Multivariate Risk Analysis of RAS, BRAF and EGFR Mutations Allelic Frequency and Coexistence as Colorectal Cancer Predictive Biomarkers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genomic DNA (gDNA) Isolation from Fresh Frozen CRC Tissue Samples
2.3. Restriction Digest of the Isolated gDNA Sample Prior to Droplet Generation
2.4. CRC Tumors Tissue KRAS G12/G13, KRAS Q61, NRAS G12/G13, NRAS Q61, EGFR Exon 19 Deletion and BRAF V600 Mutations Analysis via Droplet Digital PCR
2.5. Statistics Analyses
2.5.1. Classes of Variables Used in This Study
2.5.2. Data Transformations
2.5.3. Risk Estimation
2.5.4. Mutations Coexistence
2.5.5. Predictor and Outcome Variables
2.5.6. Statistical Analysis Steps
3. Results
3.1. Mutations’ Prevalence and the Coexistence of Mutations
3.2. Association between Clinical Data and Mutational Status
3.3. Morphopathological Association with Mutations Presence
3.3.1. Tumor Localization
3.3.2. Tumor Differentiation
3.3.3. HP Phenotypes
3.3.4. Limits of Invasion
3.3.5. Desmoplastic Reaction
3.3.6. Lymphovascular and Perineural Invasion
3.3.7. Other invasion Features
3.3.8. Inflammatory Infiltrate
3.3.9. ypTNM and AJCC Stagings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, K.H.; Choi, J.Y.; Lim, A.-R.; Kim, J.W.; Choi, Y.J.; Lee, S.; Sung, J.S.; Chung, H.-J.; Jang, B.; Yoon, D.; et al. Genomic Landscape and Clinical Utility in Korean Advanced Pan-Cancer Patients from Prospective Clinical Sequencing: K-MASTER Program. Cancer Discov. 2022, 12, 938–948. [Google Scholar] [CrossRef]
- Vitale, I.; Shema, E.; Loi, S.; Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 2021, 27, 212–224. [Google Scholar] [CrossRef] [PubMed]
- El-Sayes, N.; Vito, A.; Mossman, K. Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy. Cancers 2021, 13, 806. [Google Scholar] [CrossRef] [PubMed]
- Isnaldi, E.; Garuti, A.; Cirmena, G.; Scabini, S.; Rimini, E.; Ferrando, L.; Lia, M.; Murialdo, R.; Tixi, L.; Carminati, E.; et al. Clinico-pathological associations and concomitant mutations of the RAS/RAF pathway in metastatic colorectal cancer. J. Transl. Med. 2019, 17, 137. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Y.; Huang, Y.; Jin, J.; Zou, S.; Zhang, X.; Li, H.; Feng, T.; Chen, J.; Zuo, Z.; et al. Genome landscapes of rectal cancer before and after preoperative chemoradiotherapy. Theranostics 2019, 9, 6856–6866. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.P.; Rai, S.; Pandey, A.; Singh, N.K.; Srivastava, S. Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes Dis. 2021, 8, 133–145. [Google Scholar] [CrossRef]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Sanchez-Ibarra, H.E.; Jiang, X.; Gallegos-Gonzalez, E.Y.; Cavazos-González, A.C.; Chen, Y.; Morcos, F.; Barrera-Saldaña, H.A. KRAS, NRAS, and BRAF mutation prevalence, clinicopathological association, and their application in a predictive model in Mexican patients with metastatic colorectal cancer: A retrospective cohort study. PLoS ONE 2020, 15, e0235490. [Google Scholar] [CrossRef]
