin’s lymphoma classification by criterion-based report review followed by targeted pathology review: An effective strategy for epidemiology studies. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2213–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendig, H.; Byles, J.; O’Loughlin, K.; Nazroo, J.Y.; Mishra, G.; Noone, J.; Loh, V.; Forder, P.M. Adapting data collection methods in the Australian Life Histories and Health Survey: A retrospective life course study. BMJ Open 2014, 4, e004476. [Google Scholar] [CrossRef] [PubMed]
- Hoppin, J.A.; Tolbert, P.E.; Flagg, E.W.; Blair, A.; Zahm, S.H. Use of a life events calendar approach to elicit occupational history from farmers. Am. J. Ind. Med. 1998, 34, 470–476. [Google Scholar] [CrossRef]
- Solal-Céligny, P.; Roy, P.; Colombat, P.; White, J.; Armitage, J.O.; Arranz-Saez, R.; Au, W.Y.; Bellei, M.; Brice, P.; Caballero, D.; et al. Follicular lymphoma international prognostic index. Blood 2004, 104, 1258–1265. [Google Scholar] [CrossRef] [Green Version]
- Federico, M.; Bellei, M.; Marcheselli, L.; Luminari, S.; Lopez-Guillermo, A.; Vitolo, U.; Pro, B.; Pileri, S.; Pulsoni, A.; Soubeyran, P.; et al. Follicular Lymphoma International Prognostic Index 2: A New Prognostic Index for Follicular Lymphoma Developed by the International Follicular Lymphoma Prognostic Factor Project. J. Clin. Oncol. 2009, 27, 4555–4562. [Google Scholar] [CrossRef] [Green Version]
- Pirie, K.; Beral, V.; Peto, R.; Roddam, A.; Reeves, G.; Green, J. Passive smoking and breast cancer in never smokers: prospective study and meta-analysis. Int. J. Epidemiol. 2008, 37, 1069–1079. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.T.; Liu, Z.; Hildesheim, A.; Liu, Q.; Cai, Y.; Zhang, Z.; Chen, G.; Xie, S.-H.; Cao, S.-M.; Shao, J.-Y.; et al. Active and Passive Smoking and Risk of Nasopharyngeal Carcinoma: A Population-Based Case-Control Study in Southern China. Am. J. Epidemiol. 2017, 185, 1272–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food Standards Australia New Zealand. Australian Food Composition Database. Available online: http://www.foodstandards.gov.au/science/monitoringnutrients/afcd/Pages/default.aspx (accessed on 25 October 2021).
- Zheng, Y.; Heagerty, P.J.; Hsu, L.; Newcomb, P.A. On Combining Family-Based and Population-Based Case-Control Data in Association Studies. Biometrics 2010, 66, 1024–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, R.M.; Pee, D.; Landi, M.T. On combining family and case-control studies. Genet. Epidemiol. 2008, 32, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Textor, J.; Hardt, J.; Knüppel, S. DAGitty: A graphical tool for analyzing causal diagrams. Epidemiology 2011, 22, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, K.D.; McCann, M.; Katikireddi, S.V.; Thomson, H.; Green, M.J.; Smith, D.J.; Lewsey, J.D. Evidence synthesis for constructing directed acyclic graphs (ESC-DAGs): A novel and systematic method for building directed acyclic graphs. Int. J. Epidemiol. 2019, 49, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Jayasekara, H.; Juneja, S.; Hodge, A.M.; Room, R.; Milne, R.L.; Hopper, J.L.; English, D.R.; Giles, G.G.; MacInnis, R.J. Lifetime alcohol intake and risk of non-Hodgkin lymphoma: Findings from the Melbourne Collaborative Cohort Study. Int. J. Cancer 2018, 142, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.T.; Clarke, C.A.; Canchola, A.J.; Lu, Y.; Wang, S.S.; Ursin, G.; West, D.W.; Bernstein, L.; Horn-Ross, P.L. Alcohol Consumption Over Time and Risk of Lymphoid Malignancies in the California Teachers Study Cohort. Am. J. Epidemiol. 2010, 172, 1373–1383. [Google Scholar] [CrossRef] [Green Version]
