Is Robotic Assisted Colorectal Cancer Surgery Equivalent Compared to Laparoscopic Procedures during the Introduction of a Robotic Program? A Propensity-Score Matched Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Surgical Technique
2.2. Histopathological Examination
2.3. Propensity-Score-Matched Analysis (PSM)
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | body mass index |
ASA | American Society of Anesthesiologists |
CEA | carcinoembryonic antigen |
CT | computed tomography |
MRI | Magnet resonance imaging |
LR | laparoscopic-assisted resection |
RR | robotic-assisted resection |
References
- Adamina, M.; Manwaring, M.L.; Park, K.-J.; Delaney, C.P. Laparoscopic complete mesocolic excision for right colon cancer. Surg. Endosc. 2012, 26, 2976–2980. [Google Scholar] [CrossRef]
- van der Pas, M.H.; Haglind, E.; Cuesta, M.A.; Fürst, A.; Lacy, A.M.; Hop, W.C.J.; Bonjer, H.J. Laparoscopic versus open surgery for rectal cancer (COLOR II): Short-term outcomes of a randomised, phase 3 trial. Lancet Oncol. 2013, 14, 210–218. [Google Scholar] [CrossRef]
- Tschann, P.; Seitinger, G.; Lechner, D.; Adler, S.; Feurstein, B.; Girotti, P.N.C.; Schmölzer, T.; Szeverinski, P.; Aigner, F.; Königsrainer, I. Reduced port versus open right hemicolectomy for colorectal cancer: A retrospective comparison study of two centers. Int. J. Colorectal Dis. 2021, 36, 1469–1477. [Google Scholar] [CrossRef]
- Li, J.C.-M.; Leung, K.L.; Ng, S.S.-M.; Liu, S.Y.-W.; Lee, J.F.-Y.; Hon, S.S.-F. Laparoscopic-assisted versus open resection of right-sided colonic cancer—A prospective randomized controlled trial. Int. J. Colorectal Dis. 2012, 27, 95–102. [Google Scholar] [CrossRef]
- Stucky, C.-C.H.; Pockaj, B.A.; Novotny, P.J.; Sloan, J.A.; Sargent, D.J.; O’Connell, M.J.; Beart, R.W.; Skibber, J.M.; Nelson, H.; Weeks, J.C. Long-term follow-up and individual item analysis of quality of life assessments related to laparoscopic-assisted colectomy in the COST trial 93-46-53 (INT 0146). Ann. Surg. Oncol. 2011, 18, 2422–2431. [Google Scholar] [CrossRef]
- Jayne, D.; Pigazzi, A.; Marshall, H.; Croft, J.; Corrigan, N.; Copeland, J.; Quirke, P.; West, N.; Rautio, T.; Thomassen, N.; et al. Effect of Robotic-Assisted vs Conventional Laparoscopic Surgery on Risk of Conversion to Open Laparotomy Among Patients Undergoing Resection for Rectal Cancer: The ROLARR Randomized Clinical Trial. JAMA 2017, 318, 1569–1580. [Google Scholar] [CrossRef]
- Park, J.S.; Kang, H.; Park, S.Y.; Kim, H.J.; Woo, I.T.; Park, I.-K.; Choi, G.-S. Long-term oncologic after robotic versus laparoscopic right colectomy: A prospective randomized study. Surg. Endosc. 2019, 33, 2975–2981. [Google Scholar] [CrossRef]
- Song, S.H.; Choi, G.-S.; Kim, H.J.; Park, J.S.; Park, S.Y.; Lee, S.-M.; Choi, J.A.; Seok, H.A. Long-term clinical outcomes of total mesorectal excision and selective lateral pelvic lymph node dissection for advanced low rectal cancer: A comparative study of a robotic versus laparoscopic approach. Tech. Coloproctol. 2021, 25, 413–423. [Google Scholar] [CrossRef]
