Treatment-Interval Changes in Serum Levels of Albumin and Histidine Correlated with Treatment Interruption in Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma Completing Chemoradiotherapy under Recommended Calorie and Protein Provision
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. CCRT Treatment
2.3. Definition of Treatment Interruption
2.4. Provision of Recommended Calorie Support during CCRT
2.5. Clinicopathological Data
2.6. Biochemical Data and Blood NIBs
2.7. Body Composition Measurements
2.8. Ultrahigh-Performance Liquid Chromatography (UPLC)-Based Measurements
2.9. Statistical Analysis
3. Results
3.1. Treatment-Interval Changes of the Anthropometric Data, NIBs, DXA-Related Measurements, and Serum Metabolites in Patients with LAHNSCC Completing CCRT
3.2. Association of Treatment Interruption and Interval Changes in Serum Albumin and Histidine Concentrations of Patients with LAHNSCC during CCRT
3.3. Factors Associated with Treatment-Interval Changes in Albumin and Histidine Levels of Patients with LAHNSCC Completing CCRT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leoncini, E.; Vukovic, V.; Cadoni, G.; Giraldi, L.; Pastorino, R.; Arzani, D.; Petrelli, L.; Wunsch-Filho, V.; Toporcov, T.N.; Moyses, R.A.; et al. Tumour stage and gender predict recurrence and second primary malignancies in head and neck cancer: A multicentre study within the INHANCE consortium. Eur. J. Epidemiol. 2018, 33, 1205–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelstein, D.J.; Saxton, J.P.; Lavertu, P.; Tuason, L.; Wood, B.G.; Wanamaker, J.R.; Eliachar, I.; Strome, M.; Van Kirk, M.A. A phase III randomized trial comparing concurrent chemotherapy and radiotherapy with radiotherapy alone in resectable stage III and IV squamous cell head and neck cancer: Preliminary results. Head Neck 1997, 19, 567–575. [Google Scholar] [CrossRef]
- El-Sayed, S.; Nelson, N. Adjuvant and adjunctive chemotherapy in the management of squamous cell carcinoma of the head and neck region. A meta-analysis of prospective and randomized trials. J. Clin. Oncol. 1996, 14, 838–847. [Google Scholar] [CrossRef]
- Bese, N.S.; Hendry, J.; Jeremic, B. Effects of prolongation of overall treatment time due to unplanned interruptions during radiotherapy of different tumor sites and practical methods for compensation. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Groome, P.A.; O’Sullivan, B.; Mackillop, W.J.; Jackson, L.D.; Schulze, K.; Irish, J.C.; Warde, P.R.; Schneider, K.M.; Mackenzie, R.G.; Hodson, D.I.; et al. Compromised local control due to treatment interruptions and late treatment breaks in early glottic cancer: Population-based outcomes study supporting need for intensified treatment schedules. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1002–1012. [Google Scholar] [CrossRef]
- Ishizuka, M.; Fujimoto, Y.; Itoh, Y.; Kitagawa, K.; Sano, M.; Miyagawa, Y.; Ando, A.; Hiramatsu, M.; Hirasawa, N.; Ishihara, S.; et al. Relationship between hematotoxicity and serum albumin level in the treatment of head and neck cancers with concurrent chemoradiotherapy using cisplatin. Jpn. J. Clin. Oncol. 2011, 41, 973–979. [Google Scholar] [CrossRef]
- Mazul, A.L.; Stepan, K.O.; Barrett, T.F.; Thorstad, W.L.; Massa, S.; Adkins, D.R.; Daly, M.D.; Rich, J.T.; Paniello, R.C.; Pipkorn, P.; et al. Duration of radiation therapy is associated with worse survival in head and neck cancer. Oral Oncol. 2020, 108, 104819. [Google Scholar] [CrossRef]
- McCloskey, S.A.; Jaggernauth, W.; Rigual, N.R.; Hicks, W.L., Jr.; Popat, S.R.; Sullivan, M.; Mashtare, T.L., Jr.; Khan, M.K.; Loree, T.R.; Singh, A.K. Radiation treatment interruptions greater than one week and low hemoglobin levels (12 g/dL) are predictors of local regional failure after definitive concurrent chemotherapy and intensity-modulated radiation therapy for squamous cell carcinoma of the head and neck. Am. J. Clin. Oncol. 2009, 32, 587–591. [Google Scholar] [CrossRef]
- Russo, G.; Haddad, R.; Posner, M.; Machtay, M. Radiation treatment breaks and ulcerative mucositis in head and neck cancer. Oncologist 2008, 13, 886–898. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, T.; Handorf, E.A.; Murphy, C.T.; Mehra, R.; Ridge, J.A.; Galloway, T.J. The impact of radiation treatment time on survival in patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Wendt, T.G.; Grabenbauer, G.G.; Rodel, C.M.; Thiel, H.J.; Aydin, H.; Rohloff, R.; Wustrow, T.P.; Iro, H.; Popella, C.; Schalhorn, A. Simultaneous radiochemotherapy versus radiotherapy alone in advanced head and neck cancer: A randomized multicenter study. J. Clin. Oncol. 1998, 16, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Bernier, J.; Domenge, C.; Ozsahin, M.; Matuszewska, K.; Lefebvre, J.L.; Greiner, R.H.; Giralt, J.; Maingon, P.; Rolland, F.; Bolla, M.; et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N. Engl. J. Med. 2004, 350, 1945–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.S.; Pajak, T.F.; Forastiere, A.A.; Jacobs, J.; Campbell, B.H.; Saxman, S.B.; Kish, J.A.; Kim, H.E.; Cmelak, A.J.; Rotman, M.; et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2004, 350, 1937–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forastiere, A.A.; Goepfert, H.; Maor, M.; Pajak, T.F.; Weber, R.; Morrison, W.; Glisson, B.; Trotti, A.; Ridge, J.A.; Chao, C.; et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N. Engl. J. Med. 2003, 349, 2091–2098. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.W.; Lau, W.H.; Tung, S.Y.; Chua, D.T.; Chappell, R.; Xu, L.; Siu, L.; Sze, W.M.; Leung, T.W.; Sham, J.S.; et al. Preliminary results of a randomized study on therapeutic gain by concurrent chemotherapy for regionally-advanced nasopharyngeal carcinoma: NPC-9901 trial by the Hong Kong nasopharyngeal cancer study group. J. Clin. Oncol. 2005, 23, 6966–6975. [Google Scholar] [CrossRef]
- Giddings, A. Treatment interruptions in radiation therapy for head-and-neck cancer: Rates and causes. J. Med. Imaging Radiat. Sci. 2010, 41, 222–229. [Google Scholar] [CrossRef]
- James, N.D.; Robertson, G.; Squire, C.J.; Forbes, H.; Jones, K.; Cottier, B.; Sub-committee, R.C.R.C.O.A. A national audit of radiotherapy in head and neck cancer. Clin. Oncol. (R. Coll. Radiol.) 2003, 15, 41–46. [Google Scholar] [CrossRef] [Green Version]
- James, N.D.; Williams, M.V.; Summers, E.T.; Jones, K.; Cottier, B.; Royal College of Radiologists Clinical Audit Subcommittee. The management of interruptions to radiotherapy in head and neck cancer: An audit of the effectiveness of national guidelines. Clin. Oncol. (R. Coll. Radiol.) 2008, 20, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.B.; Keane, T.J.; Gadalla, T.; Maki, E. The effect of treatment time and treatment interruption on tumour control following radical radiotherapy of laryngeal cancer. Radiother. Oncol. 1992, 23, 137–143. [Google Scholar] [CrossRef]
- Fowler, J.F.; Lindstrom, M.J. Loss of local control with prolongation in radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 457–467. [Google Scholar] [CrossRef]