- Hopper, J.L.; Bishop, T.; Easton, D.F. Population-based family studies in genetic epidemiology. Lancet 2005, 366, 1397–1406. [Google Scholar] [CrossRef]
- Watts, C.G.; Drummond, M.; Goumas, C.; Schmid, H.; Armstrong, B.K.; Aitken, J.F.; Jenkins, M.A.; Giles, G.G.; Hopper, J.L.; Mann, G.J.; et al. Sunscreen Use and Melanoma Risk Among Young Australian Adults. JAMA Dermatol. 2018, 154, 1001–1009. [Google Scholar] [CrossRef]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- Linet, M.S.; Vajdic, C.M.; Morton, L.M.; De Roos, A.J.; Skibola, C.F.; Boffetta, P.; Cerhan, J.R.; Flowers, C.R.; De Sanjosé, S.; Monnereau, A.; et al. Medical History, Lifestyle, Family History, and Occupational Risk Factors for Follicular Lymphoma: The InterLymph Non-Hodgkin Lymphoma Subtypes Project. J. Natl. Cancer Inst. Monogr. 2014, 2014, 26–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diver, W.R.; Patel, A.V.; Thun, M.J.; Teras, L.R.; Gapstur, S.M. The association between cigarette smoking and non-Hodgkin lymphoid neoplasms in a large US cohort study. Cancer Causes Control 2012, 23, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Kroll, M.E.; Murphy, F.; Pirie, K.; Reeves, G.K.; Green, J.; Beral, V. Alcohol drinking, tobacco smoking and subtypes of haematological malignancy in the UK Million Women Study. Br. J. Cancer 2012, 107, 879–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrinton, L.J.; Friedman, G.D. Cigarette smoking and risk of non-Hodgkin’s lymphoma subtypes. Cancer Epidemiol. Biomark. Prev. 1998, 7, 25–28. [Google Scholar]
- Parker, A.S.; Cerhan, J.R.; Dick, F.; Kemp, J.; Habermann, T.M.; Wallace, R.B.; Sellers, T.A.; Folsom, A.R. Smoking and risk of non-Hodgkin lymphoma subtypes in a cohort of older women. Leuk. Lymphoma. 2000, 37, 341–349. [Google Scholar] [CrossRef]
- Nieters, A.; Rohrmann, S.; Becker, N.; Linseisen, J.; Ruediger, T.; Overvad, K.; Tjønneland, A.; Olsen, A.; Allen, N.E.; Travis, R.C.; et al. Smoking and Lymphoma Risk in the European Prospective Investigation into Cancer and Nutrition. Am. J. Epidemiol. 2008, 167, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- US Department of Health and Human Services. The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General; US Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA; Available online: http://www.cdc.gov/tobacco/data_statistics/sgr/sgr_2006/index.htm (accessed on 10 May 2022).
- Chao, M.-R.; Cooke, M.S.; Kuo, C.-Y.; Pan, C.-H.; Liu, H.-H.; Yang, H.-J.; Chen, S.-C.; Chiang, Y.-C.; Hu, C.-W. Children are particularly vulnerable to environmental tobacco smoke exposure: Evidence from biomarkers of tobacco-specific nitrosamines, and oxidative stress. Environ. Int. 2018, 120, 238–245. [Google Scholar] [CrossRef]
- AB-13 California Occupational Safety and Health: Tobacco Products. Available online: http://www.leginfo.ca.gov/pub/93-94/bill/asm/ab_0001-0050/ab_13_bill_940721_chaptered (accessed on 10 May 2022).
- Smoke-Free Environment Act 2000 (NSW). Available online: http://www.legislation.nsw.gov.au/viewtop/inforce/act+69+2000+FIRST+0+N/ (accessed on 10 May 2022).
- Grace, C.; Smith, L. 15.7 Legislation to ban smoking in public spaces. In Tobacco in Australia: Facts and Issues. Melbourne: Cancer Council Victoria; Greenhalgh, E.M., Scollo, M.M., Winstanley, M.H., Eds.; Cancer Council Victoria: Melbourne, Australia, 2021; Available online: http://www.tobaccoinaustralia.org.au/chapter-15-smokefree-environment/15-7-legislation (accessed on 10 May 2022).
- Nogai, H.; Dörken, B.; Lenz, G. Pathogenesis of non-Hodgkin’s lymphoma. J. Clin. Oncol. 2011, 29, 1803–1811. [Google Scholar] [CrossRef]