- Grosek, J.; Ales Kosir, J.; Sever, P.; Erculj, V.; Tomazic, A. Robotic versus laparoscopic surgery for colorectal cancer: A case-control study. Radiol. Oncol. 2021, 55, 433–438. [Google Scholar] [CrossRef]
- Flynn, J.; Larach, J.T.; Kong, J.C.H.; Waters, P.S.; Warrier, S.K.; Heriot, A. The learning curve in robotic colorectal surgery compared with laparoscopic colorectal surgery: A systematic review. Colorectal Dis. 2021, 23, 2806–2820. [Google Scholar] [CrossRef]
- Doyle, D.J.; Goyal, A.; Garmon, E.H. StatPearls: American Society of Anesthesiologists Classification; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Quirke, P.; Steele, R.; Monson, J.; Grieve, R.; Khanna, S.; Couture, J.; O’Callaghan, C.; Myint, A.S.; Bessell, E.; Thompson, L.C.; et al. Effect of the plane of surgery achieved on local recurrence in patients with operable rectal cancer: A prospective study using data from the MRC CR07 and NCIC-CTG CO16 randomised clinical trial. Lancet 2009, 373, 821–828. [Google Scholar] [CrossRef] [Green Version]
- West, N.P.; Hohenberger, W.; Weber, K.; Perrakis, A.; Finan, P.J.; Quirke, P. Complete mesocolic excision with central vascular ligation produces an oncologically superior specimen compared with standard surgery for carcinoma of the colon. J. Clin. Oncol. 2010, 28, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe); AWMF. S3-Leitlinie Kolorektales Karzinom, Langversion 2.1, 2019, AWMF, Registirerungsnummer: 021/007OL. AWMF online. Available online: https://www.awmf.org/uploads/tx_szleitlinien/021-007OLl_S3_Kolorektales-Karzinom-KRK_2019-01.pdf (accessed on 15 March 2022).
- Brierley, J.; Gospodarowicz, M.K.; Wittekind, C. (Eds.) TNM Classification of Malignant Tumours, 8th ed.; John Wiley & Sons Inc.: Chichester, UK; Hoboken, NJ, USA, 2017; ISBN 9781119263579. [Google Scholar]
- Heald, R.J. The ‘Holy Plane’ of rectal surgery. J. R. Soc. Med. 1988, 81, 503–508. [Google Scholar] [CrossRef]
- Tschann, P.; Szeverinski, P.; Weigl, M.P.; Rauch, S.; Lechner, D.; Adler, S.; Girotti, P.N.C.; Clemens, P.; Tschann, V.; Presl, J.; et al. Short- and Long-Term Outcome of Laparoscopic- versus Robotic-Assisted Right Colectomy: A Systematic Review and Meta-Analysis. JCM 2022, 11, 2387. [Google Scholar] [CrossRef]
- Tam, M.S.; Kaoutzanis, C.; Mullard, A.J.; Regenbogen, S.E.; Franz, M.G.; Hendren, S.; Krapohl, G.; Vandewarker, J.F.; Lampman, R.M.; Cleary, R.K. A population-based study comparing laparoscopic and robotic outcomes in colorectal surgery. Surg. Endosc. 2016, 30, 455–463. [Google Scholar] [CrossRef]
- Spinoglio, G.; Summa, M.; Priora, F.; Quarati, R.; Testa, S. Robotic colorectal surgery: First 50 cases experience. Dis. Colon Rectum 2008, 51, 1627–1632. [Google Scholar] [CrossRef]