- Herrmann, T.; Jakubek, A.; Trott, K.R. The importance of the timing of a gap in radiotherapy of squamous cell carcinomas of the head and neck. Strahlenther. Onkol. 1994, 170, 545–549. [Google Scholar] [PubMed]
- Suwinski, R.; Sowa, A.; Rutkowski, T.; Wydmanski, J.; Tarnawski, R.; Maciejewski, B. Time factor in postoperative radiotherapy: A multivariate locoregional control analysis in 868 patients. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 399–412. [Google Scholar] [CrossRef]
- Withers, H.R.; Taylor, J.M.; Maciejewski, B. The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol. 1988, 27, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Tsang, N.M.; Tseng, C.K.; Lin, S.Y. Causes of interruption of radiotherapy in nasopharyngeal carcinoma patients in Taiwan. Jpn. J. Clin. Oncol. 2000, 30, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Vissink, A.; Jansma, J.; Spijkervet, F.K.; Burlage, F.R.; Coppes, R.P. Oral sequelae of head and neck radiotherapy. Crit. Rev. Oral Biol. Med. 2003, 14, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Chasen, M.R.; Bhargava, R. A descriptive review of the factors contributing to nutritional compromise in patients with head and neck cancer. Support. Care Cancer 2009, 17, 1345–1351. [Google Scholar] [CrossRef]
- Gorenc, M.; Kozjek, N.R.; Strojan, P. Malnutrition and cachexia in patients with head and neck cancer treated with (chemo)radiotherapy. Rep. Pract. Oncol. Radiother. 2015, 20, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Nakano, J.; Ishii, S.; Fukushima, T.; Natsuzako, A.; Sakamoto, F.; Natsuzako, A.; Sakamoto, J.; Okitaet, M. Factors affecting muscle strength in cancer patients receiving chemotherapy. J. Nov. Physiother. Rehabil. 2017, 1, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Orell-Kotikangas, H.; Osterlund, P.; Makitie, O.; Saarilahti, K.; Ravasco, P.; Schwab, U.; Makitie, A.A. Cachexia at diagnosis is associated with poor survival in head and neck cancer patients. Acta Otolaryngol. 2017, 137, 778–785. [Google Scholar] [CrossRef]
- Silver, H.J.; Dietrich, M.S.; Murphy, B.A. Changes in body mass, energy balance, physical function, and inflammatory state in patients with locally advanced head and neck cancer treated with concurrent chemoradiation after low-dose induction chemotherapy. Head Neck 2007, 29, 893–900. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Arends, J. The causes and consequences of cancer-associated malnutrition. Eur. J. Oncol. Nurs. Off. J. Eur. Oncol. Nurs. Soc. 2005, 9 (Suppl. 2), S51–S63. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, A.C.H.; Hoeben, A.; Lalisang, R.I.; Van Helvoort, A.; Wesseling, F.W.R.; Hoebers, F.; Baijens, L.W.J.; Schols, A. Disease-induced and treatment-induced alterations in body composition in locally advanced head and neck squamous cell carcinoma. J. Cachexia Sarcopenia Muscle 2020, 11, 145–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capuano, G.; Gentile, P.C.; Bianciardi, F.; Tosti, M.; Palladino, A.; Di Palma, M. Prevalence and influence of malnutrition on quality of life and performance status in patients with locally advanced head and neck cancer before treatment. Support. Care Cancer 2010, 18, 433–437. [Google Scholar] [CrossRef]
- Miyawaki, E.; Naito, T.; Nakashima, K.; Miyawaki, T.; Mamesaya, N.; Kawamura, T.; Shota, K.; Omori, H.; Wakuda, K.; Ono, A.; et al. Management of anorexia prevents skeletal muscle wasting during cisplatin-based chemotherapy for thoracic malignancies. JCSM Clin. Rep. 2020, 5, 8–15. [Google Scholar] [CrossRef]
- Lazzari, G.; De Cillis, M.A.; Buccoliero, G.; Silvano, G. Competing morbidities in advanced head and neck squamous cell carcinoma concurrent chemoradiotherapy: A strong implication of a multidisciplinary team approach. Cancer Manag. Res. 2019, 11, 9771–9782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.E.; Haraf, D.J.; List, M.A.; Kocherginsky, M.; Mittal, B.B.; Rosen, F.; Brockstein, B.; Williams, R.; Witt, M.E.; Stenson, K.M.; et al. High survival and organ function rates after primary chemoradiotherapy for intermediate-stage squamous cell carcinoma of the head and neck treated in a multicenter phase II trial. J. Clin. Oncol. 2006, 24, 3438–3444. [Google Scholar] [CrossRef] [Green Version]
- Wong, W.W.; Mick, R.; Haraf, D.J.; Weichselbaum, R.R.; Vokes, E.E. Time-dose relationship for local tumor control following alternate week concomitant radiation and chemotherapy of advanced head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 1994, 29, 153–162. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hutterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef]
- Lin, Y.C.; Ling, H.H.; Chang, P.H.; Pan, Y.P.; Wang, C.H.; Chou, W.C.; Chen, F.P.; Yeh, K.Y. Concurrent chemoradiotherapy induces body composition changes in locally advanced head and neck squamous cell carcinoma: Comparison between oral cavity and non-oral cavity cancer. Nutrients 2021, 13, 2969. [Google Scholar] [CrossRef]
- Yeh, K.Y.; Ling, H.H.; Ng, S.H.; Wang, C.H.; Chang, P.H.; Chou, W.C.; Chen, F.P.; Lin, Y.C. Role of the appendicular skeletal muscle index for predicting the recurrence-free survival of head and neck cancer. Diagnostics 2021, 11, 309. [Google Scholar] [CrossRef]
- Wendrich, A.W.; Swartz, J.E.; Bril, S.I.; Wegner, I.; de Graeff, A.; Smid, E.J.; de Bree, R.; Pothen, A.J. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer. Oral Oncol. 2017, 71, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Wang, C.H.; Ling, H.H.; Pan, Y.P.; Chang, P.H.; Chou, W.C.; Chen, F.P.; Yeh, K.Y. Inflammation status and body composition predict two-year mortality of patients with locally advanced head and neck squamous cell carcinoma under provision of recommended energy intake during concurrent chemoradiotherapy. Biomedicines 2022, 10, 388. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Metabolomics of head and neck cancer: A mini-review. Front. Physiol. 2016, 7, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiziani, S.; Lopes, V.; Gunther, U.L. Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 2009, 11, 269–276, IN7–IN10. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.X.; Chen, T.L.; Qiu, Y.P.; Shi, P.; Zheng, X.J.; Su, M.M.; Zhao, A.H.; Zhou, Z.T.; Jia, W. Urine metabolite profiling offers potential early diagnosis of oral cancer. Metabolomics 2012, 8, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Yonezawa, K.; Nishiumi, S.; Kitamoto-Matsuda, J.; Fujita, T.; Morimoto, K.; Yamashita, D.; Saito, M.; Otsuki, N.; Irino, Y.; Shinohara, M.; et al. Serum and tissue metabolomics of head and neck cancer. Cancer Genom. Proteom. 2013, 10, 233–238. [Google Scholar]
- Zhou, J.; Xu, B.; Huang, J.; Jia, X.; Xue, J.; Shi, X.; Xiao, L.; Li, W. 1H NMR-based metabonomic and pattern recognition analysis for detection of oral squamous cell carcinoma. Clin. Chim. Acta 2009, 401, 8–13. [Google Scholar] [CrossRef]