- Shaffer, A.L., III; Young, R.M.; Staudt, L.M. Pathogenesis of human B cell lymphomas. Annu. Rev. Immunol. 2012, 30, 565–610. [Google Scholar] [CrossRef]
- Kridel, R.; Sehn, L.H.; Gascoyne, R.D. Pathogenesis of follicular lymphoma. J. Clin. Investig. 2012, 122, 3424–3431. [Google Scholar] [CrossRef]
- Carreras-Torres, R.; Johansson, M.; Haycock, P.C.; Relton, C.L.; Smith, G.D.; Brennan, P.; Martin, R.M. Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 2018, 361, k1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukes, R.J.; Collins, R.D. Immunologic characterization of human malignant lymphomas. Cancer 1974, 34, 1488–1503. [Google Scholar] [CrossRef]
- O’Shea, D.; O’Riain, C.; Taylor, C.; Waters, R.; Carlotti, E.; MacDougall, F.; Gribben, J.; Rosenwald, A.; Ott, G.; Rimsza, L.M.; et al. The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood 2008, 112, 3126–3129. [Google Scholar] [CrossRef] [PubMed]
- Pastore, A.; Jurinovic, V.; Kridel, R.; Hoster, E.; Staiger, A.M.; Szczepanowski, M.; Pott, C.; Kopp, N.; Murakami, M.; Horn, H.; et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: A retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015, 16, 1111–1122. [Google Scholar] [CrossRef]
- Krysiak, K.; Gomez, F.; White, B.S.; Matlock, M.; Miller, C.A.; Trani, L.; Fronick, C.C.; Fulton, R.S.; Kreisel, F.; Cashen, A.F.; et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood 2017, 129, 473–483. [Google Scholar] [CrossRef]
- Kridel, R.; Chan, F.C.; Mottok, A.; Boyle, M.; Farinha, P.; Tan, K.; Meissner, B.; Bashashati, A.; McPherson, A.; Roth, A.; et al. Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study. PLoS Med. 2016, 13, e1002197. [Google Scholar] [CrossRef]
- Jurinovic, V.; Kridel, R.; Staiger, A.M.; Szczepanowski, M.; Horn, H.; Dreyling, M.H.; Rosenwald, A.; Ott, G.; Klapper, W.; Zelenetz, A.D.; et al. Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy. Blood 2016, 128, 1112–1120. [Google Scholar] [CrossRef] [Green Version]
- Morin, R.D.; Mendez-Lago, M.; Mungall, A.J.; Goya, R.; Mungall, K.L.; Corbett, R.D.; Johnson, N.A.; Severson, T.M.; Chiu, R.; Field, M.; et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011, 476, 298–303. [Google Scholar] [CrossRef]
- Green, M.R.; Kihira, S.; Liu, C.L.; Nair, R.V.; Salari, R.; Gentles, A.J.; Irish, J.; Stehr, H.; Vicente-Dueñas, C.; Romero-Camarero, I.; et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc. Natl. Acad. Sci. USA 2015, 112, E1116–E1125. [Google Scholar] [CrossRef] [Green Version]
- Okosun, J.; Bödör, C.; Wang, J.; Araf, S.; Yang, C.-Y.; Pan, C.; Boller, S.; Cittaro, D.; Bozek, M.; Iqbal, S.; et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 2014, 46, 176–181. [Google Scholar] [CrossRef]
- Zhu, D.; McCarthy, H.; Ottensmeier, C.; Johnson, P.; Hamblin, T.J.; Stevenson, F. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood 2002, 99, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-Dale, A.-L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Campbell, P.J.; Stratton, M.R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 2013, 3, 246–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, L.B.; Ju, Y.S.; Haase, K.; Van Loo, P.; Martincorena, I.; Nik-Zainal, S.; Totoki, Y.; Fujimoto, A.; Nakagawa, H.; Shibata, T.; et al. Mutational signatures associated with tobacco smoking in human cancer. Science 2016, 354, 618–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukamoto, T.; Nakano, M.; Satoru, Y.; Adachi, H.; Kiyota, M.; Kawata, E.; Uoshima, N.; Yasukawa, S.; Chinen, Y.; Mizutani, S.; et al. High-risk follicular lymphomas harbour more somatic mutations including those in the AID-motif. Sci. Rep. 2017, 7, 14039. [Google Scholar] [CrossRef] [PubMed]
