Bone Turnover Marker (BTM) Changes after Denosumab in Giant Cell Tumors of Bone (GCTB): A Phase II Trial Correlative Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Patients
2.2. sBTM Expression Levels in Serum Analysis
2.3. Statistics
3. Results
3.1. Clinical Presentation
3.2. Serum Bone Turnover Markers (sBMT)
3.3. Serum Bone Turnover Markers (sBMTs)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendenhall, W.M.; Zlotecki, R.A.; Scarborough, M.T.; Gibbs, C.P.; Mendenhall, N.P. Giant Cell Tumor of Bone. Am. J. Clin. Oncol. 2006, 29, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Boriani, S.; Bandiera, S.; Casadei, R.; Boriani, L.; Donthineni, R.; Gasbarrini, A.; Pignotti, E.; Biagini, R.; Schwab, J.H. Giant Cell Tumor of the Mobile Spine: A Review of 49 Cases. Spine 2012, 37, E37–E45. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, L.; Biasini, C.; Monfredo, M.; Maniscalco, P.; Mori, M. Giant cell tumor of bone. Oncologist 2014, 19, 1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.M.; Skubitz, K.M. Giant cell tumor of bone. Curr. Opin. Oncol. 2009, 21, 338–344. [Google Scholar] [CrossRef]
- Gorunova, L.; von Steyyen, F.V.; Storlazzi, C.T.; Bjerkehagen, B.; Folleras, G.; Heim, S.; Mandahl, N.; Martens, F. Cytogenetic analysis of 101 giant cell tumors of bone: Nonrandom patterns of telomeric associations and other structural aberrations. Genes Chromosomes Cancer 2009, 48, 583–602. [Google Scholar] [CrossRef]
- Lee, J.C.; Liang, C.W.; Fletcher, C.D. Giant cell tumor of soft tissue is genetically distinct from its bone counterpart. Mod. Pathol. 2017, 30, 728–733. [Google Scholar] [CrossRef]
- Malawer, M.M.; Bickels, J.; Meller, I.; Buch, R.G.; Henshaw, R.M.; Kollender, Y. Cryosurgery in the Treatment of Giant Cell Tumor. A Long-Term Followup Study. Clin. Orthop. Relat. Res. 1999, 359, 176–188. [Google Scholar] [CrossRef] [Green Version]
- Yip, K.M.; Leung, P.C.; Kumta, S.M. Giant Cell Tumor of Bone. Clin. Orthop. Relat. Res. 1996, 60–64. [Google Scholar] [CrossRef]
- Errani, C.; Ruggieri, P.; Asenzio, M.A.N.; Toscano, A.; Colangeli, S.; Rimondi, E.; Rossi, G.; Longhi, A.; Mercuri, M. Giant Cell Tumor of the Extremity: A Review of 349 Cases from a Single Institution. Cancer Treat. Rev. 2010, 36, 1–7. [Google Scholar] [CrossRef]
- Chawla, S.; Blay, J.Y.; Rutkowski, P.; Le Cesne, A.; Reichardt, P.; Gelderblom, H.; Grimer, R.J.; Choy, E.; Skubitz, K.; Seeger, L.; et al. Denosumab in Patients with Giant-Cell Tumor of Bone: A Multicentre, Open-Label, Phase 2 Study. Lancet Oncol. 2019, 20, 1719–1729. [Google Scholar] [CrossRef]
- Pagani, F.; Francucci, C.M.; Moro, L. Markers of Bone Turnover: Biochemical and Clinical Perspectives. J. Endocrinol. Investig. 2005, 28, 8–13. [Google Scholar]
- D’Oronzo, S.; Brown, J.; Coleman, R. The Value of Biomarkers in Bone Metastasis. Eur. J. Cancer Care 2017, 26, e12725. [Google Scholar] [CrossRef]