- Wang, C.H.; Cheng, M.L.; Liu, M.H. Simplified plasma essential amino acid-based profiling provides metabolic information and prognostic value additive to traditional risk factors in heart failure. Amino Acids 2018, 50, 1739–1748. [Google Scholar] [CrossRef]
- Wang, C.H.; Cheng, M.L.; Liu, M.H. Amino acid-based metabolic panel provides robust prognostic value additive to b-natriuretic peptide and traditional risk factors in heart failure. Dis. Markers 2018, 2018, 3784589. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.S.; Lin, J.Y.; Chen, W.S.; Liu, M.H.; Cheng, C.W.; Cheng, M.L.; Wang, C.H. Phenylalanine- and leucine-defined metabolic types identify high mortality risk in patients with severe infection. Int. J. Infect. Dis. 2019, 85, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Kuo, W.K.; Liu, Y.C.; Chu, C.M.; Hua, C.C.; Huang, C.Y.; Liu, M.H.; Wang, C.H. Amino acid-based metabolic indexes identify patients with chronic obstructive pulmonary disease and further discriminates patients in advanced BODE stages. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 2257–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, H.J.; Yen, C.H.; Wu, I.W.; Liu, M.H.; Cheng, H.Y.; Lin, Y.T.; Lee, C.C.; Hsu, K.H.; Sun, C.Y.; Chen, C.Y.; et al. The association between low protein diet and body composition, muscle function, inflammation, and amino acid-based metabolic profile in chronic kidney disease stage 3-5 patients. Clin. Nutr. ESPEN 2021, 46, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.J.; Tsai, M.H.; Chiang, C.J.; Tsai, S.T.; Liu, T.W.; Lou, P.J.; Liao, C.T.; Lin, J.C.; Chang, J.T.; Tsai, M.H.; et al. Adjuvant radiotherapy after curative surgery for oral cavity squamous cell carcinoma and treatment effect of timing and duration on outcome-A taiwan cancer registry national database analysis. Cancer Med. 2018, 7, 3073–3083. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.J.; Jin, Y.N.; Wang, S.Y.; Zhang, F.; Zhou, G.Q.; Zhang, W.J.; Zhi, B.; Cheng; Ma, J.; Qi, Z.Y.; et al. The detrimental effects of radiotherapy interruption on local control after concurrent chemoradiotherapy for advanced T-stage nasopharyngeal carcinoma: An observational, prospective analysis. BMC Cancer 2018, 18, 740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boje, C.R.; Dalton, S.O.; Primdahl, H.; Kristensen, C.A.; Andersen, E.; Johansen, J.; Andersen, L.J.; Overgaard, J. Evaluation of comorbidity in 9388 head and neck cancer patients: A national cohort study from the DAHANCA database. Radiother. Oncol. 2014, 110, 91–97. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Bauer, J.; Capra, S.; Ferguson, M. Use of the scored Patient-Generated Subjective Global Assessment (PG-SGA) as a nutrition assessment tool in patients with cancer. Eur. J. Clin. Nutr. 2002, 56, 779–785. [Google Scholar] [CrossRef]
- Araki, K.; Ito, Y.; Fukada, I.; Kobayashi, K.; Miyagawa, Y.; Imamura, M.; Kira, A.; Takatsuka, Y.; Egawa, C.; Suwa, H.; et al. Predictive impact of absolute lymphocyte counts for progression-free survival in human epidermal growth factor receptor 2-positive advanced breast cancer treated with pertuzumab and trastuzumab plus eribulin or nab-paclitaxel. BMC Cancer 2018, 18, 982. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.P.; Chang, P.H.; Fan, C.W.; Tseng, W.K.; Huang, J.S.; Chen, C.H.; Chou, W.C.; Wang, C.H.; Yeh, K.Y. Relationship between pre-treatment nutritional status, serum glutamine, arginine levels and clinicopathological features in Taiwan colorectal cancer patients. Asia Pac. J. Clin. Nutr. 2015, 24, 598–604. [Google Scholar] [CrossRef]
- Hangartner, T.N.; Warner, S.; Braillon, P.; Jankowski, L.; Shepherd, J. The official positions of the international society for clinical densitometry: Acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J. Clin. Densitom. 2013, 16, 520–536. [Google Scholar] [CrossRef]
- Wang, C.H.; Wang, H.M.; Pang, Y.P.; Yeh, K.Y. Early nutritional support in non-metastatic stage IV oral cavity cancer patients undergoing adjuvant concurrent chemoradiotherapy: Analysis of treatment tolerance and outcome in an area endemic for betel quid chewing. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2012, 20, 1169–1174. [Google Scholar] [CrossRef]
- Frank, M.P.; Powers, R.W. Simple and rapid quantitative high-performance liquid chromatographic analysis of plasma amino acids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007, 852, 646–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappa-Louisi, A.; Nikitas, P.; Agrafiotou, P.; Papageorgiou, A. Optimization of separation and detection of 6-aminoquinolyl derivatives of amino acids by using reversed-phase liquid chromatography with on line UV, fluorescence and electrochemical detection. Anal. Chim. Acta 2007, 593, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Caballero, A.; Torres-Lagares, D.; Robles-Garcia, M.; Pachon-Ibanez, J.; Gonzalez-Padilla, D.; Gutierrez-Perez, J.L. Cancer treatment-induced oral mucositis: A critical review. Int. J. Oral Maxillofac. Surg. 2012, 41, 225–238. [Google Scholar] [CrossRef]
- Trotti, A.; Bellm, L.A.; Epstein, J.B.; Frame, D.; Fuchs, H.J.; Gwede, C.K.; Komaroff, E.; Nalysnyk, L.; Zilberberg, M.D. Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: A systematic literature review. Radiother. Oncol. 2003, 66, 253–262. [Google Scholar] [CrossRef]
- Vera-Llonch, M.; Oster, G.; Hagiwara, M.; Sonis, S. Oral mucositis in patients undergoing radiation treatment for head and neck carcinoma. Cancer 2006, 106, 329–336. [Google Scholar] [CrossRef]
- Arends, J.; Baracos, V.; Bertz, H.; Bozzetti, F.; Calder, P.C.; Deutz, N.E.P.; Erickson, N.; Laviano, A.; Lisanti, M.P.; Lobo, D.N.; et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin. Nutr. 2017, 36, 1187–1196. [Google Scholar] [CrossRef] [Green Version]
- Keefe, D.M.; Rassias, G.; O’Neil, L.; Gibson, R.J. Severe mucositis: How can nutrition help? Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 627–631. [Google Scholar] [CrossRef]
- Hunter, M.; Kellett, J.; Toohey, K.; D’Cunha, N.M.; Isbel, S.; Naumovski, N. Toxicities caused by head and neck cancer treatments and their influence on the development of malnutrition: Review of the literature. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 935–949. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, X.; Zhao, Q.; Zhang, Y.; Liu, S.; Liu, Z.; Meng, L.; Xin, Y.; Jiang, X. The effects of early nutritional intervention on oral mucositis and nutritional status of patients with head and neck cancer treated with radiotherapy. Front. Oncol. 2020, 10, 595632. [Google Scholar] [CrossRef]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 2006, 354, 567–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, S.L.; Brody, R.; Touger-Decker, R.; Parrott, J.S.; Epstein, J. Feeding tube use in patients with head and neck cancer. Head Neck 2014, 36, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Paccagnella, A.; Morello, M.; Da Mosto, M.C.; Baruffi, C.; Marcon, M.L.; Gava, A.; Baggio, V.; Lamon, S.; Babare, R.; Rosti, G.; et al. Early nutritional intervention improves treatment tolerance and outcomes in head and neck cancer patients undergoing concurrent chemoradiotherapy. Support. Care Cancer 2010, 18, 837–845. [Google Scholar] [CrossRef]
