Prognostic Models Incorporating RAS Mutation to Predict Survival in Patients with Colorectal Liver Metastases: A Narrative Review
Abstract
:1. Introduction
2. Prognostic Models Incorporating RAS Mutation Status
3. Assessing the Performance of Prediction Models Incorporating RAS Mutations Status
4. Molecular Biomarkers and Revised Clinicopathologic Predictors in Prognostic Models for Colorectal Liver Metastases
5. Evaluation of Individual Prognostic Models Incorporating RAS Mutation Status in CRLM
5.1. RAS-Informed Treatment Algorithms
5.2. Genetic and Morphologic Evaluation Score
5.3. Modified Clinical Score
5.4. Tumor Biology Score
5.5. Extended Clinical Score
5.6. Paredes-Pawlik Clinical Score
5.7. Nomograms for Predicting Recurrence after Resection of CRLM
5.8. Comprehensive Evaluation of Relapse Risk Score
5.9. Modifying Effects of Perioperative Chemotherapy on Prediction Models Incorporating RAS Mutation Status
5.10. Contour Prognostic Model
5.11. Predicting 10-Year Overall Survival after Resection of Colorectal Liver Metastases
6. Prognostic Value of RAS Mutation Status in Colorectal Liver Metastases
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiorean, E.G.; Nandakumar, G.; Fadelu, T.; Temin, S.; Alarcon-Rozas, A.E.; Bejarano, S.; Croitoru, A.-E.; Grover, S.; Lohar, P.V.; Odhiambo, A.; et al. Treatment of Patients with Late-Stage Colorectal Cancer: ASCO Resource-Stratified Guideline. JCO Glob. Oncol. 2020, 6, 414–438. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO Consensus Guidelines for the Management of Patients with Metastatic Colorectal Cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, T.M.; Schulick, R.D.; Choti, M.A. Expanding Criteria for Resectability of Colorectal Liver Metastases. Oncologist 2008, 13, 51–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustavsson, B.; Carlsson, G.; Machover, D.; Petrelli, N.; Roth, A.; Schmoll, H.-J.; Tveit, K.-M.; Gibson, F. A Review of the Evolution of Systemic Chemotherapy in the Management of Colorectal Cancer. Clin. Colorectal Cancer 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Strasberg, S.M.; Dehdashti, F.; Siegel, B.A.; Drebin, J.A.; Linehan, D. Survival of Patients Evaluated by FDG-PET before Hepatic Resection for Metastatic Colorectal Carcinoma: A Prospective Database Study. Ann. Surg. 2001, 233, 293–299. [Google Scholar] [CrossRef]
- Tomlinson, J.S.; Jarnagin, W.R.; DeMatteo, R.P.; Fong, Y.; Kornprat, P.; Gonen, M.; Kemeny, N.; Brennan, M.F.; Blumgart, L.H.; D’Angelica, M. Actual 10-Year Survival after Resection of Colorectal Liver Metastases Defines Cure. J. Clin. Oncol. 2007, 25, 4575–4580. [Google Scholar] [CrossRef]
- D’Angelica, M.; Kornprat, P.; Gonen, M.; DeMatteo, R.P.; Fong, Y.; Blumgart, L.H.; Jarnagin, W.R. Effect on Outcome of Recurrence Patterns after Hepatectomy for Colorectal Metastases. Ann. Surg. Oncol. 2011, 18, 1096–1103. [Google Scholar] [CrossRef]
- Creasy, J.M.; Sadot, E.; Koerkamp, B.G.; Chou, J.F.; Gonen, M.; Kemeny, N.E.; Balachandran, V.P.; Kingham, T.P.; DeMatteo, R.P.; Allen, P.J.; et al. Actual 10-Year Survival after Hepatic Resection of Colorectal Liver Metastases: What Factors Preclude Cure? Surgery 2018, 163, 1238–1244. [Google Scholar] [CrossRef]
- Spelt, L.; Andersson, B.; Nilsson, J.; Andersson, R. Prognostic Models for Outcome Following Liver Resection for Colorectal Cancer Metastases: A Systematic Review. Eur. J. Surg. Oncol. 2012, 38, 16–24. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Moons, K.G.M.; van der Windt, D.A.; Hayden, J.A.; Perel, P.; Schroter, S.; Riley, R.D.; Hemingway, H.; Altman, D.G.; PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. PLoS Med. 2013, 10, e1001381. [Google Scholar] [CrossRef] [Green Version]