- de Souza, A.L.; Prasad, L.M.; Marecik, S.J.; Blumetti, J.; Park, J.J.; Zimmern, A.; Abcarian, H. Total mesorectal excision for rectal cancer: The potential advantage of robotic assistance. Dis. Colon Rectum 2010, 53, 1611–1617. [Google Scholar] [CrossRef]
- Liao, G.; Zhao, Z.; Lin, S.; Li, R.; Yuan, Y.; Du, S.; Chen, J.; Deng, H. Robotic-assisted versus laparoscopic colorectal surgery: A meta-analysis of four randomized controlled trials. World J. Surg. Oncol. 2014, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Fleshman, J.; Sargent, D.J.; Green, E.; Anvari, M.; Stryker, S.J.; Beart, R.W.; Hellinger, M.; Flanagan, R.; Peters, W.; Nelson, H. Laparoscopic colectomy for cancer is not inferior to open surgery based on 5-year data from the COST Study Group trial. Ann. Surg. 2007, 246, 655–662; discussion 662–664. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D.G.; Guillou, P.J.; Thorpe, H.; Quirke, P.; Copeland, J.; Smith, A.M.H.; Heath, R.M.; Brown, J.M. Randomized trial of laparoscopic-assisted resection of colorectal carcinoma: 3-year results of the UK MRC CLASICC Trial Group. J. Clin. Oncol. 2007, 25, 3061–3068. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Z.; Bie, M.; Peng, X.; Chen, C. Robot-assisted versus laparoscopic-assisted surgery for colorectal cancer: A meta-analysis. Surg. Endosc. 2016, 30, 5601–5614. [Google Scholar] [CrossRef]
- Genova, P.; Pantuso, G.; Cipolla, C.; Latteri, M.A.; Abdalla, S.; Paquet, J.-C.; Brunetti, F.; de’Angelis, N.; Di Saverio, S. Laparoscopic versus robotic right colectomy with extra-corporeal or intra-corporeal anastomosis: A systematic review and meta-analysis. Langenbecks. Arch. Surg. 2021, 406, 1317–1339. [Google Scholar] [CrossRef] [PubMed]
- Safiejko, K.; Tarkowski, R.; Koselak, M.; Juchimiuk, M.; Tarasik, A.; Pruc, M.; Smereka, J.; Szarpak, L. Robotic-Assisted vs. Standard Laparoscopic Surgery for Rectal Cancer Resection: A Systematic Review and Meta-Analysis of 19,731 Patients. Cancers 2021, 14, 180. [Google Scholar] [CrossRef]
- Allemann, P.; Duvoisin, C.; Di Mare, L.; Hübner, M.; Demartines, N.; Hahnloser, D. Robotic-Assisted Surgery Improves the Quality of Total Mesorectal Excision for Rectal Cancer Compared to Laparoscopy: Results of a Case-Controlled Analysis. World J. Surg. 2016, 40, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Aselmann, H.; Kersebaum, J.-N.; Bernsmeier, A.; Beckmann, J.H.; Möller, T.; Egberts, J.H.; Schafmayer, C.; Röcken, C.; Becker, T. Robotic-assisted total mesorectal excision (TME) for rectal cancer results in a significantly higher quality of TME specimen compared to the laparoscopic approach-report of a single-center experience. Int. J. Colorectal Dis. 2018, 33, 1575–1581. [Google Scholar] [CrossRef]
- Lin, S.; Jiang, H.-G.; Chen, Z.-H.; Zhou, S.-Y.; Liu, X.-S.; Yu, J.-R. Meta-analysis of robotic and laparoscopic surgery for treatment of rectal cancer. World J. Gastroenterol. 2011, 17, 5214–5220. [Google Scholar] [CrossRef]