- Valentini, V.; Marazzi, F.; Bossola, M.; Micciche, F.; Nardone, L.; Balducci, M.; Dinapoli, N.; Bonomo, P.; Autorino, R.; Silipigni, S.; et al. Nutritional counselling and oral nutritional supplements in head and neck cancer patients undergoing chemoradiotherapy. J. Hum. Nutr. Diet. 2012, 25, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Ravasco, P.; Monteiro-Grillo, I.; Marques Vidal, P.; Camilo, M.E. Impact of nutrition on outcome: A prospective randomized controlled trial in patients with head and neck cancer undergoing radiotherapy. Head Neck 2005, 27, 659–668. [Google Scholar] [CrossRef]
- Chen, A.M.; Li, B.Q.; Lau, D.H.; Farwell, D.G.; Luu, Q.; Stuart, K.; Newman, K.; Purdy, J.A.; Vijayakumar, S. Evaluating the role of prophylactic gastrostomy tube placement prior to definitive chemoradiotherapy for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1026–1032. [Google Scholar] [CrossRef]
- Nugent, B.; Parker, M.J.; McIntyre, I.A. Nasogastric tube feeding and percutaneous endoscopic gastrostomy tube feeding in patients with head and neck cancer. J. Hum. Nutr. Diet. 2010, 23, 277–284. [Google Scholar] [CrossRef]
- Silander, E.; Nyman, J.; Bove, M.; Johansson, L.; Larsson, S.; Hammerlid, E. Impact of prophylactic percutaneous endoscopic gastrostomy on malnutrition and quality of life in patients with head and neck cancer: A randomized study. Head Neck 2012, 34, 1–9. [Google Scholar] [CrossRef]
- Williams, G.F.; Teo, M.T.; Sen, M.; Dyker, K.E.; Coyle, C.; Prestwich, R.J. Enteral feeding outcomes after chemoradiotherapy for oropharynx cancer: A role for a prophylactic gastrostomy? Oral Oncol. 2012, 48, 434–440. [Google Scholar] [CrossRef]
- Belinskaia, D.A.; Voronina, P.A.; Batalova, A.A.; Goncharov, N.V. Serum Albumin. Encyclopedia 2021, 1, 65–75. [Google Scholar] [CrossRef]
- Belinskaia, D.A.; Voronina, P.A.; Shmurak, V.I.; Vovk, M.A.; Batalova, A.A.; Jenkins, R.O.; Goncharov, N.V. The universal soldier: Enzymatic and non-enzymatic antioxidant functions of serum albumin. Antioxidants 2020, 9, 966. [Google Scholar] [CrossRef] [PubMed]
- Oettl, K.; Stauber, R.E. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br. J. Pharmacol. 2007, 151, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, G.J.; Martin, G.S.; Evans, T.W. Albumin: Biochemical properties and therapeutic potential. Hepatology 2005, 41, 1211–1219. [Google Scholar] [CrossRef]
- Taverna, M.; Marie, A.L.; Mira, J.P.; Guidet, B. Specific antioxidant properties of human serum albumin. Ann. Intensive Care 2013, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.J.; Orellana-Jimenez, C.; Melot, C.; De Backer, D.; Berre, J.; Leeman, M.; Brimioulle, S.; Appoloni, O.; Creteur, J.; Vincent, J.L. Albumin administration improves organ function in critically ill hypoalbuminemic patients: A prospective, randomized, controlled, pilot study. Crit. Care Med. 2006, 34, 2536–2540. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.W. Review article: Albumin as a drug—Biological effects of albumin unrelated to oncotic pressure. Aliment. Pharmacol. Ther. 2002, 16 (Suppl. S5), 6–11. [Google Scholar] [CrossRef] [PubMed]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef]
- Quinlan, G.J.; Margarson, M.P.; Mumby, S.; Evans, T.W.; Gutteridge, J.M. Administration of albumin to patients with sepsis syndrome: A possible beneficial role in plasma thiol repletion. Clin. Sci. 1998, 95, 459–465. [Google Scholar] [CrossRef]
- Quinlan, G.J.; Mumby, S.; Martin, G.S.; Bernard, G.R.; Gutteridge, J.M.; Evans, T.W. Albumin influences total plasma antioxidant capacity favorably in patients with acute lung injury. Crit. Care Med. 2004, 32, 755–759. [Google Scholar] [CrossRef]
- Soejima, A.; Matsuzawa, N.; Miyake, N.; Karube, M.; Fukuoka, K.; Nakabayashi, K.; Kitamoto, K.; Nagasawa, T. Hypoalbuminemia accelerates erythrocyte membrane lipid peroxidation in chronic hemodialysis patients. Clin. Nephrol. 1999, 51, 92–97. [Google Scholar]
- Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA 1981, 78, 6858–6862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, W.-C.; Yang, C.-Y.; Lin, Y.-C.; Lin, C.-H.; Kuo, C.-S.; Li, Y.-H.; Chen, Y.-W. Pretreatment body mass index and serum uric acid and albumin levels as prognostic predictors in patients with oral squamous cell carcinoma. J. Med. Sci. 2021, 41, 295–304. [Google Scholar] [CrossRef]
- Lin, H.; Lin, H.X.; Ge, N.; Wang, H.Z.; Sun, R.; Hu, W.H. Plasma uric acid and tumor volume are highly predictive of outcome in nasopharyngeal carcinoma patients receiving intensity modulated radiotherapy. Radiat. Oncol. 2013, 8, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaysen, G.A.; Sun, X.; Jones, H., Jr.; Martin, V.I.; Joles, J.A.; Tsukamoto, H.; Couser, W.G.; al-Bander, H. Non-iron mediated alteration in hepatic transferrin gene expression in the nephrotic rat. Kidney Int. 1995, 47, 1068–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morlese, J.F.; Forrester, T.; Del Rosario, M.; Frazer, M.; Jahoor, F. Transferrin kinetics are altered in children with severe protein-energy malnutrition. J. Nutr. 1997, 127, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Tessari, P. Nonessential amino acid usage for protein replenishment in humans: A method of estimation. Am. J. Clin. Nutr. 2019, 110, 255–264. [Google Scholar] [CrossRef]
- Xu, N.; Chen, G.; Liu, H. Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation. Molecules 2017, 22, 2066. [Google Scholar] [CrossRef] [Green Version]
- Wade, A.M.; Tucker, H.N. Antioxidant characteristics of L-histidine. J. Nutr. Biochem. 1998, 9, 308–315. [Google Scholar] [CrossRef]
- Son, D.O.; Satsu, H.; Shimizu, M. Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Lett. 2005, 579, 4671–4677. [Google Scholar] [CrossRef] [Green Version]
- Peterson, J.W.; King, D.; Ezell, E.L.; Rogers, M.; Gessell, D.; Hoffpauer, J.; Reuss, L.; Chopra, A.K.; Gorenstein, D. Cholera toxin-induced PGE(2) activity is reduced by chemical reaction with L-histidine. Biochim. Biophys. Acta 2001, 1537, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Tanley, S.W.; Helliwell, J.R. Structural dynamics of cisplatin binding to histidine in a protein. Struct. Dyn. 2014, 1, 034701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kriengsinyos, W.; Rafii, M.; Wykes, L.J.; Ball, R.O.; Pencharz, P.B. Long-term effects of histidine depletion on whole-body protein metabolism in healthy adults. J. Nutr. 2002, 132, 3340–3348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganapathy, V.; Thangaraju, M.; Prasad, P.D. Nutrient transporters in cancer: Relevance to Warburg hypothesis and beyond. Pharmacol. Ther. 2009, 121, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, Y.; Li, D.; Fu, L.; Zhang, X.; Bao, Y.; Zheng, L. Review of the correlation of LAT1 with diseases: Mechanism and treatment. Front. Chem. 2020, 8, 564809. [Google Scholar] [CrossRef]