- Fong, Y.; Fortner, J.; Sun, R.L.; Brennan, M.F.; Blumgart, L.H. Clinical Score for Predicting Recurrence After Hepatic Resection for Metastatic Colorectal Cancer: Analysis of 1001 Consecutive Cases. Ann. Surg. 1999, 230, 309. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, S.; Donohue, J.H.; Que, F.G.; Farnell, M.B.; Schleck, C.D.; Ilstrup, D.M.; Nagorney, D.M. Hepatic Resection for Colorectal Metastases: Value for Risk Scoring Systems? Ann. Surg. 2007, 246, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Beamish, P.; Lemke, M.; Li, J.; Dixon, E.; Abraham, M.T.; Alejandro, R.H.; Bennett, S.; Martel, G.; Karanicolas, P.J. Validation of Clinical Risk Score for Colorectal Liver Metastases Resected in a Contemporary Multicenter Cohort. HPB 2017, 19, 675–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, M.C.B.; Butte, J.M.; Gonen, M.; Kemeny, N.; Fong, Y.; Allen, P.J.; Kingham, T.P.; Dematteo, R.P.; Jarnagin, W.R.; D’Angelica, M.I. Prognostic Significance of Early Recurrence: A Conditional Survival Analysis in Patients with Resected Colorectal Liver Metastasis. HPB 2013, 15, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Dempke, W.C.M.; Heinemann, V. Ras Mutational Status Is a Biomarker for Resistance to EGFR Inhibitors in Colorectal Carcinoma. Anticancer Res. 2010, 30, 4673–4677. [Google Scholar]
- Karapetis, C.S.; Khambata-Ford, S.; Jonker, D.J.; O’Callaghan, C.J.; Tu, D.; Tebbutt, N.C.; Simes, R.J.; Chalchal, H.; Shapiro, J.D.; Robitaille, S.J.R.; et al. K-Ras Mutations and Benefit from Cetuximab in Advanced Colorectal Cancer. N. Engl. J. Med. 2008, 359, 1757–1765. [Google Scholar] [CrossRef] [Green Version]
- Amado, R.G.; Wolf, M.; Peeters, M.; Van Cutsem, E.; Siena, S.; Freeman, D.J.; Juan, T.; Sikorski, R.; Suggs, S.; Radinsky, R.; et al. Wild-Type KRAS Is Required for Panitumumab Efficacy in Patients With Metastatic Colorectal Cancer. JCO 2008, 26, 1626–1634. [Google Scholar] [CrossRef]
- Brudvik, K.W.; Kopetz, S.E.; Li, L.; Conrad, C.; Aloia, T.A.; Vauthey, J.-N. Meta-Analysis of KRAS Mutations and Survival after Resection of Colorectal Liver Metastases. Br. J. Surg. 2015, 102, 1175–1183. [Google Scholar] [CrossRef] [Green Version]
- Passot, G.; Denbo, J.W.; Yamashita, S.; Kopetz, S.E.; Chun, Y.S.; Maru, D.; Overman, M.J.; Brudvik, K.W.; Conrad, C.; Aloia, T.A.; et al. Is Hepatectomy Justified for Patients with RAS Mutant Colorectal Liver Metastases? An Analysis of 524 Patients Undergoing Curative Liver Resection. Surgery 2017, 161, 332–340. [Google Scholar] [CrossRef]
- Wang, K.; Liu, W.; Yan, X.-L.; Li, J.; Xing, B.-C. Long-Term Postoperative Survival Prediction in Patients with Colorectal Liver Metastasis. Oncotarget 2017, 8, 79927–79934. [Google Scholar] [CrossRef] [Green Version]
- Margonis, G.A.; Sasaki, K.; Gholami, S.; Kim, Y.; Andreatos, N.; Rezaee, N.; Deshwar, A.; Buettner, S.; Allen, P.J.; Kingham, T.P.; et al. Genetic And Morphological Evaluation (GAME) Score for Patients with Colorectal Liver Metastases. Br. J. Surg. 2018, 105, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Brudvik, K.W.; Mise, Y.; Chung, M.H.; Chun, Y.S.; Kopetz, S.E.; Passot, G.; Conrad, C.; Maru, D.M.; Aloia, T.A.; Vauthey, J.-N. RAS Mutation Predicts Positive Resection Margins and Narrower Resection Margins in Patients Undergoing Resection of Colorectal Liver Metastases. Ann. Surg. Oncol. 2016, 23, 2635–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Wang, K.; Han, Y.; Liang, J.-Y.; Li, Y.-H.; Xing, B.-C. Nomogram Predicted Disease Free Survival for Colorectal Liver Metastasis Patients with Preoperative Chemotherapy Followed by Hepatic Resection. Eur. J. Surg. Oncol. 2019, 45, 2070–2077. [Google Scholar] [CrossRef] [PubMed]