- Huang, J.C.; Sakata, T.; Pfleger, L.L.; Bencsik, M.; Halloran, B.P.; Bikle, D.D.; Nissenson, R.A. PTH Differentially Regulates Expression of RANKL and OPG. J. Bone Miner. Res. 2004, 19, 235–244. [Google Scholar] [CrossRef]
- Fu, Q.; Manolagas, S.C.; O’Brien, C.A. Parathyroid Hormone Controls Receptor Activator of NF-KappaB Ligand Gene Expression via a Distant Transcriptional Enhancer. Mol. Cell. Biol. 2006, 26, 6453–6468. [Google Scholar] [CrossRef] [Green Version]
- Coleman, R.E.; Major, P.; Lipton, A.; Brown, J.E.; Lee, K.-A.; Smith, M.; Saad, F.; Zheng, M.; Hei, Y.J.; Seaman, J.; et al. Predictive Value of Bone Resorption and Formation Markers in Cancer Patients with Bone Metastases Receiving the Bisphosphonate Zoledronic Acid. J. Clin. Oncol. 2005, 23, 4925–4935. [Google Scholar] [CrossRef]
- Fletcher, C.D.M.; Unni, K.K.; Mertens, F. Pathology and Genetics of Tumors of Soft Tissue and Bone, 3rd ed.; IARC Press: Lyon, France, 2002; ISBN 978-92-832-2413-6. [Google Scholar]
- Szendröi, M. Giant-Cell Tumor of Bone. J. Bone Jt. Surg. Br. 2004, 86, 5–12. [Google Scholar] [CrossRef]
- Dougall, W.C. Molecular pathways: Osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin. Cancer Res. 2012, 18, 326–335. [Google Scholar] [CrossRef] [Green Version]
- Lipton, A.; Goessl, C. Clinical Development of Anti-RANKL Therapies for Treatment and Prevention of Bone Metastasis. Bone 2011, 48, 96–99. [Google Scholar] [CrossRef]
- De Vita, A.; Vanni, S.; Miserocchi, G.; Fausti, V.; Pieri, F.; Spadazzi, C.; Cocchi, C.; Liverani, C.; Calabrese, C.; Casadei, R.; et al. A Rationale for the Activity of Bone Target Therapy and Tyrosine Kinase Inhibitor Combination in Giant Cell Tumor of Bone and Desmoplastic Fibroma: Translational Evidences. Biomedicines 2022, 10, 372. [Google Scholar] [CrossRef]
- Taylor, R.M.; Kashima, T.G.; Knowels, H.J.; Athanasou, N.A. VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: Implications for giant cell tumour pathobiology. Lab. Investig. 2012, 92, 1398–1406. [Google Scholar] [CrossRef]
- Ibrahim, T.; Ricci, M.; Scarpi, E.; Bongiovanni, A.; Ricci, R.; Riva, N.; Liverani, C.; De Vita, A.; La Manna, F.; Oboldi, D.; et al. RANKL: A promising circulating marker for bone metastasis response. Oncol. Lett. 2016, 12, 2970–2975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wülling, M.; Delling, G.; Kaiser, E. The Origin of the Neoplastic Stromal Cell in Giant Cell Tumor of Bone. Hum. Pathol. 2003, 34, 983–993. [Google Scholar] [CrossRef]
- Heymann, D. Anti-RANKL Therapy for Bone Tumors: Basic, Pre-Clinical and Clinical Evidences. J. Bone Oncol. 2012, 1, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Campanacci, L.; Sambri, A.; Medellin, M.R.; Cimatti, P.; Errani, C.; Donati, D.M. A New Computerized Tomography Classification to Evaluate Response to Denosumab in Giant Cell Tumors in the Extremities. Acta Orthop. Traumatol. Turc. 2019, 53, 376–380. [Google Scholar] [CrossRef]