- Kim, D.K.; Ahn, S.G.; Park, J.C.; Kanai, Y.; Endou, H.; Yoon, J.H. Expression of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (4F2hc) in oral squamous cell carcinoma and its precusor lesions. Anticancer Res. 2004, 24, 1671–1675. [Google Scholar]
- Lichter-Konecki, U.; Hipke, C.M.; Konecki, D.S. Human phenylalanine hydroxylase gene expression in kidney and other nonhepatic tissues. Mol. Genet. Metab. 1999, 67, 308–316. [Google Scholar] [CrossRef]
- Morrison, L.; Laukkanen, J.A.; Ronkainen, K.; Kurl, S.; Kauhanen, J.; Toriola, A.T. Inflammatory biomarker score and cancer: A population-based prospective cohort study. BMC Cancer 2016, 16, 80. [Google Scholar] [CrossRef] [Green Version]
- Gulcin, I. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa. Amino Acids 2007, 32, 431–438. [Google Scholar] [CrossRef]
- van Overveld, F.W.; Haenen, G.R.; Rhemrev, J.; Vermeiden, J.P.; Bast, A. Tyrosine as important contributor to the antioxidant capacity of seminal plasma. Chem. Biol. Interact. 2000, 127, 151–161. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Koehler, K.M.; Romero, L.; Garry, P.J. Serum albumin is associated with skeletal muscle in elderly men and women. Am. J. Clin. Nutr. 1996, 64, 552–558. [Google Scholar] [CrossRef]
- Visser, M.; Kritchevsky, S.B.; Newman, A.B.; Goodpaster, B.H.; Tylavsky, F.A.; Nevitt, M.C.; Harris, T.B. Lower serum albumin concentration and change in muscle mass: The health, aging and body composition study. Am. J. Clin. Nutr. 2005, 82, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, J.; Chothia, C. Haemoglobin: The structural changes related to ligand binding and its allosteric mechanism. J. Mol. Biol. 1979, 129, 175–220. [Google Scholar] [CrossRef]
- Cummings, A.J.; Flynn, F.V. Amino acid composition of serum proteins in health and disease. J. Clin. Pathol. 1955, 8, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubrak, C.; Olson, K.; Jha, N.; Scrimger, R.; Parliament, M.; McCargar, L.; Koski, S.; Baracos, V.E. Clinical determinants of weight loss in patients receiving radiation and chemoirradiation for head and neck cancer: A prospective longitudinal view. Head Neck 2013, 35, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Levitt, D.G.; Levitt, M.D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016, 9, 229–255. [Google Scholar] [CrossRef] [Green Version]
- Fearon, K.C.; Falconer, J.S.; Slater, C.; McMillan, D.C.; Ross, J.A.; Preston, T. Albumin synthesis rates are not decreased in hypoalbuminemic cachectic cancer patients with an ongoing acute-phase protein response. Ann. Surg. 1998, 227, 249–254. [Google Scholar] [CrossRef]
- Moro, J.; Tome, D.; Schmidely, P.; Demersay, T.C.; Azzout-Marniche, D. Histidine: A systematic review on metabolism and physiological effects in human and different animal species. Nutrients 2020, 12, 1414. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Histidine metabolism and function. J. Nutr. 2020, 150, 2570S–2575S. [Google Scholar] [CrossRef]
- Ipson, B.R.; Fisher, A.L. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress. Ageing Res. Rev. 2016, 27, 93–107. [Google Scholar] [CrossRef] [Green Version]
- Neurauter, G.; Grahmann, A.V.; Klieber, M.; Zeimet, A.; Ledochowski, M.; Sperner-Unterweger, B.; Fuchs, D. Serum phenylalanine concentrations in patients with ovarian carcinoma correlate with concentrations of immune activation markers and of isoprostane-8. Cancer Lett. 2008, 272, 141–147. [Google Scholar] [CrossRef]
- Davis, M.D.; Parniak, M.A.; Kaufman, S.; Kempner, E. The role of phenylalanine in structure-function relationships of phenylalanine hydroxylase revealed by radiation target analysis. Proc. Natl. Acad. Sci. USA 1997, 94, 491–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parniak, M.A.; Davis, M.; Kaufman, S.; Kempner, E.S. Radiation target analysis indicates that phenylalanine hydroxylase in rat liver extracts is a functional monomer. FEBS Lett. 1999, 449, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Holecek, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamphorst, J.J.; Nofal, M.; Commisso, C.; Hackett, S.R.; Lu, W.; Grabocka, E.; Vander Heiden, M.G.; Miller, G.; Drebin, J.A.; Bar-Sagi, D.; et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 2015, 75, 544–553. [Google Scholar] [CrossRef] [Green Version]
- Neinast, M.; Murashige, D.; Arany, Z. Branched Chain Amino Acids. Annu. Rev. Physiol. 2019, 81, 139–164. [Google Scholar] [CrossRef]
- Peng, H.; Wang, Y.; Luo, W. Multifaceted role of branched-chain amino acid metabolism in cancer. Oncogene 2020, 39, 6747–6756. [Google Scholar] [CrossRef]
- Iwasa, M.; Kobayashi, Y.; Mifuji-Moroka, R.; Hara, N.; Miyachi, H.; Sugimoto, R.; Tanaka, H.; Fujita, N.; Gabazza, E.C.; Takei, Y. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis. PLoS ONE 2013, 8, e70309. [Google Scholar] [CrossRef] [Green Version]
- Conte, E.; Bresciani, E.; Rizzi, L.; Cappellari, O.; De Luca, A.; Torsello, A.; Liantonio, A. Cisplatin-induced skeletal muscle dysfunction: Mechanisms and counteracting therapeutic strategies. Int. J. Mol. Sci. 2020, 21, 1242. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, S.J.; Narayan, S.; Molz, L.; Berstler, L.A.; Kang, S.A.; Vlasuk, G.P.; Saiah, E. A small molecule inhibitor of Rheb selectively targets mTORC1 signaling. Nat. Commun. 2018, 9, 548. [Google Scholar] [CrossRef]
- Cheng, M.L.; Wang, C.H.; Shiao, M.S.; Liu, M.H.; Huang, Y.Y.; Huang, C.Y.; Mao, C.T.; Lin, J.F.; Ho, H.Y.; Yang, N.I. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: Diagnostic and prognostic value of metabolomics. J. Am. Coll. Cardiol. 2015, 65, 1509–1520. [Google Scholar] [CrossRef] [Green Version]
- Enko, D.; Moro, T.; Holasek, S.; Baranyi, A.; Schnedl, W.J.; Zelzer, S.; Mangge, H.; Herrmann, M.; Meinitzer, A. Branched-chain amino acids are linked with iron metabolism. Ann. Transl. Med. 2020, 8, 1569. [Google Scholar] [CrossRef] [PubMed]
- Knight, Z.A.; Schmidt, S.F.; Birsoy, K.; Tan, K.; Friedman, J.M. A critical role for mTORC1 in erythropoiesis and anemia. eLife 2014, 3, e01913. [Google Scholar] [CrossRef] [PubMed]
- Pegg, A.E. Spermidine/spermine-N(1)-acetyltransferase: A key metabolic regulator. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E995–E1010. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Liu, X.; Cheng, C.; Yu, W.; Yi, P. Metabolism of Amino Acids in Cancer. Front. Cell Dev. Biol. 2020, 8, 603837. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Wallace, H.M. Induction of spermidine/spermine N1-acetyltransferase in human cancer cells in response to increased production of reactive oxygen species. Biochem. Pharmacol. 1998, 55, 1119–1123. [Google Scholar] [CrossRef]
