Update on the Diagnosis and Management of Medullary Thyroid Cancer: What Has Changed in Recent Years?
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Definition
1.2. Classification
1.3. Staging
1.4. Epidemiology
1.5. Genetics
1.6. Prognosis
1.7. Diagnosis
1.8. Laboratory Diagnostics
1.9. Morphological Imaging
1.10. Nuclear Medicine
2. Surgical Treatment
2.1. Thyroidectomy
2.2. Central Compartment Lymph Node Dissection
2.3. Lateral Compartment Lymph Node Dissection
2.4. Distant Metastasis
2.5. Transoral Surgery
2.6. Intraoperative Parathyroid Gland Identification
3. Systemic Treatment
3.1. Multikinase Inhibitors
3.2. Highly Selective RET Inhibitors
3.3. Targeting RAS-Mutated MTC
3.4. Immunotherapy
3.5. External Beam Radiation Therapy
3.6. Nuclear Medicine
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.L. The current histologic classification of thyroid cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 1–22. [Google Scholar] [CrossRef]
- Hussain, K.; Sathialakshmi, V.; Fathima, S. The distribution of parafollicular cells (C cells) in adult cadaveric thyroid gland: An immunohistochemical study. Natl. J. Clin. Anat. 2021, 10, 144–147. [Google Scholar] [CrossRef]
- Pondel, M. Calcitonin and calcitonin receptors: Bone and beyond. Int. J. Exp. Pathol. 2000, 81, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Green, K.; Hintze, J.; O’Neill, J.P. Surgical aspects and controversies in the management of medullary thyroid cancer. Ir. J. Med. Sci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Leimbach, R.D.; Hoang, T.D.; Shakir, M.K.M. Diagnostic challenges of medullary thyroid carcinoma. Oncology 2021, 99, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, E.; Sapalidis, K.; Chatzinikolaou, F.; Kesisoglou, I. Medullary thyroid cancer: Molecular factors, management and treatment. Rom. J. Morphol. Embryol. 2020, 61, 681–686. [Google Scholar] [CrossRef]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Filho, A.; Lortet-Tieulent, J.; Bray, F.; Cao, B.; Franceschi, S.; Vaccarella, S.; Dal Maso, L. Thyroid cancer incidence trends by histology in 25 countries: A population-based study. Lancet Diabetes Endocrinol. 2021, 9, 225–234. [Google Scholar] [CrossRef]
- Olson, E.; Wintheiser, G.; Wolfe, K.M.; Droessler, J.; Silberstein, P.T. Epidemiology of thyroid cancer: A review of the national cancer database, 2000–2013. Cureus 2019, 11, e4127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larouche, V.; Akirov, A.; Thomas, C.M.; Krzyzanowska, M.K.; Ezzat, S. A primer on the genetics of medullary thyroid cancer. Curr. Oncol. 2019, 26, 389–394. [Google Scholar] [CrossRef] [Green Version]
- Minna, E.; Romeo, P.; Dugo, M.; De Cecco, L.; Aiello, A.; Pistore, F.; Carenzo, A.; Greco, A.; Borrello, M.G. Medullary thyroid carcinoma mutational spectrum update and signaling-type inference by transcriptional profiles: Literature meta-analysis and study of tumor samples. Cancers 2022, 14, 1951. [Google Scholar] [CrossRef] [PubMed]
- Romei, C.; Ciampi, R.; Elisei, R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat. Rev. Endocrinol. 2016, 12, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Hasani-Ranjbar, S.; Amoli, M.M. Mutation screening of RET proto-oncogene in a family with medullary thyroid carcinoma, marfanoid habitus and pheochromocytoma; from clinically MEN2B to genetically MEN2A syndrome. Endocrine 2012, 42, 220–221. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Asa, S.L.; Ezzat, S.; Sawka, A.M.; Goldstein, D. Diagnosis and pathologic characteristics of medullary thyroid carcinoma-review of current guidelines. Curr. Oncol. 2019, 26, 338–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elisei, R.; Tacito, A.; Ramone, T.; Ciampi, R.; Bottici, V.; Cappagli, V.; Viola, D.; Matrone, A.; Lorusso, L.; Valerio, L.; et al. Twenty-Five Years Experience on RET Genetic Screening on Hereditary MTC: An Update on The Prevalence of Germline RET Mutations. Genes 2019, 10, 698. [Google Scholar] [CrossRef] [Green Version]
- Lubitz, C.C.; Sadow, P.M.; Daniels, G.H.; Wirth, L.J. Progress in treating advanced thyroid cancers in the era of targeted therapy. Thyroid 2021, 31, 1451–1462. [Google Scholar] [CrossRef]