- Akers, N.K.; Curry, J.D.; Conde, L.; Bracci, P.M.; Smith, M.T.; Skibola, C.F. Association ofHLA-DQB1alleles with risk of follicular lymphoma. Leuk. Lymphoma 2010, 52, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.S.; Abdou, A.M.; Morton, L.M.; Thomas, R.; Cerhan, J.R.; Gao, X.; Cozen, W.; Rothman, N.; Davis, S.; Severson, R.K.; et al. Human leukocyte antigen class I and II alleles in non-Hodgkin lymphoma etiology. Blood 2010, 115, 4820–4823. [Google Scholar] [CrossRef]
- Baecklund, F.; Foo, J.-N.; Askling, J.; Eloranta, S.; Glimelius, I.; Liu, J.; Hjalgrim, H.; Rosenquist, R.; Padyukov, L.; Smedby, K.E. Possible Interaction Between Cigarette Smoking and HLA-DRB1 Variation in the Risk of Follicular Lymphoma. Am. J. Epidemiol. 2017, 185, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Koduru, P.R.; Raju, K.; Vadmal, V.; Menezes, G.; Shah, S.; Susin, M.; Kolitz, J.; Broome, J.D. Correlation between mutation in P53, p53 expression, cytogenetics, histologic type, and survival in patients with B-cell non-Hodgkin’s lymphoma. Blood 1997, 90, 4078–4091. [Google Scholar] [CrossRef]
- Qu, X.; Li, H.; Braziel, R.M.; Passerini, V.; Rimsza, L.M.; Hsi, E.D.; Leonard, J.P.; Smith, S.M.; Kridel, R.; Press, O.; et al. Genomic alterations important for the prognosis in patients with follicular lymphoma treated in SWOG study S0016. Blood 2019, 133, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Peppone, L.J.; Mustian, K.M.; Morrow, G.R.; Dozier, A.M.; Ossip, D.J.; Janelsins, M.C.; Sprod, L.K.; McIntosh, S. The Effect of Cigarette Smoking on Cancer Treatment–Related Side Effects. Oncologist 2011, 16, 1784–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, U.; Morton, L.M.; Subar, A.F.; Baris, D.; Stolzenberg-Solomon, R.; Leitzmann, M.; Kipnis, V.; Mouw, T.; Carroll, L.; Schatzkin, A.; et al. Alcohol, smoking, and body size in relation to incident Hodgkin’s and non-Hodgkin’s lymphoma risk. Am. J. Epidemiol. 2007, 166, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Chiu, B.C.; Cerhan, J.R.; Gapstur, S.M.; Sellers, T.A.; Zheng, W.; Lutz, C.T.; Wallace, R.B.; Potter, J.D. Alcohol consumption and non-Hodgkin lymphoma in a cohort of older women. Br. J. Cancer 1999, 80, 1476–1482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinen, M.M.; Verhage, B.A.J.; Schouten, L.J.; Goldbohm, R.A.; Schouten, H.C.; Brandt, P.A.V.D. Alcohol consumption and risk of lymphoid and myeloid neoplasms: Results of the Netherlands cohort study. Int. J. Cancer 2013, 133, 1701–1712. [Google Scholar] [CrossRef]
- Lim, U.; Weinstein, S.; Albanes, D.; Pietinen, P.; Teerenhovi, L.; Taylor, P.R.; Virtamo, J.; Stolzenberg-Solomon, R. Dietary Factors of One-Carbon Metabolism in Relation to Non-Hodgkin Lymphoma and Multiple Myeloma in a Cohort of Male Smokers. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1109–1114. [Google Scholar] [CrossRef] [Green Version]
- Gapstur, S.M.; Diver, W.R.; McCullough, M.L.; Teras, L.R.; Thun, M.J.; Patel, A.V. Alcohol Intake and the Incidence of Non-Hodgkin Lymphoid Neoplasms in the Cancer Prevention Study II Nutrition Cohort. Am. J. Epidemiol. 2012, 176, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Troy, J.D.; Hartge, P.; Weissfeld, J.L.; Oken, M.M.; Colditz, G.A.; Mechanic, L.E.; Morton, L.M. Associations Between Anthropometry, Cigarette Smoking, Alcohol Consumption, and Non-Hodgkin Lymphoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am. J. Epidemiol. 2010, 171, 1270–1281. [Google Scholar] [CrossRef] [Green Version]
- Kanda, J.; Matsuo, K.; Kawase, T.; Suzuki, T.; Ichinohe, T.; Seto, M.; Morishima, Y.; Tajima, K.; Tanaka, H. Association of Alcohol Intake and Smoking with Malignant Lymphoma Risk in Japanese: A Hospital-Based Case-Control Study at Aichi Cancer Center. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2436–2441. [Google Scholar] [CrossRef] [Green Version]