- Lang, H.; Baumgart, J.; Heinrich, S.; Tripke, V.; Passalaqua, M.; Maderer, A.; Galle, P.R.; Roth, W.; Kloth, M.; Moehler, M. Extended Molecular Profiling Improves Stratification and Prediction of Survival After Resection of Colorectal Liver Metastases. Ann. Surg. 2019, 270, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Paredes, A.Z.; Hyer, J.M.; Tsilimigras, D.I.; Moro, A.; Bagante, F.; Guglielmi, A.; Ruzzenente, A.; Alexandrescu, S.; Makris, E.A.; Poultsides, G.A.; et al. A Novel Machine-Learning Approach to Predict Recurrence After Resection of Colorectal Liver Metastases. Ann. Surg. Oncol. 2020, 27, 5139–5147. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, W.; Ren, L.; Chen, J.; Tang, W.; Liu, T.; Jian, M.; Liu, Y.; Wei, Y.; Xu, J. Comprehensive Evaluation of Relapse Risk (CERR) Score for Colorectal Liver Metastases: Development and Validation. Oncologist 2020, 25, e1031–e1041. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhang, W.; Xu, Y.; Li, Y.-H.; Xing, B.-C. A Prognostic Scoring System to Predict Survival Outcome of Resectable Colorectal Liver Metastases in This Modern Era. Ann. Surg. Oncol. 2021, 28, 7709–7718. [Google Scholar] [CrossRef]
- Takeda, Y.; Mise, Y.; Matsumura, M.; Hasegawa, K.; Yoshimoto, J.; Imamura, H.; Noro, T.; Yamamoto, J.; Ishizuka, N.; Inoue, Y.; et al. Accuracy of Modern Clinical Risk Score Including RAS Status Changes Based on Whether Patients Received Perioperative Chemotherapy for Colorectal Liver Metastases. World J. Surg. 2021, 45, 2176–2184. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kopetz, S.; Tran Cao, H.S.; Panettieri, E.; De Bellis, M.; Nishioka, Y.; Hwang, H.; Wang, X.; Tzeng, C.-W.D.; Chun, Y.S.; et al. Contour Prognostic Model for Predicting Survival after Resection of Colorectal Liver Metastases: Development and Multicentre Validation Study Using Largest Diameter and Number of Metastases with RAS Mutation Status. Br. J. Surg. 2021, 108, 968–975. [Google Scholar] [CrossRef]
- Buisman, F.E.; Giardiello, D.; Kemeny, N.E.; Steyerberg, E.W.; Höppener, D.J.; Galjart, B.; Nierop, P.M.H.; Balachandran, V.P.; Cercek, A.; Drebin, J.A.; et al. Predicting 10-Year Survival after Resection of Colorectal Liver Metastases; an International Study Including Biomarkers and Perioperative Treatment. Eur. J. Cancer 2022, 168, 25–33. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.A.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and Elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pencina, M.J.; D’Agostino, R.B. Evaluating Discrimination of Risk Prediction Models: The C Statistic. JAMA 2015, 314, 1063. [Google Scholar] [CrossRef] [PubMed]
- On behalf of Topic Group ‘Evaluating diagnostic tests and prediction models’ of the STRATOS Initiative; Van Calster, B.; McLernon, D.J.; van Smeden, M.; Wynants, L.; Steyerberg, E.W. Calibration: The Achilles Heel of Predictive Analytics. BMC Med. 2019, 17, 230. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Morioka, D.; Conci, S.; Margonis, G.A.; Sawada, Y.; Ruzzenente, A.; Kumamoto, T.; Iacono, C.; Andreatos, N.; Guglielmi, A.; et al. The Tumor Burden Score: A New “Metro-Ticket” Prognostic Tool For Colorectal Liver Metastases Based on Tumor Size and Number of Tumors. Ann. Surg. 2018, 267, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Gagnière, J.; Dupré, A.; Ardiles, V.; O’Connor, J.M.; Wang, J.; Moro, A.; Morioka, D.; Buettner, S.; Gau, L.; et al. Performance of Two Prognostic Scores That Incorporate Genetic Information to Predict Long-term Outcomes Following Resection of Colorectal Cancer Liver Metastases: An External Validation of the MD Anderson and JHH-MSK Scores. J. Hepato-Biliary-Pancreat. Sci. 2021, 28, 581–592. [Google Scholar] [CrossRef]