- Hagan, S.; Orr, M.C.M.; Doyle, B. Targeted therapies in colorectal cancer—An integrative view by PPPM. EPMA J. 2013, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Jančík, S.; Drábek, J.; Radzioch, D.; Hajdúch, M. Clinical Relevance of KRAS in Human Cancers. J. Biomed. Biotechnol. 2010, 2010, 150960. [Google Scholar] [CrossRef] [Green Version]
- Simanshu, D.K.; Morrison, D.K. A Structure Is Worth a Thousand Words: New Insights for RAS and RAF Regulation. Cancer Discov. 2022, 12, 899–912. [Google Scholar] [CrossRef] [PubMed]
- Koveitypour, Z.; Panahi, F.; Vakilian, M.; Peymani, M.; Seyed Forootan, F.; Nasr Esfahani, M.H.; Ghaedi, K. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019, 9, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bootsma, S.; van Neerven, S.M.; Vermeulen, L. Exploiting KRAS-mediated metabolic reprogramming as a therapeutic target. Nat. Genet. 2021, 53, 9–10. [Google Scholar] [CrossRef] [PubMed]
- Akhave, N.S.; Biter, A.B.; Hong, D.S. Mechanisms of resistance to KRASG12C-targeted therapy. Cancer Discov. 2021, 11, 1345–1352. [Google Scholar] [CrossRef]
- Amodio, V.; Yaeger, R.; Arcella, P.; Cancelliere, C.; Lamba, S.; Lorenzato, A.; Arena, S.; Montone, M.; Mussolin, B.; Bian, Y.; et al. EGFR blockade reverts resistance to KRAS G12C inhibition in colorectal cancer. Cancer Discov. 2020, 10, 1129–1139. [Google Scholar] [CrossRef]
- Barresi, V.; Bonetti, L.R.; Bettelli, S. KRAS, NRAS, BRAF mutations and high counts of poorly differentiated clusters of neoplastic cells in colorectal cancer: Observational analysis of 175 cases. Pathology 2015, 47, 551–556. [Google Scholar] [CrossRef]
- Rimbert, J.; Tachon, G.; Junca, A.; Villalva, C.; Karayan-Tapon, L.; Tougeron, D. Association between clinicopathological characteristics and RAS mutation in colorectal cancer. Mod. Pathol. 2018, 31, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Rosty, C.; Young, J.P.; Walsh, M.D.; Clendenning, M.; Walters, R.J.; Pearson, S.; Pavluk, E.; Nagler, B.; Pakenas, D.; Jass, J.R.; et al. Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod. Pathol. 2013, 26, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Xu, C.W.; Shao, Y.; Wang, H.T.; Wu, Y.F.; Song, Y.Y.; Li, X.B.; Zhang, Z.; Wang, W.J.; Li, L.Q.; et al. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation. Exp. Ther. Med. 2015, 9, 1383–1388. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, A.C.; Wood, B.A.; Ardakani, N.M.; Pereira, M.R.; Pearce, R.; Cowell, L.; Robinson, C.; Grieu-Iacopetta, F.; Spicer, A.J.; Amanuel, B.; et al. Droplet Digital PCR for Mutation Detection in Formalin-Fixed, Paraffin-Embedded Melanoma Tissues: A Comparison with Sanger Sequencing and Pyrosequencing. J. Mol. Diagn. 2018, 20, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Ye, P.; Cai, P.; Xie, J.; Wei, Y. The diagnostic accuracy of digital PCR, ARMS and NGS for detecting KRAS mutation in cell-free DNA of patients with colorectal cancer: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0248775. [Google Scholar] [CrossRef] [PubMed]