- Besson, H.; Renaudier, P.; Merrill, R.M.; Coiffier, B.; Sebban, C.; Fabry, J.; Trepo, C.; Sasco, A.J. Smoking and non-Hodgkin’s lymphoma: A case-control study in the Rhône-Alpes region of France. Cancer Causes Control 2003, 14, 381–389. [Google Scholar] [CrossRef]
- Schnell, A.H.; Witte, J.S. Family-based study designs. In Molecular Epidemiology: Applications in Cancer and Other Human Diseases; Rebbeck, T.R., Ambrosone, C.B., Shields, P.G., Eds.; Informa Healthcare: New York, NY, USA, 2008; pp. 19–28. [Google Scholar]
- Sjölander, A.; Zetterqvist, J. Confounders, mediators, or colliders: What types of shared covariates does a sibling comparison design control for? Epidemiology 2017, 28, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Gauderman, W.J.; Witte, J.S.; Thomas, D.C. Family-based association studies. JNCI Monogr. 1999, 26, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neugebauer, R.; Ng, S. Differential recall as a source of bias in epidemiologic research. J. Clin. Epidemiol. 1990, 43, 1337–1341. [Google Scholar] [CrossRef]
- Stockwell, T.; Zhao, J.; Panwar, S.; Roemer, A.; Naimi, T.; Chikritzhs, T. Do “Moderate” Drinkers Have Reduced Mortality Risk? A Systematic Review and Meta-Analysis of Alcohol Consumption and All-Cause Mortality. J. Stud. Alcohol. Drugs 2016, 77, 185–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Cases n (%) | Controls | |
---|---|---|---|
Related n (%) | Unrelated n (%) | ||
Total | 709 (59.13) | 303 (25.27) | 187 (15.60) |
Sex | |||
Male | 368 (51.90) | 123 (40.59) | 77 (41.18) |
Female | 341 (48.10) | 180 (59.41) | 110 (58.82) |
Twin status | |||
Twins | 23 (3.24) | 16 (5.28) | - |
Identical (monozygotic) | 11 (1.55) | 9 (2.97) | - |
Non-identical (dizygotic) | 12 (1.69) | 7 (2.31) | - |
Non twin | 674 (95.07) | 283 (94.40) | 187 (100.00) |
Missing | 12 (1.69) | 4 (1.32) | - |
Ethnicity | |||
Caucasian/white | 664 (93.65) | 288 (95.05) | 171 (91.44) |
Other | 19 (2.68) | 8 (2.64) | 6 (3.21) |
Missing | 26 (3.67) | 7 (2.31) | 10 (5.35) |
Stage at diagnosis a | |||
I–II | 181 (25.53) | ||
III–IV | 349 (49.22) | ||
Missing | 179 (25.25) | ||
Histologic grade at diagnosis a | |||
1–2 | 488 (68.82) | ||
3A–3B b | 194 (27.36) | ||
Missing | 27 (3.80) | ||
Composite FL/DLBCL c | 47 (6.63) | ||
FLIPI score at diagnosis a | |||
Low (0–1) | 179 (25.25) | ||
Intermediate (2) | 123 (17.35) | ||
High (3–4) | 140 (19.75) | ||
Missing | 267 (37.66) | ||
First-line treatment a | |||
None | 166 (23.41) | ||
Chemotherapy | 292 (41.18) | ||
Radiotherapy | 46 (6.49) | ||
Chemotherapy/radiotherapy | 31 (4.37) | ||
Missing | 174 (24.54) |
Exposures | Cases | Reference Category Included Passive Smokers | Reference Category Excluded Passive Smokers | ||||||
---|---|---|---|---|---|---|---|---|---|
Related Controls | Unrelated Controls | OR (95% CI) a | p | Related Controls | Unrelated Controls | OR (95% CI) a | p | ||
Smoking status b | |||||||||
Never | 369 | 175 | 118 | Ref. | 0.01 | 68 | 35 | Ref. | 0.01 |
Ever | 340 | 127 | 69 | 1.38 (1.08–1.74) | 127 | 69 | 1.51 (1.09–2.10) | ||
Smoking status b | |||||||||
Never | 369 | 175 | 118 | Ref. | 0.03 | 68 | 35 | Ref. | 0.04 |
Former | 274 | 106 | 56 | 1.36 (1.05–1.77) | 106 | 56 | 1.50 (1.05–2.14) | ||
Current | 66 | 21 | 13 | 1.43 (0.92–2.20) | 21 | 13 | 1.56 (0.96–2.53) | ||
Age started smoking b | |||||||||
Never | 369 | 175 | 118 | Ref. | 0.06 | 68 | 35 | Ref. | 0.08 |
Tertile 1 (>18) | 97 | 29 | 19 | 1.47 (0.99–2.17) | 29 | 19 | 1.62 (1.02–2.55) | ||
Tertile 2 (17–18) | 110 | 54 | 25 | 1.20 (0.85–1.70) | 54 | 25 | 1.34 (0.88–2.02) | ||