- Jell, J.; Merali, S.; Hensen, M.L.; Mazurchuk, R.; Spernyak, J.A.; Diegelman, P.; Kisiel, N.D.; Barrero, C.; Deeb, K.K.; Alhonen, L.; et al. Genetically altered expression of spermidine/spermine N1-acetyltransferase affects fat metabolism in mice via acetyl-CoA. J. Biol. Chem. 2007, 282, 8404–8413. [Google Scholar] [CrossRef] [Green Version]
- Kramer, D.L.; Diegelman, P.; Jell, J.; Vujcic, S.; Merali, S.; Porter, C.W. Polyamine acetylation modulates polyamine metabolic flux, a prelude to broader metabolic consequences. J. Biol. Chem. 2008, 283, 4241–4251. [Google Scholar] [CrossRef] [Green Version]
- Pirinen, E.; Gylling, H.; Itkonen, P.; Yaluri, N.; Heikkinen, S.; Pietila, M.; Kuulasmaa, T.; Tusa, M.; Cerrada-Gimenez, M.; Pihlajamaki, J.; et al. Activated polyamine catabolism leads to low cholesterol levels by enhancing bile acid synthesis. Amino Acids 2010, 38, 549–560. [Google Scholar] [CrossRef]
- Di Fiore, A.; Lecleire, S.; Gangloff, A.; Rigal, O.; Benyoucef, A.; Blondin, V.; Sefrioui, D.; Quiesse, M.; Iwanicki-Caron, I.; Michel, P.; et al. Impact of nutritional parameter variations during definitive chemoradiotherapy in locally advanced oesophageal cancer. Dig. Liver Dis. 2014, 46, 270–275. [Google Scholar] [CrossRef]
- Kanarek, N.; Keys, H.R.; Cantor, J.R.; Lewis, C.A.; Chan, S.H.; Kunchok, T.; Abu-Remaileh, M.; Freinkman, E.; Schweitzer, L.D.; Sabatini, D.M. Histidine catabolism is a major determinant of methotrexate sensitivity. Nature 2018, 559, 632–636. [Google Scholar] [CrossRef]
- Kayauchi, N.; Nakagawa, Y.; Oteki, T.; Kagohashi, K.; Satoh, H. Change in Body Weight and Serum Albumin Levels in Febrile Neutropenic Lung Cancer Patients. Asian Pac. Isl. Nurs. J. 2020, 5, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Han, Y.; Kim, D.; Cho, S.; Kim, W.; Hwang, H.; Lee, H.W.; Han, D.H.; Kim, K.S.; Yun, M.; et al. Impact of Exogenous Treatment with Histidine on Hepatocellular Carcinoma Cells. Cancers 2022, 14, 1205. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Umezawa, R.; Takahashi, N.; Matsushita, H.; Kozumi, M.; Ishikawa, Y.; Yamamoto, T.; Takeda, K.; Jingu, K. Impact of change in serum albumin level during and after chemoradiotherapy in patients with locally advanced esophageal cancer. Esophagus 2018, 15, 190–197. [Google Scholar] [CrossRef]
- Tayek, J.A.; Bistrian, B.R.; Hehir, D.J.; Martin, R.; Moldawer, L.L.; Blackburn, G.L. Improved protein kinetics and albumin synthesis by branched chain amino acid-enriched total parenteral nutrition in cancer cachexia. A prospective randomized crossover trial. Cancer 1986, 58, 147–157. [Google Scholar] [CrossRef]
Variables Expressed as Numbers (%) or Mean ± SD | All | Treatment with No Interruption | Treatment with Interruption | p-Value * |
---|---|---|---|---|
Included patient number | 44 (100.0) | 35 (79.5) | 9 (20.5) | |
Clinicopathological factor | ||||
Age (years) | 0.543 | |||
≥65:<65 | 6 (13.6):38 (86.4) | 5 (14.3):30 (85.7) | 1 (11.1):8 (88.9) | 0.805 |
Sex (male: female) | 42 (95.5):2 (4.5) | 24 (97.1):1 (2.9) | 8 (88.9):1 (11.1) | 0.289 |
Tumor location (oral cavity/other) | 0.111 | |||
Buccal mucosa/tonsil | 3 (6.8)/3 (6.8) | 2 (5.7)/2 (5.7) | 1 (11.1)/1 (11.1) | |
Tongue/tongue base | 12 (27.2)/1 (2.2) | 11 (31.4)/1 (3.3) | 1 (11.1)/0 (0.0) | |
Gingiva/soft palate | 5 (11.4)/0 (0.0) | 5 (14.3)/0 (0.0) | 0 (0.0)/0 (0.0) | |
Retromolar/hypopharynx | 2 (4.5)/10 (22.7) | 1 (3.3)/7 (20.0) | 1 (11.1)/3 (33.4) | |
Hard palate/larynx | 1 (2.2)/5 (6.7) | 1 (3.3)/3 (8.6) | 0 (0.0) 2 (22.2) | |
Lip/-- | 2 (4.5)/-- | 2 (5.7)/-- | 0 (0.0)/-- | |
TNM stage | 0.301 | |||
III:IVA:IVB | 5 (11.4):25 (56.8):14 (31.8) | 4 (11.4):18 (51.4):13 (37.1) | 1 (11.1):6 (66.7):2 (22.2) | |
T status | 0.131 | |||
T0-2:T3-4 | 11 (25.0):33 (75.0) | 7 (20.0):28 (80.0) | 4 (44.4):5 (55.6) | |
N status | 0.400 | |||
N0-1:N2-3 | 15 (34.1):29 (65.9) | 13 (37.1):22 (62.9) | 2 (22.2):7 (77.8) | |
Histological differentiation grade | ||||
(well: moderately: poorly) | 6 (13.6):32 (72.8):6 (13.6) | 4 (13.6):28 (72.7):3 (13.6) | 2 (22.2):4 (44.4):3 (33.4) | 0.089 |
ECOG performance status (0:1:2) | 3 (6.9):39 (88.6):2 (4.5) | 1 (2.9):33 (94.2):1 (2.9) | 2 (22.2):6 (66.7):1 (11.1) | 0.066 |
Tracheostomy (no vs. yes) | 27 (61.4):17 (38.6) | 20 (57.1):15 (42.9) | 7 (77.8):2 (22.2) | 0.257 |
Smoking exposure (no vs. yes) | 7 (15.9):37 (84.1) | 5 (14.3):30 (85.7) | 2 (22.2):7 (77.8) | 0.562 |
Alcohol consumption (no vs. yes) | 12 (27.3):32 (72.7) | 9 (25.7):26 (74.3) | 3 (33.3):6 (66.7) | 0.647 |
Betel nut use (no vs. yes) | 16 (36.4):28 (63.6) | 12 (34.3):23 (65.7) | 4 (44.4):5 (55.6) | 0.572 |
HN-CCI (0:≥1) | 0 (0.0):44 (100.0) | 0 (0.0):35 (100.0) | 0 (0.0):9 (100.0) | −−−− |
PG-SGA assessment before CCRT | ||||
Malnutrition (none: moderate: severe) | 9 (20.5):26 (59.0):9 (20.5) | 6 (17.1):22 (62.9):7 (20.0) | 3 (33.3):4 (44.4):2 (22.2) | 0.510 |
Biochemical data | ||||
Before CCRT | ||||
eGFR (mL/min/1.73 m2) | 105.4 ± 28.8 | 105.2 ± 27.3 | 106.2 ± 36.1 | 0.928 |
ALT (U/L, normal ≤36) | 0.230 | |||
Total bilirubin (mg/dL, normal ≤1.3) | 0.327 | |||
Uric acid (mg/dL, normal <7.0) | 0.250 | |||
Sugar (AC, mg/dL) | 115.2 ± 16.5 | 119.3 ± 52.2 | 99.3 ± 23.2 | 0.273 |
Treatment-interval change (%) | ||||
∆eGFR% ⁑ | 0.873 | |||
∆ALT% ⁑ | 0.526 | |||
∆Total bilirubin% ⁑ | 0.857 | |||
∆Uric acid% ⁑ | 0.017 * | |||
∆Sugar (AC) ⁑ | 0.120 | |||
Anthropometric data and blood NIB data | ||||
Before CCRT | ||||
BW (kg) | 0.622 | |||
BMI (kg/m2) | 0.327 | |||
<18.5:≥18.5 | 10 (22.7):34 (77.3) | 7 (20.0):28 (80.0) | 3 (33.3):6 (66.7) | 0.395 |
Hb (g/dL) | 0.812 | |||
WBC (×103 cells/mm3) | 0.258 | |||
Platelet count (×103/mm3) | 260.1 ± 91.4 | 262.3 ± 91.0 | 251.8 ± 98.0 | 0.764 |
TLC (×103 cells/mm3) | 0.464 | |||
<1.5:≥1.5 | 14 (31.8):30 (68.2) | 10 (28.6):25 (71.4) | 4 (44.4):5 (55.6) | 0.362 |
TNC (×103/mm3) | . | . | 0.254 | |
TMC (×103/mm3) | 0.379 | |||
Albumin (g/dL) | . | 0.801 | ||
<3.5:≥3.5 | 5 (11.4):39 (88.6) | 4 (11.4):31 (88.6) | 1 (11.1):8 (88.9) | 0.979 |
Prealbumin (g/dL, normal: 20–40) | 0.524 | |||
Transferrin (g/dL normal: 200–360) | 208.0 ± 34.6 | 208.2 ± 28.1 | 207.5 ± 55.1 | 0.946 |
Total cholesterol (mg/dL, normal <200) | 169.3 ± 41.8 | 168.9 ± 40.5 | 170.7 ± 49.1 | 0.923 |
Triglyceride (mg/dL, normal <150) | 160.5 ± 15.4 | 164.1 ± 17.2 | 146.7 ± 37.1 | 0.655 |
CRP (mg/dL) | 0.003 * | |||
Treatment-interval change (%) | ||||
∆BW% ⁑ | 0.792 | |||
∆BMI% ⁑ | 0.358 | |||
∆Hb% ⁑ | 0.043 * | |||
∆WBC% ⁑ | 0.938 | |||
∆Platelet% ⁑ | 0.121 | |||
∆TLC% ⁑ | 0.453 | |||
∆TNC% ⁑ | 0.064 | |||
∆TMC% ⁑ | 0.189 | |||
∆Albumin% ⁑ | 0.020 * | |||
∆Prealbumin% ⁑ | 0.310 | |||
∆Transferrin% ⁑ | 0.824 | |||
∆Cholesterol% ⁑ | 0.738 | |||
∆Triglyceride% ⁑ | 0.782 | |||
∆CRP% ⁑ | 0.395 | |||
DXA-related measurements | ||||
Before CCRT | ||||
LBM (kg) | 0.533 | |||
TFM (kg) | 0.759 | |||
ASM (kg) | 0.614 | |||
Treatment-interval change (%) | ||||
∆LBM% ⁑ | 0.421 | |||
∆TFM% ⁑ | 0.554 | |||
∆ASM% ⁑ | 0.027 * | |||
HLOP Metabolites | ||||
Before CCRT | ||||
Histidine (μM) | 0.041 * | |||
Leucine (μM) | 0.389 | |||