- Aronne, L.J. Classification of Obesity and Assessment of Obesity-Related Health Risks. Obes. Res. 2002, 10, 105S–115S. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-W.; Cho, S.; Shin, A.; Han, S.-W.; Kim, T.-Y. Body mass index and body weight change during adjuvant chemotherapy in colon cancer patients: Results from the AVANT trial. Sci. Rep. 2020, 10, 19467. [Google Scholar] [CrossRef] [PubMed]
- Geicu, O.I.; Stanca, L.; Voicu, S.N.; Dinischiotu, A.; Bilteanu, L.; Serban, A.I.; Calu, V. Dietary AGEs involvement in colonic inflammation and cancer: Insights from an in vitro enterocyte model. Sci. Rep. 2020, 10, 2754. [Google Scholar] [CrossRef] [Green Version]
- Hackner, K.; Buder, A.; Hochmair, M.J.; Strieder, M.; Grech, C.; Fabikan, H.; Burghuber, O.C.; Errhalt, P.; Filipits, M. Detection of EGFR Activating and Resistance Mutations by Droplet Digital PCR in Sputum of EGFR-Mutated NSCLC Patients. Clin. Med. Insights Oncol. 2021, 15, 1179554921993072. [Google Scholar] [CrossRef]
- Sacher, A.G.; Paweletz, C.; Dahlberg, S.E.; Alden, R.S.; O’Connell, A.; Feeney, N.; Mach, S.L.; Jänne, P.A.; Oxnard, G.R. Prospective Validation of Rapid Plasma Genotyping for the Detection of EGFR and KRAS Mutations in Advanced Lung Cancer. JAMA Oncol. 2016, 2, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Oxnard, G.R.; Paweletz, C.P.; Kuang, Y.; Mach, S.L.; O’Connell, A.; Messineo, M.M.; Luke, J.J.; Butaney, M.; Kirschmeier, P.; Jackman, D.M.; et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin. Cancer Res. 2014, 20, 1698–1705. [Google Scholar] [CrossRef] [Green Version]
- Michaelidou, K.; Koutoulaki, C.; Mavridis, K.; Vorrias, E.; Papadaki, M.A.; Koutsopoulos, A.V.; Mavroudis, D.; Agelaki, S. Detection of KRAS G12/G13 Mutations in Cell Free-DNA by Droplet Digital PCR, Offers Prognostic Information for Patients with Advanced Non-Small Cell Lung Cancer. Cells 2020, 9, 2514. [Google Scholar] [CrossRef]
- Dong, L.; Wang, S.; Fu, B.; Wang, J. Evaluation of droplet digital PCR and next generation sequencing for characterizing DNA reference material for KRAS mutation detection. Sci. Rep. 2018, 8, 9650. [Google Scholar] [CrossRef] [Green Version]
- Gonsalves, W.I.; Mahoney, M.R.; Sargent, D.J.; Nelson, G.D.; Alberts, S.R.; Sinicrope, F.A.; Goldberg, R.M.; Limburg, P.J.; Thibodeau, S.N.; Grothey, A.; et al. Patient and Tumor Characteristics and BRAF and KRAS Mutations in Colon Cancer, NCCTG/Alliance N0147. J. Natl. Cancer Inst. 2014, 106, dju106. [Google Scholar] [CrossRef]
- Negru, S.; Papadopoulou, E.; Apessos, A.; Stanculeanu, D.L.; Ciuleanu, E.; Volovat, C.; Croitoru, A.; Kakolyris, S.; Aravantinos, G.; Ziras, N.; et al. KRAS, NRAS and BRAF mutations in Greek and Romanian patients with colorectal cancer: A cohort study. BMJ Open 2014, 4, e004652. [Google Scholar] [CrossRef] [PubMed]