- Wong, G.Y.M.; Bhimani, N.; Mol, B.; Diakos, C.; de Reuver, P.; Molloy, M.P.; Hugh, T.J. Performance of Prognostic Models Incorporating KRAS Mutation Status to Predict Survival after Resection of Colorectal Liver Metastases. HPB 2022, S1365182X2200003X. [Google Scholar] [CrossRef]
- Di Martino, M.; Primavesi, F.; Syn, N.; Dorcaratto, D.; de la Hoz Rodríguez, Á.; Dupré, A.; Piardi, T.; Rhaiem, R.; Blanco Fernández, G.; Prada Villaverde, A.; et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Colorectal Liver Metastases: An International Multicentre Propensity Score Matched Analysis on Long-Term Outcomes According to Established Prognostic Risk Scores. HPB 2021, 23, 1873–1885. [Google Scholar] [CrossRef]
- Bhullar, D.S.; Barriuso, J.; Mullamitha, S.; Saunders, M.P.; O’Dwyer, S.T.; Aziz, O. Biomarker Concordance between Primary Colorectal Cancer and Its Metastases. EBioMedicine 2019, 40, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Chun, Y.S.; Passot, G.; Yamashita, S.; Nusrat, M.; Katsonis, P.; Loree, J.M.; Conrad, C.; Tzeng, C.-W.D.; Xiao, L.; Aloia, T.A.; et al. Deleterious Effect of RAS and Evolutionary High-Risk TP53 Double Mutation in Colorectal Liver Metastases. Ann. Surg. 2019, 269, 917–923. [Google Scholar] [CrossRef]
- Lillemoe, H.A.; Passot, G.; Kawaguchi, Y.; De Bellis, M.; Glehen, O.; Chun, Y.S.; Tzeng, C.-W.D.; Aloia, T.A.; Lopez, J.; Vauthey, J.-N. RAS/TP53 Co-Mutation Is Associated with Worse Survival after Concurrent Resection of Colorectal Liver Metastases and Extrahepatic Disease. Ann. Surg. 2021. [Google Scholar] [CrossRef]
- Altman, D.G.; Royston, P. The Cost of Dichotomising Continuous Variables. BMJ 2006, 332, 1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, S.-F. Cetuximab: An Epidermal Growth Factor Receptor Monoclonal Antibody for the Treatment of Colorectal Cancer. Clin. Ther. 2005, 27, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Lièvre, A.; Bachet, J.-B.; Le Corre, D.; Boige, V.; Landi, B.; Emile, J.-F.; Côté, J.-F.; Tomasic, G.; Penna, C.; Ducreux, M.; et al. KRAS Mutation Status Is Predictive of Response to Cetuximab Therapy in Colorectal Cancer. Cancer Res. 2006, 66, 3992–3995. [Google Scholar] [CrossRef] [Green Version]
- Sepulveda, A.R.; Hamilton, S.R.; Allegra, C.J.; Grody, W.; Cushman-Vokoun, A.M.; Funkhouser, W.K.; Kopetz, S.E.; Lieu, C.; Lindor, N.M.; Minsky, B.D.; et al. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology. J. Clin. Oncol. 2017, 35, 1453–1486. [Google Scholar] [CrossRef] [PubMed]
- Céspedes, M.V.; Sancho, F.J.; Guerrero, S.; Parreño, M.; Casanova, I.; Pavón, M.A.; Marcuello, E.; Trias, M.; Cascante, M.; Capellà, G.; et al. K-Ras Asp12 Mutant Neither Interacts with Raf, nor Signals through Erk and Is Less Tumorigenic than K-Ras Val12. Carcinogenesis 2006, 27, 2190–2200. [Google Scholar] [CrossRef] [Green Version]
- Margonis, G.A.; Kim, Y.; Spolverato, G.; Ejaz, A.; Gupta, R.; Cosgrove, D.; Anders, R.; Karagkounis, G.; Choti, M.A.; Pawlik, T.M. Association Between Specific Mutations in KRAS Codon 12 and Colorectal Liver Metastasis. JAMA Surg. 2015, 150, 722–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margonis, G.A.; Kim, Y.; Sasaki, K.; Samaha, M.; Amini, N.; Pawlik, T.M. Codon 13 KRAS Mutation Predicts Patterns of Recurrence in Patients Undergoing Hepatectomy for Colorectal Liver Metastases. Cancer 2016, 122, 2698–2707. [Google Scholar] [CrossRef] [Green Version]