Ornithine (μM) | 0.194 | |||
Phenylalanine (μM) | 0.174 | |||
Treatment-interval change (%) | ||||
∆Histidine% ⁑ | 0.017 * | |||
∆Leucine% ⁑ | 0.897 | |||
∆Ornithine% ⁑ | 0.738 | |||
∆Phenylalanine% ⁑ | 0.675 | |||
Mean daily calorie intake during CCRT † | 0.741 | |||
≥25 and <30:≥30 | 31 (70.5):13 (29.5) | 24 (68.6):11 (31.4) | 7 (77.8):2 (22.2) | 0.589 |
Mean daily protein intake during CCRT †† | 0.872 | |||
Mean daily CHO intake during CCRT †† | 0.588 | |||
Mean daily fat intake during CCRT †† | 0.775 | |||
Feeding tube placement (no vs. yes) | 22 (50.0):22 (50.0) | 17 (48.6):18 (51.4) | 5 (55.68):4 (44.4) | 0.709 |
Mean days of feeding tube placement during CCRT | 0.748 | |||
CCRT data | ||||
Radiotherapy | ||||
Dose (Gy) | 0.859 | |||
Fractions | 0.356 | |||
Duration (days) | 0.031 * | |||
Cisplatin dose (mg/m2) | 0.004 * | |||
Grade 3/4 toxicity during CCRT | ||||
Non-hematologic | ||||
Dermatitis (no vs. yes) | 43 (97.7):1 (2.3) | 34 (97.7):1 (2.3) | 9 (100):0 (0.0) | 0.608 |
Pharyngitis (no vs. yes) | 42 (95.5):2 (4.5) | 33 (94.3):2 (5.7) | 9 (100):0 (0.0) | 0.463 |
Infection (no vs. yes) | 30 (68.2):14 (31.8) | 26 (74.3):9 (25.7) | 4 (44.4):5 (55.6) | 0.089 |
Mucositis (no vs. yes) | 33 (75.0):11 (25.0) | 29 (82.9):6 (17.1) | 4 (44.4):5 (55.6) | 0.018 * |
Emesis (no vs. yes) | 41 (93.2):3 (6.8) | 33 (93.2):2 (6.8) | 8 (88.9):1 (11.1) | 0.567 |
Hematologic | ||||
Anemia (no vs. yes) | 41 (93.2):3 (6.8) | 33 (93.2):2 (6.8) | 8 (88.9):1 (11.1) | 0.567 |
Neutropenia (no vs. yes) | 29 (65.9):15 (34.1) | 25 (68.6):10 (31.4) | 4 (44.4):5 (55.6) | 0.463 |
Thrombocytopenia (no vs. yes) | 38 (86.4):6 (13.6) | 30 (85.7):5 (14.3) | 8 (88.9):1 (11.1) | 0.801 |
Number of grade 3/4 toxicities | 0.008 * |
CCRT Starts | CCRT Ends | p-Value * | |
---|---|---|---|
Anthropometric data | |||
BW (kg) | <0.001 | ||
BMI (kg/m2) | <0.001 | ||
Biochemical data | |||
eGFR (mL/min/1.73 m2) | 0.002 * | ||
ALT (U/L, normal ≤36) | 0.920 | ||
Total bilirubin (mg/dL, normal ≤1.3) | 0.392 | ||
Uric acid (mg/dL, normal <7.0) | 0.278 | ||
Glucose (AC) (mg/dL, normal: 70–100) | 0.042 * | ||
Nutritional–inflammatory biomarkers | |||
Hb (g/dL) | <0.001 * | ||
WBC (×103/mm3) | 0.001 * | ||
Platelet count (×103/mm3) | 0.004 * | ||
TLC (×103/mm3) | <0.001 * | ||
TNC (×103/mm3) | <0.001 * | ||
TMC (×103/mm3) | 0.352 | ||
Albumin (g/dL, normal: 3.5–5.5) | 0.683 | ||
Prealbumin (g/dL, normal: 20–40) | 0.467 | ||
Transferrin (g/dL normal: 200–360) | 0.177 | ||
Total cholesterol (mg/dL, normal <200) | 0.797 | ||
Triglyceride (mg/dL, normal <150) | <0.001 * | ||
CRP (mg/L) | 0.035 * | ||
HLOP Metabolites | |||
Histidine (μM) | 0.296 | ||
Leucine (μM) | 128.7 | 0.005 * | |
Ornithine (μM) | 122.5 | 104.2 | 0.001 * |
Phenylalanine (μM) | 63.1 | 0.357 | |
DXA-derived measurement, kg | |||
LBM | <0.001 * | ||
TFM | 0.036 * | ||
ASM | <0.001 * |
Case | Sex | Age | Tumor Site | TNM Stage | CCRT | Treatment Interruption Type * | RT (Dose, frx, Duration) | Cisplatin (Dose, % Completion) | Causes of Treatment Interruption |
---|---|---|---|---|---|---|---|---|---|
1 | Male | 59 | Hypopharynx | T4aN2cM0, IVA | Primary | RT break and cisplatin break | 72 Gy, 36 frx, 66 days | 200 mg/m2, 83.3% | Grade 3/4 toxicities: infection and mucositis |
2 | Male | 65 | Hypopharynx | T2N2bM0, IVA | Primary | RT break and cisplatin break | 72 Gy, 36 frx, 60 days | 135 mg/m2, 56.3% | Grade 3/4 toxicities: infection, mucositis, and neutropenia |
3 | Male | 50 | Tongue | T2N2bM0, IVA | Adjuvant | RT break and cisplatin break | 60 Gy, 30 frx, 48 days | 200 mg/m2, 83.3% | Grade 3/4 toxicities: mucositis, emesis, and neutropenia |
4 | Male | 58 | Hypopharynx | T4bN2cM0, IVB | Primary | RT break | 72 Gy, 36 frx, 62 days | 240 mg/m2, 100% | Grade 3/4 toxicities: infection and neutropenia, |
5 | Female | 64 | Tonsil | T1N2bM0, IVA | Primary | RT break and cisplatin break | 66 Gy, 33 frx, 53 days | 200 mg/m2, 83.3% | Grade 3/4 toxicities: infection, mucositis, and anemia |
6 | Male | 61 | Retromolar | T4aN0M0, IVA | Adjuvant | RT break | 60 Gy, 30 frx, 49 days | 240 mg/m2, 100% | Grade 3/4 neutropenia |
7 | Male | 29 | Larynx | T1N2bM0, IVA | Primary | RT break | 72 Gy, 36 frx, 56 days | 240 mg/m2, 100% | Grade 3/4 thrombocytopenia |
8 | Male | 47 | Buccal mucosa | T3N1M0, III | Adjuvant | RT break | 62 Gy, 31 frx, 51 days | 240 mg/m2, 100% | Grade 3/4 mucositis |
9 | Male | 44 | Larynx | T3N3bM0, IVB | Primary | RT break | 66 Gy, 33 frx, 56 days | 240 mg/m2, 100% | Grade 3/4 toxicities: infection and neutropenia |
Variables | Univariate | Multivariate | |
---|---|---|---|
p-Value * | Odds Ratio (95% Confidence Interval) | p-Value * | |
Clinicopathological factor | |||
Age | 0.534 | ||
Sex (ref: female) | 0.324 | ||
Tumor location (ref: non-oral-cavity) | 0.122 | ||
TNM stage (ref: IV) | 0.353 | ||
T status (ref: T3-4) | 0.142 | ||
N status (ref: N2-3) | 0.406 | ||
Histological grade (ref: poorly differentiated) | 0.108 | ||
ECOG performance status (ref: 2) | 0.115 | ||
Smoking (ref: yes) | 0.565 | ||
Alcohol (ref: yes) | 0.648 | ||
Betel nut (ref: yes) | 0.574 | ||
Tracheostomy (ref: yes) | 0.268 | ||
PG-SGA before CCRT (ref: severe) | 0.524 | ||
Biochemical data | |||
Before CCRT | |||
eGFR (mL/min/1.73 m2) | 0.926 | ||
ALT (U/L) | 0.214 | ||
Total bilirubin (mg/dL) | 0.146 | ||
Uric acid (mg/dL) | 0.248 | ||
Sugar (AC) (mg/dL) | 0.321 | ||
Treatment-interval change (%) | |||
∆eGFR% ⁑ | 0.083 | ||
∆ALT% ⁑ | 0.236 | ||
∆Total bilirubin% ⁑ | 0.853 | ||
∆Uric acid% ⁑ | 0.137 | ||
∆Sugar (AC) ⁑ | 0.133 | ||
Anthropometric data and blood NIB data | |||
Before CCRT | |||
BW (kg) | 0.613 | ||
BMI (kg/m2) | 0.321 | ||
Hb (g/dL) | 0.765 | ||
WBC (×103 cells/mm3) | 0.223 | ||
Platelet count (×103/mm3) | 0.757 | ||
TLC (×103 cells/mm3) | 0.455 | ||
TNC (×103/mm3) | 0.234 | ||
TMC (×103/mm3) | 0.265 | ||
Albumin (g/dL) | 0.796 | ||
Prealbumin (g/dL) | 0.516 | ||
Transferrin (g/dL) | 0.944 | ||
Total cholesterol (mg/dL) | 0.910 | ||
Triglyceride (mg/dL) | 0.648 | ||
CRP (mg/dL) | 0.133 | ||
Treatment-interval change (%) | |||
∆BW% ⁑ | 0.786 | ||
∆BMI% ⁑ | 0.351 | ||
∆Hb% ⁑ | 0.190 | ||
∆WBC% ⁑ | 0.934 | ||
∆Platelet% ⁑ | 0.126 | ||
∆TLC% ⁑ | 0.444 | ||
∆TNC% ⁑ | 0.074 | ||
∆TMC% ⁑ | 0.191 | ||
∆Albumin% ⁑ | 0.031 * | 0.906 (0.824–0.990) | 0.038 * |
∆Prealbumin% ⁑ | 0.306 | ||
∆Transferrin% ⁑ | 0.109 | ||
∆Cholesterol% ⁑ | 0.731 | ||
∆Triglyceride% ⁑ | 0.776 | ||
∆CRP% ⁑ | 0.410 | ||
DXA-related measurements | |||
Before CCRT | |||
LBM (kg) | 0.525 | ||
TFM (kg) | 0.753 | ||
ASM (kg) | 0.605 | ||
Treatment-interval change (%) | |||
∆LBM% ⁑ | 0.412 | ||
∆TFM% ⁑ | 0.545 | ||
∆ASM% ⁑ | 0.034 * | ||
HLOP Metabolites | |||
Before CCRT | |||
Histidine (μM) | 0.094 | ||
Leucine (μM) | 0.265 | ||
Ornithine (μM) | 0.130 | ||
Phenylalanine (μM) | 0.265 | ||
Treatment-interval change (%) | |||
∆Histidine% ⁑ | 0.029 * | 0.953 (0.911–0.980) | 0.031 * |
∆Leucine% ⁑ | 0.894 | ||
∆Ornithine% ⁑ | 0.731 | ||
∆Phenylalanine% ⁑ | 0.667 | ||