- Palmerini, E.; Staals, E.L.; Jones, L.B.; Donati, D.M.; Longhi, A.; Randall, R.L. Role of (Neo)Adjuvant Denosumab for Giant Cell Tumor of Bone. Curr. Treat. Options Oncol. 2020, 21, 68. [Google Scholar] [CrossRef]
- Du, W.-X.; Duan, S.-F.; Chen, J.-J.; Huang, J.-F.; Yin, L.-M.; Tong, P.-J. Serum Bone-Specific Alkaline Phosphatase as a Biomarker for Osseous Metastases in Patients with Malignant Carcinomas: A Systematic Review and Meta-Analysis. J. Cancer Res. Ther. 2014, 10, 140. [Google Scholar] [CrossRef]
- Buch-Larsen, K.; Jørgensen, N.R.; Jensen, L.T.; Andersson, M.; Schwarz, P. Denosumab vs. Zoledronic Acid Treatment in Post-Menopausal Breast Cancer: A 2-Year Prospective Observational Study. Scand. J. Clin. Lab. Investig. 2021, 81, 425–431. [Google Scholar] [CrossRef]
- Brown, J.; Rathbone, E.; Hinsley, S.; Gregory, W.; Gossiel, F.; Marshall, H.; Burkinshaw, R.; Shulver, H.; Thandar, H.; Bertelli, G.; et al. Associations Between Serum Bone Biomarkers in Early Breast Cancer and Development of Bone Metastasis: Results from the AZURE (BIG01/04) Trial. J. Natl. Cancer Inst. 2018, 110, 871–879. [Google Scholar] [CrossRef] [Green Version]
- Scoccianti, G.; Totti, F.; Scorianz, M.; Baldi, G.; Roselli, G.; Beltrami, G.; Franchi, A.; Capanna, R.; Campanacci, D.A. Preoperative Denosumab With Curettage and Cryotherapy in Giant Cell Tumor of Bone: Is There an Increased Risk of Local Recurrence? Clin. Orthop. Relat. Res. 2018, 476, 1783–1790. [Google Scholar] [CrossRef]
- Kendler, D.L.; Roux, C.; Benhamou, C.L.; Brown, J.P.; Lillestol, M.; Siddhanti, S.; Man, H.-S.; San Martin, J.; Bone, H.G. Effects of Denosumab on Bone Mineral Density and Bone Turnover in Postmenopausal Women Transitioning from Alendronate Therapy. J. Bone Miner. Res. 2010, 25, 72–81. [Google Scholar] [CrossRef]
- Guise, T.A.; Mundy, G.R. Physiological and Pathological Roles of Parathyroid Hormone-Related Peptide. Curr. Opin. Nephrol. Hypertens. 1996, 5, 307–315. [Google Scholar] [CrossRef]
- D’Oronzo, S.; Coleman, R.; Brown, J.; Silvestris, F. Metastatic Bone Disease: Pathogenesis and Therapeutic Options: Up-Date on Bone Metastasis Management. J. Bone Oncol. 2018, 15, 100205. [Google Scholar] [CrossRef]
- Miller, P.D.; Pannacciulli, N.; Brown, J.P.; Czerwinski, E.; Nedergaard, B.S.; Bolognese, M.A.; Malouf, J.; Bone, H.G.; Reginster, J.-Y.; Singer, A.; et al. Denosumab or Zoledronic Acid in Postmenopausal Women With Osteoporosis Previously Treated With Oral Bisphosphonates. J. Clin. Endocrinol. Metab. 2016, 101, 3163–3170. [Google Scholar] [CrossRef] [Green Version]
- Bielack, S.S.; Kempf-Bielack, B.; Delling, G.; Exner, G.U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W.; et al. Prognostic Factors in High-Grade Osteosarcoma of the Extremities or Trunk: An Analysis of 1,702 Patients Treated on Neoadjuvant Cooperative Osteosarcoma Study Group Protocols. J. Clin. Oncol. 2002, 20, 776–790. [Google Scholar] [CrossRef]
Variation | Cohort 1 Unresectable (n = 8) | Cohort 2 Resectable (n = 43) | |
---|---|---|---|