- Fleming, C.A.; Ullah, M.F.; Chang, K.H.; McNamara, E.; Condon, E.; Waldron, D.; Coffey, J.C.; Peirce, C.B. Propensity score-matched analysis comparing laparoscopic to robotic surgery for colorectal cancer shows comparable clinical and oncological outcomes. J. Robot. Surg. 2021, 15, 389–396. [Google Scholar] [CrossRef]
Entire Cohort | Propensity-Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
LR Group 82 | RR Group 93 | p-Value | LR Group 63 | RR Group 63 | p-Value | |
Sex, male/female, n (%) | 44 (53.66%)/38 (46.34%) | 60 (64.52%)/33 (35.48%) | 0.144 | 38 (60.32%)/25 (39.68%) | 37 (58.73%)/26 (41.27%) | 0.856 |
Age, median (IQR), y | 64.0 (58.0–75.0) | 68.0 (60.0–75.0) | 0.438 | 65.0 (60.0–78.0) | 70.0 (62.0–76.0) | 0.519 |
BMI, median (IQR), kg/m2 | 25.4 (23.0–29.0) | 25.1 (23.0–28.0) | 0.654 | 25.0 (23.0–28.0) | 24.7 (22.0–28.0) | 0.583 |
ASA (average), n (%) | 0.122 | 0.222 | ||||
I | 3 (3.66%) | 12 (12.9%) | 3 (4.76%) | 9 (14.29%) | ||
II | 39 (47.56%) | 41 (44.09%) | 29 (46.03%) | 25 (39.68%) | ||
III | 39 (47.56%) | 40 (43.01%) | 30 (47.62%) | 29 (46.03%) | ||
IV | 1 (1.22%) | 0 (0.0%) | 1 (1.59%) | 0 (0.0%) | ||
V | 0 | 0 | 0 | 0 | ||
Tumor localization, n (%) | ||||||
Right | 19 (23.75%) | 13 (13.98%) | 0.116 | 13 (21.31%) | 10 (15.87%) | 0.489 |
Left (+upper rectum) | 19 (23.75%) | 20 (21.51%) | 0.792 | 14 (22.95%) | 16 (25.4%) | 0.676 |
Rectum (mid, low rectum) | 42 (52.5%) | 60 (64.52%) | 0.075 | 34 (55.74%) | 37 (58.73%) | 0.473 |
CEA level preoperative, median (IQR), µg/L | 2.4 (1.0–4.0) | 2.1 (1.0–4.0) | 0.468 | 2.6 (2.0–4.0) | 2.2 (1.0–4.0) | 0.425 |
Previous abdominal surgery, n (%) | 18 (21.95%) | 32 (34.41%) | 0.056 | 13 (20.63%) | 22 (34.92) | 0.037 |
Comorbidities, n (%) | 0.091 | 0.066 | ||||
Yes | 27 (32.93%) | 41 (45.56%) | 19 (30.16%) | 28 (46.67%) | ||
No | 55 (67.07%) | 49 (54.44%) | 44 (69.84%) | 32 (53.33%) | ||
Comorbidities, % | 0.328 | 0.351 | ||||
Coronary disease | 24.39% | 13.98% | 26.98% | 14.29% | ||
Pulmonary insufficiency | 4.88% | 6.45% | 6.35% | 4.76% | ||
Obesity | 8.54% | 11.83% | 4.76% | 9.52% | ||
Kidney disease | 9.76% | 7.53% | 4.76% | 4.76% | ||
Hypertension | 39.02% | 37.63% | 44.44% | 33.33% | ||
Chronic renal failure | 3.66% | 2.15% | 4.76% | 1.59% | ||
Insult | 4.88% | 2.15% | 6.35% | 1.59% | ||
Atrial fibrillation | 7.32% | 4.3% | 9.52% | 4.76% | ||
Clinical stage (UICC), n (%) | 0.611 | 0.459 | ||||
I | 18 (29.03%) | 17 (23.94%) | 6 (22.22%) | 6 (42.86%) | ||
II | 26 (41.94%) | 25 (35.21%) | 10 (37.04%) | 4 (28.57%) | ||
III | 17 (27.42%) | 28 (39.44%) | 11 (40.74%) | 4 (28.57%) | ||
Preoperative therapy (rectal cancer), n (%) | 0.344 | 0.07 | ||||
Short-term (5 × 5Gy) | 3 (3.66%) | 2 (2.15%) | 3 (4.76%) | 1 (1.59%) | ||
Long-term (50.4 Gy + Chemotherapy) | 18 (21.95%) | 27 (29.03%) | 15 (23.81%) | 15 (23.81%) |
Entire Cohort | Propensity-Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
LR Group 82 | RR Group 93 | p-Value | LR Group 63 | RR Group 63 | p-Value | |
Operative method, n (%) | 0.14 | 0.397 | ||||