- Elisei, R.; Bottici, V.; Luchetti, F.; Di Coscio, G.; Romei, C.; Grasso, L.; Miccoli, P.; Iacconi, P.; Basolo, F.; Pinchera, A.; et al. Impact of Routine Measurement of Serum Calcitonin on the Diagnosis and Outcome of Medullary Thyroid Cancer: Experience in 10,864 Patients with Nodular Thyroid Disorders. J. Clin. Endocrinol. Metab. 2004, 89, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Giraudet, A.L.; Al Ghulzan, A.; Aupérin, A.; Leboulleux, S.; Chehboun, A.; Troalen, F.; Dromain, C.; Lumbroso, J.; Baudin, E.; Schlumberger, M. Progression of medullary thyroid carcinoma: Assessment with calcitonin and carcinoembryonic antigen doubling times. Eur. J. Endocrinol. 2008, 158, 239–246. [Google Scholar] [CrossRef]
- Lorusso, L.; Romei, C.; Piaggi, P.; Fustini, C.; Molinaro, E.; Agate, L.; Bottici, V.; Viola, D.; Pellegrini, G.; Elisei, R. Ca19.9 Positivity and Doubling Time Are Prognostic Factors of Mortality in Patients with Advanced Medullary Thyroid Cancer with No Evidence of Structural Disease Progression According to Response Evaluation Criteria in Solid Tumors. Thyroid 2021, 31, 1050–1055. [Google Scholar] [CrossRef]
- Hajje, G.; Borget, I.; Leboulleux, S.; Chougnet, C.; Al Ghuzlan, A.; Mirghani, H.; Caramella, C.; Hartl, D.; Schlumberger, M.; Baudin, E. Early changes in carcinoembryonic antigen but not in calcitonin levels are correlated with the progression-free survival in medullary thyroid carcinoma patients treated with cytotoxic chemotherapy. Eur. J. Endocrinol. 2013, 168, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Frank-Raue, K.; Machens, A.; Leidig-Bruckner, G.; Rondot, S.; Haag, C.; Schulze, E.; Lorenz, A.; Kreissl, M.; Dralle, H.; Raue, F.; et al. Prevalence and clinical spectrum of nonsecretory medullary thyroid carcinoma in a series of 839 patients with sporadic medullary thyroid carcinoma. Thyroid 2013, 23, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Raue, F.; Bruckner, T.; Frank-Raue, K. Similar stage-dependent survival and outcome in sporadic and hereditary medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 2012, 106, e3582–e3591. [Google Scholar] [CrossRef]
- Matrone, A.; Gambale, C.; Prete, A.; Piaggi, P.; Cappagli, V.; Bottici, V.; Romei, C.; Ciampi, R.; Torregrossa, L.; De Napoli, L.; et al. Impact of Advanced Age on the Clinical Presentation and Outcome of Sporadic Medullary Thyroid Carcinoma. Cancers 2021, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; Machens, A.; Moley, J.F.; Pacini, F.; et al. Revised American thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef] [PubMed]
- Ferrarazzo, G.; Camponovo, C.; Deandrea, M.; Piccardo, A.; Scappaticcio, L.; Trimboli, P. Suboptimal accuracy of ultrasound and ultrasound-based risk stratification systems in detecting medullary thyroid carcinoma should not be overlooked. Findings from a systematic review with meta-analysis. Clin. Endocrinol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Bhanot, P.; Yang, J.; Schnadig, V.J.; Logroño, R. Role of FNA cytology and immunochemistry in the diagnosis and management of medullary thyroid carcinoma: Report of six cases and review of the literature. Diagn. Cytopathol. 2007, 35, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Jassal, K.; Ravintharan, N.; Prabhakaran, S.; Grodski, S.; Serpell, J.W.; Lee, J.C. Preoperative serum calcitonin may improve initial surgery for medullary thyroid cancer in patients with indeterminate cytology. ANZ J. Surg. 2022, 92, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Workman, A.D.; Soylu, S.; Kamani, D.; Nourmahnad, A.; Kyriazidis, N.; Saade, R.; Ren, Y.; Wirth, L.; Faquin, W.C.; Onenerk, A.M.; et al. Limitations of preoperative cytology for medullary thyroid cancer: Proposal for improved preoperative diagnosis for optimal initial medullary thyroid carcinoma specific surgery. Head Neck 2020, 43, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Niederle, M.B.; Scheuba, C.; Riss, P.; Selberherr, A.; Koperek, O.; Niederle, B. Early diagnosis of medullary thyroid cancer: Are calcitonin stimulation tests still indicated in the era of highly sensitive calcitonin immunoassays? Thyroid 2020, 30, 974–984. [Google Scholar] [CrossRef]