- Ducreux, M.; Chamseddine, A.; Laurent-Puig, P.; Smolenschi, C.; Hollebecque, A.; Dartigues, P.; Samallin, E.; Boige, V.; Malka, D.; Gelli, M. Molecular targeted therapy of BRAF-mutant colorectal cancer. Ther. Adv. Med. Oncol. 2019, 11, 1758835919856494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, F.; Gong, H.; Zhao, H.; Chen, J.; Zhang, Y.; Zhang, L.; Shi, X.; Zhang, A.; Jin, H.; Zhang, J.; et al. Mutation status and prognostic values of KRAS, NRAS, BRAF and PIK3CA in 353 Chinese colorectal cancer patients. Sci. Rep. 2018, 8, 6076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.; Velho, S.; Moutinho, C.; Ferreira, A.; Preto, A.; Domingo, E.; Capelinha, A.F.; Duval, A.; Hamelin, R.; Machado, J.C.; et al. KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression. Oncogene 2007, 26, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Sahin, I.H.; Kazmi, S.M.A.; Yorio, J.T.; Bhadkamkar, N.A.; Kee, B.K.; Garrett, C.R. Rare Though Not Mutually Exclusive: A Report of Three Cases of Concomitant KRAS and BRAF Mutation and a Review of the Literature. J. Cancer 2013, 4, 320–322. [Google Scholar] [CrossRef] [Green Version]
- Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.; et al. K-ras Mutations and Benefit from Cetuximab in Advanced Colorectal Cancer. N. Engl. J. Med. 2008, 359, 1757–1765. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Wu, Y.; Huang, D.; Jin, Y.; Sheng, W.; Cai, S.; Zhou, X.; Zhu, X.; Liu, F.; Xu, Y. Prognostic Value of KRAS Exon 3 and Exon 4 Mutations in Colorectal Cancer Patients. J. Cancer 2021, 12, 5331–5337. [Google Scholar] [CrossRef]
- Calu, V.; Ionescu, A.; Stanca, L.; Geicu, O.I.; Iordache, F.; Pisoschi, A.M.; Serban, A.I.; Bilteanu, L. Key biomarkers within the colorectal cancer related inflammatory microenvironment. Sci. Rep. 2021, 11, 7940. [Google Scholar] [CrossRef]
- Tapial, S.; Olmedillas-López, S.; Rueda, D.; Arriba, M.; García, J.L.; Vivas, A.; Pérez, J.; Pena-Couso, L.; Olivera, R.; Rodríguez, Y.; et al. Cimp-Positive Status is More Representative in Multiple Colorectal Cancers than in Unique Primary Colorectal Cancers. Sci. Rep. 2019, 9, 10516. [Google Scholar] [CrossRef]
- Weisenberger, D.J.; Liang, G.; Lenz, H.J. DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene 2018, 37, 566–577. [Google Scholar] [CrossRef]
- El Agy, F.; El Bardai, S.; El Otmani, I.; Benbrahim, Z.; Karim, I.M.H.; Mazaz, K.; Benjelloun, E.B.; Ousadden, A.; El Abkari, M.; Ibrahimi, S.A.; et al. Mutation status and prognostic value of KRAS and NRAS mutations in Moroccan colon cancer patients: A first report. PLoS ONE 2021, 16, e0248522. [Google Scholar] [CrossRef] [PubMed]
- Sorbye, H.; Dragomir, A.; Sundström, M.; Pfeiffer, P.; Thunberg, U.; Bergfors, M.; Aasebø, K.; Eide, G.E.; Ponten, F.; Qvortrup, C.; et al. High BRAF Mutation Frequency and Marked Survival Differences in Subgroups According to KRAS/BRAF Mutation Status and Tumor Tissue Availability in a Prospective Population-Based Metastatic Colorectal Cancer Cohort. PLoS ONE 2015, 10, e0131046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffy, M.J. Personalised treatment for cancer: Role of biomarkers. EPMA J. 2014, 5, A23. [Google Scholar] [CrossRef] [Green Version]
AF‰ | 0.0 ≤ AF‰ < 0.1 | 0.1 ≤ AF‰ < 1.0 | AF‰ ≥ 1 | AF‰ ≥ 0.1 | ||||
---|---|---|---|---|---|---|---|---|
Mutation type | N | % | N | % | N | % | N | % |