Right | 19 (23.17%) | 13 (13.98%) | 14 (22.22%) | 10 (15.87%) | ||
Left (+upper rectum) | 19 (23.75%) | 20 (21.51%) | 14 (22.95%) | 16 (25.4%) | ||
Rectum (mid, low rectum) | 42 (52.5%) | 60 (64.52%) | 33 (52.38%) | 37 (58.73%) | ||
Transverse | 2 (2.44%) | 0 (0%) | 2 (3.17%) | 0 (0%) | ||
Anastomosis | <0.001 | 0.008 | ||||
S-S | 21 (25.61%) | 13 (13.98%) | 15 (28.3%) | 11 (18.97%) | ||
E-E | 31 (37.8%) | 26 (27.96%) | 24 (45.28%) | 16 (27.59%) | ||
S-E | 16 (19.51%) | 46 (49.46%) | 12 (22.64%) | 30 (51.72%) | ||
Colo-anal | 2 (2.44%) | 2 (2.15%) | 2 (3.77%) | 1 (1.72%) | ||
Intracorporeal/extracorporeal (right hemicolectomy), n (%) | 0.008 | 0.11 | ||||
extracorporeal | 14 (73.68%) | 3 (23.07%) | 10 (15.87%) | 3 (4.76%) | ||
intracorporeal | 5 (26.31%) | 10 (76.92%) | 3 (4.76%) | 6 (9.52%) | ||
Protective defunctioning stoma, n (%) | 16 (32%) | 39 (55.7%) | 0.006 | 20 (31.7%) | 37 (58.73%) | 0.03 |
Operation time, median (IQR), min | 200.0 (150.0–243.0) | 204.0 (174.0–278.0) | 0.045 | 205.0 (154.0–244.0) | 193.0 (158.0–252.0) | 0.915 |
Time to first flatus, median (IQR), d | 2.0 (1.0–2.0) | 2.0 (1.0–2.0) | 0.803 | 2.0 (1.0–2.0) | 2.0 (1.0–2.0) | 0.768 |
Hb preoperative, median (IQR), g/l | 13.4 (12.0–15.0) | 13.2 (12.0–14.0) | 0.493 | 13.3 (12.0–14.0) | 13.3 (12.0–15.0) | 0.757 |
Hb postoperative, median (IQR), g/l | 11.65 (10.0–13.0) | 11.3 (10.0–12.0) | 0.242 | 11.8 (10.0–13.0) | 11.3 (10.0–12.0) | 0.468 |
Complications, n (%) | 18.29% | 21.51% | 0.596 | 19.05% | 15.87% | 0.639 |
Anastomotic leakage | 4 (4.88%) | 4 (4.3%) | 3 (4.76%) | 2 (3.17%) | ||
Wound infection | 4 (4.88%) | 3 (3.23%) | 3 (4.76%) | 2 (3.17%) | ||
Bleeding | 1 (1.22%) | 2 (2.15%) | 1 (1.59%) | 0 (0.0%) | ||
Intra-abdominal abscess/infection | 1 (1.22%) | 2 (2.15%) | 1 (1.59%) | 1 (1.59%) | ||
Bowel obstruction | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
Renal dysfunction | 0 (0%) | 1 (1.08%) | 0 (0%) | 1 (1.59%) | ||
Others * | 5 (6.1%) | 8 (8.6%) | 4 (6.35%) | 4 (6.35%) | ||
Clavien–Dindo Classification, n (%) | 0.855 | 0.912 | ||||
I | 1 (1.22%) | 3 (3.23%) | 1 (1.59%) | 1 (1.59%) | ||
II | 7 (8.54%) | 8 (8.6%) | 5 (7.94%) | 4 (6.35%) | ||
III | 6 (7.32%) | 7 (7.53%) | 5 (7.94%) | 3 (4.76%) | ||
IV | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
V | 1 (1.22%) | 2 (2.15%) | 1 (1.59%) | 2 (3.17%) | ||
Conversion to open procedure, n (%) | 16 (19.51%) | 5 (5.38%) | 0.004 | 13 (20.63%) | 3 (4.76%) | 0.006 |
Stoma reversal time, median (IQR), d | 75.5 (65.0–394.0) | 78.0 (31.0–110.0) | 0.339 | 220.5 (73.0–464.0) | 70.0 (22.0–83.0) | 0.068 |
Duration of hospital stay, median (IQR) | 9.0 (7.0–14.0) | 9.0 (6.0–13.0) | 0.928 | 9.0 (7.0–14.0) | 9.0 (6.0–12.0) | 0.149 |
Entire Cohort | Propensity-Score-Matched Cohort | |||||
---|---|---|---|---|---|---|
LR Group 82 | RR Group 93 | p-Value | LR Group 63 | RR Group 63 | p-Value | |
Pathological T Stage, n (%) | 0.834 | 0.896 | ||||