- Pikoulis, E.; Papaconstantinou, D.; Pikouli, A.; Wang, J.; Theodoridis, C.; Margonis, G.A. Reevaluating the Prognostic Value of RAS Mutation Status in Patients with Resected Liver Metastases from Colorectal Cancer: A Systematic Review and Meta-Analysis. J. Hepato-Biliary-Pancreat. Sci. 2021, 28, 637–647. [Google Scholar] [CrossRef]
First Author, Year, Reference | Institution | Inclusion Period | Inclusion Criteria | Patients (n) by Cohort | Predicted Outcome | Model, Number of Predictors and Maximum Score | |
---|---|---|---|---|---|---|---|
Development cohort (DC) | Validation cohort (VC) | ||||||
Fong 1999 [11] | MSKCC, USA | 1985–1998 | Consecutive patients after complete resection of CRLM | 1001 | NA | Overall survival | Clinical Risk Score (CRS) 5 predictors 5 points |
Passot 2017 [19] | MD Anderson Cancer Center, USA | 2005–2015 | Known RAS mutation status | 524 | NA | Overall survival | Risk score for RAS mutated tumors 3 predictors 3 points |
Wang 2017 [20] | Peking University Cancer Hospital, China | 2006–2016 | Known RAS mutation status and preoperative chemotherapy | 300 | NA | Overall survival | Tumor Biology Score 3 predictors 3 points |
Margonis 2018 [21] | DC: JHH, USA VC: MSKCC, USA | 2000–2015 | Known RAS mutation status | 502 | 747 | Overall survival | Genetic and Morphology Evaluation (GAME) score 5 predictors Weighted score, 7 points |
Brudvik 2019 [22] | DC: MD Anderson Cancer Center, USA VC: International multicentre cohort | 2005–2013 | Known RAS mutation status | 564 | 608 | Overall survival | Modified Clinical Score (m-CS) 3 predictors 3 points |
Liu 2019 [23] | DC: Peking University Cancer Center, China VC: Sun Yat-Sen University Oncology Hospital, Harbin Medical University Cancer Hospital, China | 2010–2017 | Preoperative chemotherapy and resection for CRLM | 447 | 117 | Disease-free survival | Nomogram 5 predictors 0–34 points |
Lang 2019 [24] | Universitätsmedizin Mainz, Germany | 2008–2018 | 139 randomly selected patients out of 822 patients from a prospective database | 139 | NA | Overall survival | Extended Clinical Risk Score (e-CS) 4 predictors 4 points |
Paredes 2020 [25] | International multi-institutional database | 2001–2018 | Resection of CRLM, with known and unknown RAS mutation status. Machine learning approach | 703 | 703 | Recurrence-free survival | Paredes-Pawlik Score calculator 11 predictors Online calculator (https://paredespawlikcalc.shinyapps.io/CRLM/, accessed on 1 June 2022) |
Chen 2020 [26] | Zhingshan Hospital, China | 2010–2018 in DC, 2018 only in VC | Patients with available data on KRAS/NRAS/BRAF mutation status | 787 | 162 | Relapse-free survival | Comprehensive Evaluation of Relapse Risk (CERR) score 5 predictors Weighted score, 6 points |
Liu 2021 [27] | DC: Peking University Cancer Hospital, Fudan University Shanghai Cancer Center, China VC: Sun Yat-Sen University Cancer Hospital, Changhai Hospital, China | 2008–2018 | Patients who underwent curative-intent resection of CRLM | 532 | 237 | Progression-free survival | Nomogram Five predictors 0–43 points |
Takeda 2021 [28] | DC: Cancer Institute Hospital, Japan. VC: Multicentre cohort, Japan | 2010–2016 | Patients who underwent curative-intent resection of CRLM | 341 | 309 | Overall survival | Risk score 3 predictors 0–3 points |