Tertile 3 (<17) | 132 | 44 | 25 | 1.47 (1.06–2.05) | 44 | 25 | 1.62 (1.08–2.41) | ||
Ptrend 0.17 | Ptrend 0.07 | ||||||||
Years since quitting smoking b | |||||||||
Never | 369 | 175 | 118 | Ref. | 0.13 | 68 | 35 | Ref. | 0.19 |
Tertile 1 (≥30) | 95 | 33 | 22 | 1.49 (0.99–2.24) | 33 | 22 | 1.57 (0.97–2.53) | ||
Tertile 2 (15–29) | 99 | 34 | 21 | 1.37 (0.94–1.99) | 34 | 21 | 1.49 (0.95–2.35) | ||
Tertile 3 (<15) | 80 | 39 | 13 | 1.24 (0.85–1.81) | 39 | 13 | 1.41 (0.91–2.19) | ||
Ptrend 0.02 | Ptrend 0.05 | ||||||||
No. of cigarettes per day b | |||||||||
Never | 369 | 175 | 118 | Ref. | 0.05 | 68 | 35 | Ref. | 0.04 |
<10 | 90 | 28 | 17 | 1.54 (1.02–2.32) | 28 | 17 | 1.75 (1.10–2.77) | ||
10–19 | 105 | 49 | 24 | 1.19 (0.84–1.68) | 49 | 24 | 1.32 (0.87–1.99) | ||
≥20 | 132 | 45 | 25 | 1.44 (1.04–2.01) | 45 | 25 | 1.59 (1.07–2.38) | ||
Ptrend 0.06 | Ptrend 0.08 | ||||||||
Duration of cigarette smoking (years) b | |||||||||
Never | 369 | 175 | 118 | Ref. | 0.04 | 68 | 35 | Ref. | 0.07 |
Tertile 1 (≤13) | 114 | 45 | 28 | 1.24 (0.87–1.76) | 45 | 28 | 1.35 (0.89–2.06) | ||
Tertile 2 (14–27) | 106 | 49 | 16 | 1.42 (0.99–2.03) | 49 | 16 | 1.60 (1.05–2.44) | ||
Tertile 3 (>27) | 119 | 33 | 25 | 1.53 (1.07–2.18) | 33 | 25 | 1.64 (1.07–2.51) | ||
Ptrend < 0.01 | Ptrend 0.01 | ||||||||
Lifetime cigarette exposure (pack-years) b | |||||||||
Never | 369 | 175 | 118 | Ref. | 0.05 | 68 | 35 | Ref. | 0.23 |
Tertile 1 (<6.8) | 111 | 40 | 21 | 1.43 (0.98–2.06) | 40 | 21 | 1.60 (1.05–2.46) | ||
Tertile 2 (6.8–19.9) | 102 | 49 | 22 | 1.16 (0.81–1.67) | 49 | 22 | 1.33 (0.87–2.05) | ||
Tertile 3 (≥20.0) | 113 | 33 | 23 | 1.56 (1.10–2.22) | 33 | 23 | 1.66 (1.09–2.53) | ||
Ptrend 0.02 | Ptrend 0.06 |
Passive Smoking | Cases | Related Controls | Unrelated Controls | OR (95% CI) a | p |
---|---|---|---|---|---|
Never smokers with no passive smoking exposure | 109 | 68 | 35 | Ref. | |
Childhood only passive smoking b | |||||
Intensity (no. of smokers) b | |||||
1 | 109 | 38 | 37 | 1.22 (0.82–1.82) | 0.05 |
2 | 46 | 28 | 19 | 0.85 (0.52–1.38) | |
>2 | 67 | 21 | 13 | 1.84 (1.11–3.04) | |
Ptrend 0.09 | |||||
Duration (years) b | |||||
1–6 | 72 | 25 | 26 | 1.23 (0.78–1.95) | 0.62 |
7–10 | 67 | 31 | 17 | 1.23 (0.78–1.95) | |
>10 | 73 | 31 | 23 | 1.18 (0.76–1.84) | |
Adulthood only passive smoking b | |||||
Intensity (no. of smokers) b | |||||
1 | 41 | 23 | 17 | 0.94 (0.52–1.68) | 0.42 |
2–4 | 55 | 31 | 15 | 1.01 (0.60–1.69) | |
>4 | 65 | 21 | 18 | 1.44 (0.87–2.39) | |
Ptrend 0.22 | |||||
Duration (years) b | |||||
≤6 | 35 | 19 | 17 | 0.88 (0.50–1.56) | 0.39 |
7–18 | 60 | 27 | 16 | 1.21 (0.74–1.99) | |
>18 | 58 | 28 | 14 | 1.32 (0.78–2.27) | |
Ptrend 0.21 | |||||
Childhood and adulthood passive smoking b | 259 | 108 | 83 | 1.20 (0.85–1.68) | 0.30 |
Social venue passive smoking as an adult b | |||||
Duration (years) b | |||||
≤2 | 56 | 20 | 17 | 1.27 (0.74–2.17) | 0.57 |
>2 | 29 | 19 | 4 | 1.00 (0.48–2.09) |
Exposures | Cases | Related Controls | Unrelated Controls | OR (95% CI) a | p |
---|---|---|---|---|---|
Alcohol intake | |||||
No | 79 | 31 | 24 | Ref. | 0.10 |
Yes | 630 | 272 | 163 | 1.00 (0.69–1.46) | |
Frequency of any alcohol intake (per week) | |||||
None | 79 | 31 | 24 | Ref. | 0.45 |
<once | 183 | 82 | 44 | 1.09 (0.71–1.68) | |
once | 66 | 21 | 17 | 1.23 (0.71–2.15) | |
>once | 381 | 169 | 102 | 0.93 (0.63–1.36) | |
Quantity of any alcohol intake (grams of ethanol/day) b | |||||
None | 79 | 31 | 24 | Ref. | 0.18 |
>5.20 | 210 | 94 | 58 | 1.10 (0.72–1.69) | |
5.20–19.70 | 221 | 80 | 58 | 1.09 (0.71–1.67) | |
>19.70 | 198 | 98 | 46 | 0.81 (0.54–1.23) | |
Ptrend 0.14 | |||||
Beer intake | |||||
No | 232 | 125 | 75 | Ref. | 0.82 |