Tis | 2 (2.47%) | 6 (6.45%) | 1 (1.59%) | 2 (3.17%) | ||
T1 | 15 (18.52%) | 16 (18.18%) | 12 (19.05%) | 12 (19.05%) | ||
T2 | 29 (35.36%) | 27 (30.68%) | 24 (38.1%) | 20 (31.75%) | ||
T3 | 32 (39.51%) | 40 (43.01%) | 24 (38.1%) | 25 (39.68%) | ||
T4 | 4 (4.94%) | 4 (4.55%) | 2 (3.17%) | 3 (4.76%) | ||
Pathological N Stage, n (%) | 0.22 | 0.847 | ||||
N0 | 60 (73.17%) | 60 (64.51%) | 44 (69.84%) | 43 (68.25%) | ||
N+ | 22 (27.16%) | 33 (35.87%) | 19 (30.16%) | 20 (31.75%) | ||
Postoperative UICC Stage, n (%) | 0.225 | 0.295 | ||||
0 | 3 (3.66%) | 6 (6.45%) | 1 (1.59%) | 2 (3.17%) | ||
I | 34 (41.46%) | 33 (35.87%) | 27 (42.86%) | 26 (41.27%) | ||
II | 20 (24.39%) | 18 (19.57%) | 15 (23.81%) | 12 (19.05%) | ||
III | 25 (30.49%) | 31 (33.7%) | 20 (31.75%) | 20 (31.75%) | ||
IV | 0 (0%) | 5 (5.43%) | 0 (0%) | 3 (4.76%) | ||
Mercury Score, n (%) | 0.355 | 0.343 | ||||
I | 52 (86.67%) | 52 (88.14%) | 39 (84.78%) | 34 (85.0%) | ||
II | 6 (10.0%) | 7 (11.86%) | 5 (10.87%) | 6 (15.0%) | ||
III | 2 (3.33%) | 0 (0.0%) | 2 (4.35%) | 0 (0.0%) | ||
Number of retrieved lymph nodes, median (IQR) | 22.0 (16.0–27.0) | 24.0 (15.0–30.0) | 0.512 | 22.0 (16.0–26.0) | 23.0 (15.0–28.0) | 0.942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tschann, P.; Weigl, M.P.; Lechner, D.; Mittelberger, C.; Jäger, T.; Gruber, R.; Girotti, P.N.C.; Mittermair, C.; Clemens, P.; Attenberger, C.; et al. Is Robotic Assisted Colorectal Cancer Surgery Equivalent Compared to Laparoscopic Procedures during the Introduction of a Robotic Program? A Propensity-Score Matched Analysis. Cancers 2022, 14, 3208. https://doi.org/10.3390/cancers14133208
Tschann P, Weigl MP, Lechner D, Mittelberger C, Jäger T, Gruber R, Girotti PNC, Mittermair C, Clemens P, Attenberger C, et al. Is Robotic Assisted Colorectal Cancer Surgery Equivalent Compared to Laparoscopic Procedures during the Introduction of a Robotic Program? A Propensity-Score Matched Analysis. Cancers. 2022; 14(13):3208. https://doi.org/10.3390/cancers14133208
Chicago/Turabian StyleTschann, Peter, Markus P. Weigl, Daniel Lechner, Christa Mittelberger, Tarkan Jäger, Ricarda Gruber, Paolo N. C. Girotti, Christof Mittermair, Patrick Clemens, Christian Attenberger, and et al. 2022. "Is Robotic Assisted Colorectal Cancer Surgery Equivalent Compared to Laparoscopic Procedures during the Introduction of a Robotic Program? A Propensity-Score Matched Analysis" Cancers 14, no. 13: 3208. https://doi.org/10.3390/cancers14133208
APA StyleTschann, P., Weigl, M. P., Lechner, D., Mittelberger, C., Jäger, T., Gruber, R., Girotti, P. N. C., Mittermair, C., Clemens, P., Attenberger, C., Szeverinski, P., Brock, T., Frick, J., Emmanuel, K., Königsrainer, I., & Presl, J. (2022). Is Robotic Assisted Colorectal Cancer Surgery Equivalent Compared to Laparoscopic Procedures during the Introduction of a Robotic Program? A Propensity-Score Matched Analysis. Cancers, 14(13), 3208. https://doi.org/10.3390/cancers14133208