Sex, n (%) | |||
Male | 5 (62.5) | 17 (39.5) | |
Female | 3 (37.5) | 26 (60.5) | |
Age | Median | 47.5 | 36 |
Range | 32–76 | 17–64 | |
Site, n (%) | |||
Femur | 1 (12.5) | 5 (12) | |
Tibia | 0 | 11 (26) | |
Calcaneus | 0 | 1 (2) | |
Humerus | 0 | 6 (14) | |
Radius | 0 | 12 (28) | |
Ulna | 0 | 1 (2) | |
Pelvis Sacrum | 7 (87.5) | 7 (16) | |
Size, n (%) | ≥5 | 6 (75) | 30 (70) |
<5 | 2 (25) | 13 (30) |
BTMs | Median (Min–Max) | p Value | |
---|---|---|---|
ALP | <5 cm | 68 (43–116) | 0.0512 |
≥5 cm | 86.5 (53–411) | ||
bALP | <5 cm | 12 (5.2–17.4) | 0.3112 |
≥5 cm | 13 (8.3–48.8) | ||
s-PTH | <5 cm | 35.7 (19.4–63.7) | 0.1601 |
≥5 cm | 28.3 (6.9–101.4) | ||
OCN | <5 cm | 20.4 (6–31.8) | 0.6753 |
>5 cm | 23.4 (2.9–47.3) | ||
s-CTX | <5 cm | 296 (23–943) | 0.0589 |
≥5 cm | 502.5 (159–1692) |
Variable | N. Patients | % 3-Year DFS | 95%CI | p Value |
---|---|---|---|---|
Overall | 51 | 65 | 52–79 | |
s-CTX * | ||||
High (≥500 pg/mL) | 21 | 45 | 23–67 | 0.03 |
Low (<500 pg/mL) | 29 | 75 | 59–91 | |
ALP * | ||||
High (≥80 UI/L) | 27 | 62 | 43–80 | 0.6 |
Low (<80 UI/L) | 23 | 69 | 49–88 | |
bALP ** | ||||
High (≥12 μg/L) | 27 | 69 | 51–87 | 0.5 |
Low (<12 μg/L) | 21 | 65 | 44–86 | |
sPTH * | ||||
High (≥30 pg/mL) | 23 | 63 | 42–83 | 0.7 |
Low (<30 pg/mL) | 27 | 66 | 48–84 | |
OCN * | ||||
High (≥20 ng/mL) | 29 | 65 | 48–83 | 0.9 |
Low (<20 ng/mL) | 21 | 64 | 42–86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmerini, E.; Pazzaglia, L.; Cevolani, L.; Pratelli, L.; Pierini, M.; Quattrini, I.; Carretta, E.; Manara, M.C.; Pasello, M.; Frega, G.; et al. Bone Turnover Marker (BTM) Changes after Denosumab in Giant Cell Tumors of Bone (GCTB): A Phase II Trial Correlative Study. Cancers 2022, 14, 2863. https://doi.org/10.3390/cancers14122863
Palmerini E, Pazzaglia L, Cevolani L, Pratelli L, Pierini M, Quattrini I, Carretta E, Manara MC, Pasello M, Frega G, et al. Bone Turnover Marker (BTM) Changes after Denosumab in Giant Cell Tumors of Bone (GCTB): A Phase II Trial Correlative Study. Cancers. 2022; 14(12):2863. https://doi.org/10.3390/cancers14122863
Chicago/Turabian StylePalmerini, Emanuela, Laura Pazzaglia, Luca Cevolani, Loredana Pratelli, Michela Pierini, Irene Quattrini, Elisa Carretta, Maria Cristina Manara, Michela Pasello, Giorgio Frega, and et al. 2022. "Bone Turnover Marker (BTM) Changes after Denosumab in Giant Cell Tumors of Bone (GCTB): A Phase II Trial Correlative Study" Cancers 14, no. 12: 2863. https://doi.org/10.3390/cancers14122863
APA StylePalmerini, E., Pazzaglia, L., Cevolani, L., Pratelli, L., Pierini, M., Quattrini, I., Carretta, E., Manara, M. C., Pasello, M., Frega, G., Paioli, A., Longhi, A., Cesari, M., Hakim, R., Ibrahim, T., Campanacci, L., Staals, E. L., Donati, D. M., Benassi, M. S., ... Ferrari, S. (2022). Bone Turnover Marker (BTM) Changes after Denosumab in Giant Cell Tumors of Bone (GCTB): A Phase II Trial Correlative Study. Cancers, 14(12), 2863. https://doi.org/10.3390/cancers14122863