Yes | 398 | 147 | 88 | 1.04 (0.74–1.45) | |
Frequency of beer intake (per week) | |||||
None | 232 | 125 | 75 | Ref. | 0.95 |
<once | 179 | 72 | 39 | 1.06 (0.74–1.51) | |
once | 55 | 18 | 16 | 0.92 (0.52–1.59) | |
>once | 164 | 57 | 33 | 1.05 (0.69–1.61) | |
Quantity of beer intake (grams of ethanol/day) b | |||||
None | 232 | 125 | 75 | Ref. | 0.87 |
<1.46 | 150 | 61 | 33 | 1.08 (0.75–1.75) | |
1.46–7.76 | 112 | 33 | 30 | 0.93 (0.59–1.44) | |
>7.76 | 134 | 53 | 25 | 0.93 (0.58–1.47) | |
Ptrend 0.66 | |||||
Quantity of beer that was light beer b | |||||
None | 232 | 125 | 75 | Ref. | 0.45 |
Almost none | 190 | 73 | 45 | 0.90 (0.62–1.32) | |
Less than half | 38 | 19 | 8 | 0.79 (0.43–1.45) | |
About half | 46 | 19 | 8 | 1.03 (0.57–1.86) | |
More than half | 17 | 9 | 3 | 0.70 (0.29–1.67) | |
All or almost all | 101 | 27 | 23 | 1.32 (0.85–2.05) | |
Wine intake | |||||
No | 82 | 28 | 15 | Ref. | 0.53 |
Yes | 548 | 244 | 148 | 0.87 (0.58–1.32) | |
Frequency of wine intake (per week) | |||||
None | 82 | 28 | 15 | Ref. | 0.21 |
<once | 191 | 79 | 44 | 0.99 (0.62–1.60) | |
once | 77 | 22 | 14 | 1.35 (0.76–2.39) | |
>once | 280 | 143 | 90 | 0.74 (0.48–1.12) | |
Quantity of wine intake (grams of ethanol/day) b | |||||
None | 82 | 28 | 15 | Ref. | 0.29 |
<2.98 | 224 | 84 | 55 | 1.09 (0.68–1.73) | |
2.98–14.49 | 186 | 77 | 53 | 0.88 (0.57–1.38) | |
>14.49 | 137 | 83 | 39 | 0.67 (0.42–1.06) | |
Ptrend 0.27 | |||||
Quantity of wine that was red wine b | |||||
None | 82 | 28 | 15 | Ref. | 0.78 |
Almost none | 142 | 66 | 55 | 0.84 (0.52–1.34) | |
Less than half | 79 | 34 | 19 | 0.91 (0.54–1.55) | |
About half | 103 | 46 | 26 | 0.87 (0.53–1.43) | |
More than half | 53 | 31 | 12 | 0.70 (0.40–1.22) | |
All or almost all | 170 | 67 | 35 | 0.98 (0.61–1.56) | |
Spirit intake | |||||
No | 274 | 121 | 70 | Ref. | 0.85 |
Yes | 356 | 151 | 93 | 1.03 (0.79–1.33) | |
Frequency of spirit intake (per week) | |||||
None | 274 | 121 | 70 | Ref. | 0.98 |
<once | 263 | 119 | 67 | 1.02 (0.77–1.35) | |
once | 40 | 12 | 8 | 1.27 (0.71–2.26) | |
>once | 53 | 20 | 18 | 0.89 (0.55–1.44) | |
Quantity of spirit intake (grams of ethanol/day) | |||||
None | 274 | 121 | 70 | Ref. | 0.97 |
<0.24 | 132 | 61 | 35 | 0.99 (0.71–1.38) | |
0.24–1.23 | 113 | 48 | 26 | 1.04 (0.70–1.54) | |
>1.23 | 111 | 42 | 32 | 0.93 (0.64–1.34) |
Exposures | No. of Deaths/Person-Months | Reference Category Included Passive Smoking | Reference Category Excluded Passive Smokers | ||
---|---|---|---|---|---|
HR (95% CI) a | p | HR (95% CI) a | p | ||
All-cause mortality | |||||
Smoking status | |||||
Never | 18/31,022 | Ref. | 0.10 | Ref. | 0.34 |
Ever | 31/27,802 | 1.65 (0.91–2.98) | 1.59 (0.61–4.15) | ||
Smoking status | |||||
Never | 18/31,022 | Ref. | <0.01 | Ref. | 0.01 |
Former | 20/22,572 | 1.27 (0.67–2.41) | 1.20 (0.45–3.18) | ||
Current | 11/5230 | 3.90 (1.79–8.53) | 3.69 (1.26–10.82) | ||
Age started smoking (years) | |||||
Never | 18/31,022 | Ref. | 0.23 | Ref. | 0.53 |
≥18 | 16/14,022 | 1.61 (0.79–3.27) | 1.55 (0.55–4.33) | ||
<18 | 15/13,698 | 1.71 (0.87–3.37) | 1.66 (0.60–4.59) | ||
Years since quitting smoking | |||||
Never | 18/31,022 | Ref. | 0.24 | Ref. | 0.24 |
≥20 | 10/13,883 | 0.98 (0.45–2.16) | 0.98 (0.45–2.16) | ||
<20 | 10/8689 | 1.87 (0.86–4.06) | 1.87 (0.86–4.06) | ||
No. of cigarettes per day b | |||||
Never~~~Former smokers | 18/31,022 | Ref. | Ref. | ||
<20 | 9/13,103 | 1.02 (0.46–2.28) | 0.73 | 0.97 (0.32–2.94) | 0.91 |
≥20 | 10/8860 | 1.55 (0.71–3.39) | 1.45 (0.59–4.32) | ||
Current smokers | |||||
<20 | 7/3073 | 5.10 (2.10–12.37) | <0.01 | 4.78 (1.51–15.12) | 0.02 |
≥20 | 4/1766 | 3.11 (0.91–10.59) | 2.95 (0.70–12.39) | ||
Duration of cigarette smoking (years) | |||||