KRAS Q61 | 16 | 26.7 | 31 | 51.7 | 13 | 21.7 | 44 | 73.3 |
KRAS G12/G13 | 0 | 0.0 | 2 | 3.3 | 58 | 96.7 | 60 | 100.0 |
NRAS Q61 | 33 | 55.0 | 18 | 30.0 | 9 | 15.0 | 27 | 45.0 |
NRAS G12/G13 | 15 | 25.0 | 30 | 50.0 | 15 | 25.0 | 45 | 75.0 |
BRAF | 45 | 75.0 | 8 | 13.3 | 7 | 11.7 | 15 | 25.0 |
EGFR | 57 | 95.0 | 0 | 0.0 | 3 | 5.0 | 3 | 5.0 |
AF‰ | AF‰ ≥ 0.1 | AF‰ ≥ 1 | ||
Concomitant mutations | N | % | N | % |
0 | 0 | 0.0 | 2 | 3.3 |
1 | 1 | 1.7 | 20 | 33.3 |
2 | 11 | 18.3 | 28 | 46.7 |
3 | 26 | 43.3 | 10 | 16.7 |
4 | 17 | 28.3 | ||
5 | 5 | 8.3 | ||
Total | 60 | 100.0 | 60 | 100.0 |
KRAS G12/G13 | NRAS Q61 | NRAS G12/G13 | BRAF | EGFR | |||||||
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
KRAS Q61 | 0 | 0 | 16 | 7 | 9 | 4 | 12 | 12 | 4 | 14 | 2 |
0% | 26.7% | 11.7% | 15.0% | 6.7% | 20.0% | 20.0% | 6.7% | 23.3% | 3.3% | ||
1 | 0 | 44 | 26 | 18 | 11 | 33 | 33 | 11 | 43 | 1 | |
0% | 73.3% | 43.3% | 30.0% | 18.3% | 55.0% | 55.0% | 18.3% | 71.7% | 1.7% | ||
KRAS G12/G13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | ||||
1 | 33 | 27 | 15 | 45 | 45 | 15 | 57 | 3 | |||
55.0% | 45.0% | 25.0% | 75.0% | 75.0% | 25.0% | 95.0% | 5.0% | ||||
NRAS Q61 | 0 | 8 | 25 | 25 | 8 | 30 | 3 | ||||
13.3% | 41.7% | 41.7% | 13.3% | 50.0% | 5.0% | ||||||
1 | 7 | 20 | 20 | 7 | 27 | 0 | |||||
11.7% | 33.3% | 33.3% | 11.7% | 45.0% | 0.0% | ||||||
NRAS G12/G13 | 0 | 14 | 1 | 15 | 0 | ||||||
23.3% | 1.7% | 25.0% | 0.0% | ||||||||
1 | 31 | 14 | 42 | 3 | |||||||
51.7% | 23.3% | 70.0% | 5.0% | ||||||||
BRAF | 0 | 42 | 3 | ||||||||
70.0% | 5.0% | ||||||||||
1 | 15 | 0 | |||||||||
25.0% | 0.0% | ||||||||||
EGFR | 0 | ||||||||||
1 | |||||||||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ionescu, A.; Bilteanu, L.; Geicu, O.I.; Iordache, F.; Stanca, L.; Pisoschi, A.M.; Miron, A.; Serban, A.I.; Calu, V. Multivariate Risk Analysis of RAS, BRAF and EGFR Mutations Allelic Frequency and Coexistence as Colorectal Cancer Predictive Biomarkers. Cancers 2022, 14, 2792. https://doi.org/10.3390/cancers14112792
Ionescu A, Bilteanu L, Geicu OI, Iordache F, Stanca L, Pisoschi AM, Miron A, Serban AI, Calu V. Multivariate Risk Analysis of RAS, BRAF and EGFR Mutations Allelic Frequency and Coexistence as Colorectal Cancer Predictive Biomarkers. Cancers. 2022; 14(11):2792. https://doi.org/10.3390/cancers14112792
Chicago/Turabian StyleIonescu, Adriana, Liviu Bilteanu, Ovidiu Ionut Geicu, Florin Iordache, Loredana Stanca, Aurelia Magdalena Pisoschi, Adrian Miron, Andreea Iren Serban, and Valentin Calu. 2022. "Multivariate Risk Analysis of RAS, BRAF and EGFR Mutations Allelic Frequency and Coexistence as Colorectal Cancer Predictive Biomarkers" Cancers 14, no. 11: 2792. https://doi.org/10.3390/cancers14112792
APA StyleIonescu, A., Bilteanu, L., Geicu, O. I., Iordache, F., Stanca, L., Pisoschi, A. M., Miron, A., Serban, A. I., & Calu, V. (2022). Multivariate Risk Analysis of RAS, BRAF and EGFR Mutations Allelic Frequency and Coexistence as Colorectal Cancer Predictive Biomarkers. Cancers, 14(11), 2792. https://doi.org/10.3390/cancers14112792