Mean daily calorie intake during CCRT (ref: ≥30) † | 0.591 | ||
Mean daily protein intake during CCRT †† | 0.868 | ||
Mean daily CHO intake during CCRT †† | 0.580 | ||
Mean daily fat intake during CCRT †† | 0.747 | ||
Feeding tube placement (no vs. yes) | 0.709 | ||
Mean days of feeding tube placement during CCRT | 0.741 | ||
CCRT factor | |||
RT dose (Gy) | 0.802 | ||
RT fractions | 0.390 | ||
Cisplatin dose | 0.027 * | ||
CCRT-induced grade 3/4 toxicity | |||
Dermatitis (ref: yes) | 0.966 | ||
Pharyngitis (ref: yes) | 0.999 | ||
Mucositis (ref: yes) | 0.026 * | ||
Infection (ref: yes) | 0.665 | ||
Emesis (ref: yes) | 0.574 | ||
Anemia (ref: yes) | 0.946 | ||
Neutropenia (ref: yes) | 0.834 | ||
Thrombocytopenia (ref: yes) | 0.968 | ||
Number of grade 3/4 toxicity | 0.016 * |
Variables | ∆Albumin% | ∆Histidine% | ||||
---|---|---|---|---|---|---|
Univariate | Multivariate | Univariate | Multivariate | |||
p-Value * | Coefficient (95% CI) | p-Value * | p-Value * | Coefficient (95% CI) | p-Value * | |
Clinicopathological factors | ||||||
Age | 0.145 | 0.391 | ||||
Sex (male vs. female) | 0.484 | 0.263 | ||||
Tumor location (OC vs. NOC) | 0.858 | 0.451 | ||||
TNM stage (III vs. IVA vs. IVB) | 0.094 | 0.345 | ||||
T status (T1-2 vs. T3-4) | 0.709 | 0.087 | ||||
N status (N0-1 vs. N2-3) | 0.536 | 0.518 | ||||
Histological grade (1 vs. 2 vs. 3) | 0.513 | 0.026 * | ||||
Smoking (no vs. yes) | 0.082 | 0.652 | ||||
Alcohol (no vs. yes) | 0.869 | 0.240 | ||||
Betel nut (no vs. yes) | 0.977 | 0.785 | ||||
ECOG performance status (0:1:2) | 0.836 | 0.199 | ||||
Tracheostomy (no vs. yes) | 0.069 | 0.199 | ||||
PG-SGA before CCRT (none: moderate: severe) | 0.422 | 0.531 | ||||
Biochemical data | ||||||
Before CCRT | ||||||
eGFR (mL/min/1.73 m2) | 0.896 | 0.101 | ||||
ALT (U/L) | 0.934 | 0.377 | ||||
Total bilirubin (mg/dL) | 0.068 | 0.581 | ||||
Uric acid (mg/dL) | 0.049 * | 0.141 | ||||
Sugar (AC) (mg/dL) | 0.923 | 0.389 | ||||
Treatment-interval change (%) | ||||||
∆eGFR% ⁑ | 0.019 * | 0.629 | ||||
∆ALT% ⁑ | 0.076 | 0.271 | ||||
∆Total bilirubin% ⁑ | 0.157 | 0.435 | ||||
∆Uric acid% ⁑ | <0.001 * | 0.085 (0.022~0.147) | 0.009 * | 0.068 | ||
∆Sugar (AC) ⁑ | 0.194 | 0.510 | ||||
Anthropometric data and blood NIBs data | ||||||
Before CCRT | ||||||
BW (kg) | 0.913 | 0.337 | ||||
BMI (kg/m2) | 0.839 | 0.226 | ||||
Hb (g/dL) | 0.060 | 0.084 | ||||
WBC (×103 cells/mm3) | 0.666 | 0.323 | ||||
Platelet count (×103/mm3) | 0.406 | 0.046 * | ||||
TLC (×103 cells/mm3) | 0.289 | 0.953 | ||||
TNC (×103/mm3) | 0.874 | 0.288 | ||||
TMC (×103/mm3) | 0.831 | 0.298 | ||||
Albumin (g/dL) | 0.031 * | 0.877 | ||||
Prealbumin (g/dL) | 0.690 | 0.237 | ||||
Transferrin (g/dL) | 0.009 * | 0.736 | ||||
Total cholesterol (mg/dL) | 0.104 | 0.287 | ||||
Triglyceride (mg/dL) | 0.432 | 0.307 | ||||
CRP (mg/dL) | 0.342 | 0.003 * | ||||
Treatment-interval change (%) | ||||||
∆BW% ⁑ | 0.812 | 0.421 | ||||
∆BMI% ⁑ | 0.464 | 0.113 | ||||
∆Hb% ⁑ | <0.001 * | 0.014 * | ||||
∆WBC% ⁑ | 0.247 | 0.561 | ||||
∆Platelet% ⁑ | 0.087 | 0.426 | ||||
∆TLC% ⁑ | 0.260 | 0.827 | ||||
∆TNC% ⁑ | 0.178 | 0.428 | ||||
∆TMC% ⁑ | 0.726 | 0.230 | ||||
∆Albumin% ⁑ | ---- | 0.692 | ||||
∆Prealbumin% ⁑ | 0.003 * | 0.229 | ||||
∆Transferrin% ⁑ | <0.001 * | 0.360 (0.237~0.483) | <0.001 * | 0.458 | ||
∆Cholesterol% ⁑ | <0.001 * | 0.365 | ||||
∆Triglyceride% ⁑ | 0.616 | 0.552 | ||||
∆CRP% ⁑ | 0.077 | 0.006 * | −0.004 (−0.007~−0.0.001) | 0.019 * | ||
DXA-related measurements | ||||||
Before CCRT | ||||||
LBM (kg) | 0.726 | 0.605 | ||||
TFM (kg) | 0.570 | 0.295 | ||||
ASM (kg) | 0.938 | 0.944 | ||||
Treatment-interval change (%) | ||||||
∆LBM% ⁑ | 0.973 | 0.065 | ||||
∆TFM% ⁑ | 0.176 | 0.590 | ||||
∆ASM% ⁑ | 0.042 * | 0.035 * | ||||
HLOP Metabolites | ||||||
Before CCRT | ||||||
Histidine (μM) | 0.056 | <0.001 * | ||||
Leucine (μM) | 0.531 | 0.295 | ||||
Ornithine (μM) | 0.087 | 0.307 | ||||
Phenylalanine (μM) | 0.930 | 0.115 | ||||
Treatment-interval change (%) | ||||||
∆Histidine% ⁑ | 0.692 | ---- | ||||
∆Leucine% ⁑ | 0.305 | 0.015 * | ||||
∆Ornithine% ⁑ | 0.344 | 0.022 * | ||||
∆Phenylalanine% ⁑ | 0.442 | 0.001 * | 0.314 (0.065~0.564) | 0.015 * | ||
Mean daily calorie intake during CCRT † | 0.429 | 0.577 | ||||
Mean daily protein intake during CCRT †† | 0.406 | 0.734 | ||||
Mean daily CHO intake during CCRT †† | 0.429 | 0.520 | ||||
Mean daily fat intake during CCRT †† | 0.428 | 0.582 | ||||
Feeding tube placement (no vs. yes) | 0.245 | 0.583 | ||||
Mean days of feeding tube placement during CCRT | 0.609 | 0.629 | ||||
CCRT factor | ||||||
RT dose (Gy) | 0.247 | 0.746 | ||||
RT fractions | 0.391 | 0.900 | ||||
RT duration (days) | 0.474 | 0.201 | ||||
Cisplatin dose (mg/m2) | 0.323 | 0.677 | ||||
CCRT-induced grade 3/4 toxicity | ||||||
Non-hematological | ||||||
Dermatitis (no vs. yes) | 0.695 | 0.404 | ||||
Pharyngitis (no vs. yes) | 0.908 | 0.237 | ||||
Mucositis (no vs. yes) | 0.325 | 0.282 | ||||
Infection (no vs. yes) | 0.482 | 0.247 | ||||
Emesis (no vs. yes) | 0.563 | 0.495 | ||||
Hematologic | ||||||
Anemia (no vs. yes) | 0.509 | 0.563 | ||||
Neutropenia (no vs. yes) | 0.151 | 0.734 | ||||
Thrombocytopenia (no vs. yes) | 0.532 | 0.858 | ||||
Number of grade 3/4 toxicity | 0.016 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-H.; Ling, H.H.; Liu, M.-H.; Pan, Y.-P.; Chang, P.-H.; Lin, Y.-C.; Chou, W.-C.; Peng, C.-L.; Yeh, K.-Y. Treatment-Interval Changes in Serum Levels of Albumin and Histidine Correlated with Treatment Interruption in Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma Completing Chemoradiotherapy under Recommended Calorie and Protein Provision. Cancers 2022, 14, 3112. https://doi.org/10.3390/cancers14133112
Wang C-H, Ling HH, Liu M-H, Pan Y-P, Chang P-H, Lin Y-C, Chou W-C, Peng C-L, Yeh K-Y. Treatment-Interval Changes in Serum Levels of Albumin and Histidine Correlated with Treatment Interruption in Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma Completing Chemoradiotherapy under Recommended Calorie and Protein Provision. Cancers. 2022; 14(13):3112. https://doi.org/10.3390/cancers14133112
Chicago/Turabian StyleWang, Chao-Hung, Hang Huong Ling, Min-Hui Liu, Yi-Ping Pan, Pei-Hung Chang, Yu-Ching Lin, Wen-Chi Chou, Chia-Lin Peng, and Kun-Yun Yeh. 2022. "Treatment-Interval Changes in Serum Levels of Albumin and Histidine Correlated with Treatment Interruption in Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma Completing Chemoradiotherapy under Recommended Calorie and Protein Provision" Cancers 14, no. 13: 3112. https://doi.org/10.3390/cancers14133112
APA StyleWang, C.-H., Ling, H. H., Liu, M.-H., Pan, Y.-P., Chang, P.-H., Lin, Y.-C., Chou, W.-C., Peng, C.-L., & Yeh, K.-Y. (2022). Treatment-Interval Changes in Serum Levels of Albumin and Histidine Correlated with Treatment Interruption in Patients with Locally Advanced Head and Neck Squamous Cell Carcinoma Completing Chemoradiotherapy under Recommended Calorie and Protein Provision. Cancers, 14(13), 3112. https://doi.org/10.3390/cancers14133112