Kawaguchi, 2021 [29] | DC: MD Anderson Cancer Center, USA VC: International multi-institutional cohort | 1998–2017 | Known RAS mutation status | 810 | 673 | Overall survival | Contour prognostic model and Excel 5-year OS calculator based on RAS mutation status and diameter and number of lesions as continuous variables |
Buisman 2022 [30] | DC: MSKCC, USA VC: Erasmus MC, Netherlands | 1992–2019 | Consecutive patients after complete resection of CRLM | 3064 | 1048 | Overall survival | Complete model: 15 predictors Online calculator (calculator www.oncocalculators.com, accessed on 1 June 2022) Simplified risk score: 13 dichotomized predictors −3 to 17 points |
Author, Year, Reference | Model Discrimination Concordance Statistic (95.0% Confidence Interval) | Model Calibration | Prognosis | |||||
---|---|---|---|---|---|---|---|---|
Development Cohort | Validation Cohort | Comparison to Other Prediction Models | Calibration Method | Stated Interpretation | Risk Groups | Score | Survival | |
Fong 1999 [11] | NR | NR | NR | NR | NR | 5-year OS (%) | ||
0 (n = 52) | 0 | 60 | ||||||
1 (n = 262) | 1 | 44 | ||||||
2 (n = 350) | 2 | 40 | ||||||
3 (n = 243) | 3 | 20 | ||||||
4 (n = 80) | 4 | 25 | ||||||
5 (n = 14) | 5 | 14 | ||||||
Passot 2017 [19] | NR | NR | NR | NR | NR | RAS mutated | Median OS (months) | |
0 (n = 23) | 0 | 58 | ||||||
1 (n = 96) | 1 | 57 | ||||||
2 (n = 51) | 2 | 41 | ||||||
3 (n = 14) | 3 | 21.5 | ||||||
Wang 2017 [20] | 0.642 (0.570–0.713) | NR | NR | NR | 5-year OS (%) | |||
CRS 0.585 | 0 (n = 70) | 0 | 63.7 | |||||
(0.474–0.696) | 1 (n = 121) | 1 | 49.6 | |||||
m-CR 0.615 | 2 (n = 75) | 2 | 33.3 | |||||
(0.531–0.699) | 3 (n = 34) | 3 | 14.1 | |||||
Margonis 2018 [21] | GAME: C-statistic 0.645 (0.598–0.692) AIC 2219 | International cohort 0.61 † | CRS: C-statistic 0.578 (0.530–0.625) AIC 2266 | NR in model development. In a subsequent external validation (Sasaki 2021), researchers assessed calibration curves for each score by comparing the probability of observed and predicted mortality with ordinary least squares regression [34]. | Correlation and calibration coefficients for linear regressions of observed vs predicted mortality of GAME were R2 = 0.98 and 1.13 at one 2 years, R2 = 0.98 and 1.00 at 5 years after hepatic resection. | (n = DC, VC) Low (n = 121, 171) Medium (n = 310, 402) High (n = 71, 174) | 0–1 2–3 4–7 | 5-year OS (%) JHH, MSKCC 73.4, 76.2 50.6, 63.7 11.3, 36.5 |
Brudvik 2019 [22] | C-statistic 0.69 (0.62–0.76) | CRS: C-statistic 0.57 (048–0.65) | NR | NR | 0 (n = 88) 1 (n = 277) 2 (n = 185) 3 (n = 14) | 0 1 2 3 | Median OS (months) 15 Kaplan-Meier curves demonstrated a statistically significant difference between patients with m-CS scores of 0 and 1, 1 and 2, and 2 and 3. | |
Liu 2019 [23] | 0.675 | 0.77 | NA | Calibration curves with bootstrapped samples. | A calibration plot for the probability of survival at 1, 3, and 5 years demonstrated good calibration between the prediction by the nomogram and the actual observation. | Quartile 1 Quartile 2 Quartile 3 | 0–10 11–23 23–34 | Median DFS (months) 17 8 3 |
Lang 2019 [24] | NR | NR | NR | NR | NR | Median OS ‡ | ||
(days, months) | ||||||||
Score 1 (n = 123) | 1 | 1695, 60.5 | ||||||
Score 2 (n = 43) | 2 | 1183, 42.3 | ||||||
Score 3 (n = 22) | 3 | 631, 22.5 | ||||||
Score 4 (n = 5) | 4 | 368, 13.1 | ||||||