Never | 18/31,022 | Ref. | <0.01 | Ref. | <0.01 |
Tertile 1 (≤13) | 4/9507 | 0.55 (0.16–1.87) | 0.54 (0.13–2.27) | ||
Tertile 2 (14–27) | 5/8783 | 0.91 (0.34–2.45) | 0.91 (0.26–3.17) | ||
Tertile 3 (>27) | 22/9430 | 3.24 (1.71–6.15) | 3.25 (1.20–8.83) | ||
Ptrend < 0.01 | Ptrend 0.01 | ||||
Lifetime cigarette exposure (pack-years) b | |||||
Never | 18/31,022 | Ref. | 0.04 | Ref. | 0.20 |
Tertile 1 (<6.8) | 5/9005 | 0.80 (0.28–2.35) | 0.82 (0.22–3.00) | ||
Tertile 2 (6.8–19.9) | 8/8628 | 1.50 (0.65–3.47) | 1.50 (0.48–4.65) | ||
Tertile 3 (≥20.0) | 17/9088 | 2.54 (1.29–5.00) | 2.51 (0.90–7.00) | ||
Ptrend 0.01 | Ptrend 0.10 | ||||
FL-specific mortality | |||||
Smoking status | |||||
Never | 9/31,022 | Ref. | 0.41 | Ref. | 0.45 |
Ever | 14/27,802 | 1.43 (0.61–3.39) | 1.77 (0.39–7.95) | ||
Smoking status | |||||
Never | 9/31,022 | Ref. | 0.18 | Ref. | 0.18 |
Former | 9/22,572 | 1.16 (0.45–2.95) | 1.16 (0.45–2.95) | ||
Current | 5/5230 | 2.97 (0.91–9.72) | 2.97 (0.91–9.72) | ||
Lifetime cigarette exposure (pack-years) b | |||||
Never | 9/31,022 | Ref. | 0.77 | Ref. | 0.46 |
<20 | 7/17,633 | 1.09 (0.39–3.08) | 1.14 (0.40–3.21) | ||
≥20 | 6/9088 | 1.67 (0.59–4.77) | 1.87 (0.68–5.13) |
Passive Smoking | Person-Months | No. of Deaths | All-Cause Mortality | |
---|---|---|---|---|
HR (95% CI) a | p | |||
Never smokers with no passive smoking exposure | 9055 | 5 | Ref. | |
Childhood only passive smoking | ||||
Intensity (no. of smokers) | ||||
<2 | 9517 | 6 | 0.97 (0.29–3.28) | 0.97 |
≥2 | 9475 | 5 | 0.87 (0.25–3.06) | |
Duration (years) | ||||
<7 | 6029 | 4 | 0.97 (0.26–3.71) | 0.19 |
≥7 | 11,982 | 7 | 0.97 (0.30–3.10) | |
Adulthood only passive smoking | ||||
Intensity (no. of smokers) | ||||
≤4 | 8056 | 6 | 1.24 (0.37–4.17) | 0.84 |
>4 | 5470 | 5 | 1.47 (0.41–5.22) | |
Duration (years) b | ||||
≤18 | 7982 | 6 | 1.37 (0.42–4.39) | 0.79 |
>18 | 4964 | 4 | 1.34 (0.34–5.20) | |
Childhood and adulthood passive smoking | 21,875 | 13 | 0.95 (0.33–2.70) | 0.92 |
Social venues passive smoking | 12,045 | 7 | 0.93 (0.35–2.46) | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odutola, M.K.; van Leeuwen, M.T.; Turner, J.; Bruinsma, F.; Seymour, J.F.; Prince, H.M.; Milliken, S.T.; Trotman, J.; Verner, E.; Tiley, C.; et al. Associations between Smoking and Alcohol and Follicular Lymphoma Incidence and Survival: A Family-Based Case-Control Study in Australia. Cancers 2022, 14, 2710. https://doi.org/10.3390/cancers14112710
Odutola MK, van Leeuwen MT, Turner J, Bruinsma F, Seymour JF, Prince HM, Milliken ST, Trotman J, Verner E, Tiley C, et al. Associations between Smoking and Alcohol and Follicular Lymphoma Incidence and Survival: A Family-Based Case-Control Study in Australia. Cancers. 2022; 14(11):2710. https://doi.org/10.3390/cancers14112710
Chicago/Turabian StyleOdutola, Michael K., Marina T. van Leeuwen, Jennifer Turner, Fiona Bruinsma, John F. Seymour, Henry M. Prince, Samuel T. Milliken, Judith Trotman, Emma Verner, Campbell Tiley, and et al. 2022. "Associations between Smoking and Alcohol and Follicular Lymphoma Incidence and Survival: A Family-Based Case-Control Study in Australia" Cancers 14, no. 11: 2710. https://doi.org/10.3390/cancers14112710
APA StyleOdutola, M. K., van Leeuwen, M. T., Turner, J., Bruinsma, F., Seymour, J. F., Prince, H. M., Milliken, S. T., Trotman, J., Verner, E., Tiley, C., Roncolato, F., Underhill, C. R., Opat, S. S., Harvey, M., Hertzberg, M., Benke, G., Giles, G. G., & Vajdic, C. M. (2022). Associations between Smoking and Alcohol and Follicular Lymphoma Incidence and Survival: A Family-Based Case-Control Study in Australia. Cancers, 14(11), 2710. https://doi.org/10.3390/cancers14112710