Paredes 2020 [25] | 1-year recurrence 0.693 (0.684–0.704) 3-year recurrence 0.669 (0.661–0.677) 5-year recurrence 0.669 (0.661–0.679) | Similar model performance | CRS: 1-year recurrence 0.527 (0.514–0.538) m-CR 1-year recurrence 0.525 (0.514–0.533) Researchers noted similar trends for 3- and 5-year recurrence. | Calibration curves of the alternative score with and without adjustment for KRAS status among individuals with known KRAS status in the 100 imputed model design and validation cohorts. | Calibration curves for the model design and validation demonstrated good model accuracy. | Low Medium High | Lower quartile Medium two quartiles Upper quartile | Increase of 0.25 in the alternative score was associated with a 61% increase in recurrence (HR, 1.61, 95.0% CI 1.40–1.85) and a 39.0% increased risk of death (HR, 1.39; 95.0% CI 1.18–1.63) |
Chen 2020 [26] | 0.690 (0.650–0.730) | 0.630 (0.605–0.655) | CRS 0.586 (0.560–0.612) GAME score 0.602 (0.575–0.629) | Calibration curves with bootstrapped samples. | At a probability between 0 and 0.23, the CERR score model may slightly overestimate the RFS risk; when the probability is higher than 0.23, the model may slightly underestimate the probability. The CERR score model showed a good fit and calibration with the ideal curve. | (n = DC, VC) Low (n = 118, 37) Medium (n = 454, 94) High (n = 105, 31) | 0–1 2–3 4–6 | Median OS (months) 23.7 12.7 7.3 |
Liu 2021 [27] | 0.696 | 0.682 | 0.642 | Calibration curves with bootstrapped samples. | A calibration plot for the probability of survival at 1, 3, and 5 years demonstrated good calibration between the prediction by the nomogram and the actual observation. | Low (n = 344) High (n = 425) | 0–16 17–43 | Progression-free survival (%) 30 months 10 months |
Takeda 2021 [28] | 0.65 | NR | Comparison to CRS and m-CS performed but C-statistic not reported. | NR | NR | 0 (n = 94) 1 (n = 163) 2 (n = 68) 3 (n = 16) | 0 1 2 3 | Visual assessment of Kaplan-Meier survival curves demonstrates a difference in overall survival between different scores. OS by risk score NR. |
Kawaguchi 2021 [29] | Mutated RAS 0.629 (s.e. 0.021) Wild-type RAS 0.625 (s.e. 0.022) | Mutated RAS 0.644 (s.e. 0.026) Wild-type RAS 0.624 (s.e. 0.026) | CRS: 0.563 GAME: 0.606 | Comparing the average overall survival probability predicted by the prognostic model with the overall survival probability estimated by the Kaplan-Meier method after grouping predicted survival by quintile. | Observed survival lay within a 10% margin of error around predicted survival for both mutant RAS and wild-type RAS disease. | Contour plots and Excel® 5-year OS calculator for mutated and wild-type RAS tumors | Largest diameter and number of CRLM as continuous variables | 5-year OS (%) Example: 3 CRLM and largest CRLM 5 cm RAS wild-type: 43.0 RAS mutated: 49.5 |
Buisman 2022 [30] | 0.73 (0.70–0.75) | 0.73 (0.68–0.78) | CRS 0.62 (0.59–0.64) GAME 0.66 (0.64–0.69) | Assessed visually by plotting the predicted probability against the actual observed frequency of predicted outcomes at 10 years and using cross-validation. | Calibration plots showed a slight overestimation of the model developed in Erasmus MC. Calibration was good in the model developed in MSKCC and validated in Erasmus MC. | 1 (n = 692) 2 (n = 993) 3 (n = 1483) 4 (n = 944) | Simplified risk score ≤3 4–5 5–8 9–13 | 10-year OS (%) 57% 38% 24% 12% |
Study, Year, Reference | Patients with Known RAS Mutation Status, n | RAS Mutation Rate, n (%) | RAS Hazard Ratio | RAS 95.0% CI | RAS Isoforms: Codons Tested |
---|---|---|---|---|---|
Passot 2017 [19] | 524 | 212 (40.5) | NR | NR | KRAS: 12, 13, 61, 146 NRAS: 12, 13, 61 |
Wang 2017 [20] | 300 | 190 (63.3) | 2.20 | 1.37–3.52 | NR |
Margonis 2018 [21] | 1249 | 466 (37.3) | 1.50 | 1.13–2.00 | KRAS: 12, 13, 61 |
Brudvik 2019 [22] | 564 | 205 (36.3) | 2.69 | 1.92–3.77 | KRAS: 12, 13, 61, 146 NRAS: 12, 13, 61 |
Liu 2019 [23] | 564 | 227 (46.2) | 1.32 | 1.03–1.68 | NR |
Lang 2019 [24] | 139 | 38 (37.9) | 1.44 | 0.90–2.33 | NR RAS analysis was included in the assessment of 720 genes catalogued in the cancer gene census. |
Paredes 2020 [25] | 707 | 268 (37.9) | NR | NR | KRAS: 12, 13, 61, 117, 146 NRAS: 12, 13, 61, 146 |
Chen 2020 [26] | 949 | 408 (43.0) | 1.79 | 1.32–1.90 | KRAS: 12, 13, 61, 117, 146 NRAS: 12, 13, 61, 146 |
Liu 2021 [27] | 769 | 200 (37.6) | 1.73 | 1.41–2.28 | NR |
Takeda 2021 [28] | 341 | 145 (42.5) | 1.73 | 1.17–2.55 | KRAS: 12, 13, 59, 61, 117, 146 NRAS: 12, 13, 59, 61, 117, 146 |
Kawaguchi 2021 [29] | 810 | 364 (44.9) | 1.76 | 1.42–2.18 | KRAS: 12, 13, 61, 146 NRAS: 12, 13, 61 |
Buisman 2022 [30] | 1567 | 639 (41.0) | 1.58 | 1.46–1.73 | NR |
Univariable—Evaluated | Multivariable—Evaluated | Multivariable—Significant | Multivariable—Included in Model | Demo- Graphic Factors | Primary Tumour Factors | Tumour Markers | Metastatic Disease Factors | Treatment Factors | Molecular Factors | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | Sex | Primary Tumour Location | Primary Tumour—T Stage | Primary lymph Node Involvement | Preoperative Serum CEA | Preoperative Serum CA19-9 | Disease-Free Interval/Timing of CRLM | Diameter of Largest CRLM | Number of CRLM | Tumour Burden Score (TBS) | Modified TBS | Bilobar or Unilobar CRLM | Histopathological Growth Pattern | CRLM Resection Margin (R0, > 1 mm) | Pathologic Response | Extrahepatic Disease | Clinical Risk Score (CRS) | Extent of Liver Resection (Major/Minor) | Operative Blood Loss/Major Complications | Pre- or Perioperative Chemotherapy | Ablation | RAS Mutation | BRAF Mutation | SMAD Mutation | |||||
Fong 1999 (reference) | 13 | 8 | 7 | 5 | |||||||||||||||||||||||||
Passot 2017 [19] | 18 | 5 | 3 | 3 | |||||||||||||||||||||||||
Wang 2017 [20] | 19 | 5 | 3 | 3 | |||||||||||||||||||||||||
Margonis 2018 [21] | 12 | 6 | 6 | 5 | |||||||||||||||||||||||||
Brudvik 2019 [22] | 6 | 3 | 3 | 3 | |||||||||||||||||||||||||
Liu 2019 [23] | 26 | 26 | 5 | 5 | |||||||||||||||||||||||||
Lang 2019 [24] | NR | NR | NR | 4 | |||||||||||||||||||||||||
Paredes 2020 [25] | NR | NR | 11 | 11 | |||||||||||||||||||||||||
Chen 2020 [26] | 11 | 9 | 5 | 5 | |||||||||||||||||||||||||
Liu 2021 [27] | 19 | 10 | 5 | 5 | |||||||||||||||||||||||||
Takeda 2021 [28] | 17 | 10 | 3 | 3 | |||||||||||||||||||||||||
Kawaguchi 2021 [29] | 12 | 6 | 6 | 3 | |||||||||||||||||||||||||
Buisman 2022 [30] | NR | NR | 15 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, G.Y.M.; Diakos, C.; Molloy, M.P.; Hugh, T.J. Prognostic Models Incorporating RAS Mutation to Predict Survival in Patients with Colorectal Liver Metastases: A Narrative Review. Cancers 2022, 14, 3223. https://doi.org/10.3390/cancers14133223
Wong GYM, Diakos C, Molloy MP, Hugh TJ. Prognostic Models Incorporating RAS Mutation to Predict Survival in Patients with Colorectal Liver Metastases: A Narrative Review. Cancers. 2022; 14(13):3223. https://doi.org/10.3390/cancers14133223
Chicago/Turabian StyleWong, Geoffrey Yuet Mun, Connie Diakos, Mark P. Molloy, and Thomas J. Hugh. 2022. "Prognostic Models Incorporating RAS Mutation to Predict Survival in Patients with Colorectal Liver Metastases: A Narrative Review" Cancers 14, no. 13: 3223. https://doi.org/10.3390/cancers14133223
APA StyleWong, G. Y. M., Diakos, C., Molloy, M. P., & Hugh, T. J. (2022). Prognostic Models Incorporating RAS Mutation to Predict Survival in Patients with Colorectal Liver Metastases: A Narrative Review. Cancers, 14(13), 3223. https://doi.org/10.3390/cancers14133223