- Vannucchi, G.; Covelli, D.; Vigo, B.; Perrino, M.; Mondina, L.; Fugazzola, L. Thyroid volume and serum calcitonin changes during pregnancy. J. Endocrinol. Investig. 2017, 40, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Fugazzola, L.; Di Stefano, M.; Censi, S.; Repaci, A.; Colombo, C.; Grimaldi, F.; Magri, F.; Pagotto, U.; Iacobone, M.; Persani, L.; et al. Basal and stimulated calcitonin for the diagnosis of medullary thyroid cancer: Updated thresholds and safety assessment. J. Endocrinol. Investig. 2021, 44, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, B.H. Current guidelines for management of medullary thyroid carcinoma. Endocrinol. Metab. 2021, 36, 514–524. [Google Scholar] [CrossRef]
- Turkdogan, S.; Forest, V.I.; Hier, M.P.; Tamilia, M.; Florea, A.; Payne, R.J. Carcinoembryonic antigen levels correlated with advanced disease in medullary thyroid cancer. J. Otolaryngol. Head Neck Surg. 2018, 47, 55. [Google Scholar] [CrossRef] [PubMed]
- Trimboli, P.; Giannelli, J.; Marques, B.; Piccardo, A.; Crescenzi, A.; Deandrea, M. Head-to-head comparison of FNA cytology vs. calcitonin measurement in FNA washout fluids (FNA-CT) to diagnose medullary thyroid carcinoma. A systematic review and meta-analysis. Endocrine 2022, 75, 33–39. [Google Scholar] [CrossRef]
- Marques, B.; Cunha, N.; Martins, R.G.; Elvas, A.R.; Couto, J.; Santos, J.; Martins, T.; Moniz, A.P.; Ilhéu, O.; Valido, F.; et al. Lymph node metastases of medullary thyroid cancer: Role of calcitonin in the washout fluid of fine-needle aspiration. Int. J. Endocrinol. 2020, 2020, 9267972. [Google Scholar] [CrossRef] [Green Version]
- Baloch, Z.; Mete, O.; Asa, S.L. Immunohistochemical biomarkers in thyroid pathology. Endocr. Pathol. 2018, 29, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Kaliszewski, K.; Ludwig, M.; Greniuk, M.; Mikuła, A.; Zagórski, K.; Rudnicki, J. Advances in the diagnosis and therapeutic management of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). Cancers 2022, 14, 2028. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.; Martorana, F.; Pennisi, M.S.; Stella, S.; Massimino, M.; Tirrò, E.; Vitale, S.R.; Di Gregorio, S.; Puma, A.; Tomarchio, C.; et al. Opportunities and Challenges of Liquid Biopsy in Thyroid Cancer. Int. J. Mol. Sci. 2021, 22, 7707. [Google Scholar] [CrossRef]
- Galuppini, F.; Censi, S.; Moro, M.; Carraro, S.; Sbaraglia, M.; Iacobone, M.; Fassan, M.; Mian, C.; Pennelli, G. MicroRNAs in medullary thyroid carcinoma: A state of the art review of the regulatory mechanisms and future perspectives. Cells 2021, 10, 955. [Google Scholar] [CrossRef] [PubMed]
- Ciarletto, A.M.; Narick, C.; Malchoff, C.D.; Massoll, N.A.; Labourier, E.; Haugh, K.; Mireskandari, A.; Finkelstein, S.D.; Kumar, G. Analytical and clinical validation of pairwise microRNA expression analysis to identify medullary thyroid cancer in thyroid fine-needle aspiration samples. Cancer Cytopathol. 2021, 129, 239–249. [Google Scholar] [CrossRef]
- Cote, G.J.; Evers, C.; Hu, M.I.; Grubbs, E.G.; Williams, M.D.; Hai, T.; Duose, D.Y.; Houston, M.R.; Bui, J.H.; Mehrotra, M.; et al. Prognostic Significance of Circulating RET M918T Mutated Tumor DNA in Patients with Advanced Medullary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2017, 102, 3591–3599. [Google Scholar] [CrossRef]
- Wang, L.; Kou, H.; Chen, W.; Lu, M.; Zhou, L.; Zou, C. The diagnostic value of ultrasound in medullary thyroid carcinoma: A comparison with computed tomography. Technol. Cancer Res. Treat. 2020, 19, 1533033820905832. [Google Scholar] [CrossRef]
- Yang, X.; Xu, J.; Sun, J.; Yin, L.; Guo, R.; Yan, Z. Clinical value of color Doppler ultrasound combined with serum tumor markers for the diagnosis of medullary thyroid carcinoma. Oncol. Lett. 2021, 22, 561. [Google Scholar] [CrossRef]
- Brammen, L.; Niederle, M.B.; Riss, P.; Scheuba, C.; Selberherr, A.; Karanikas, G.; Bodner, G.; Koperek, O.; Niederle, B. Medullary thyroid carcinoma: Do ultrasonography and F-DOPA-PET-CT influence the initial surgical strategy? Ann. Surg. Oncol. 2018, 25, 3919–3927. [Google Scholar] [CrossRef] [Green Version]
- Traylor, K.S. Computed tomography and MR imaging of thyroid disease. Radiol. Clin. N. Am. 2020, 58, 1059–1070. [Google Scholar] [CrossRef]
- Kushchayev, S.V.; Kushchayeva, Y.S.; Tella, S.H.; Glushko, T.; Pacak, K.; Teytelboym, O.M. Medullary thyroid carcinoma: An update on imaging. J. Thyroid Res. 2019, 2019, 1893047. [Google Scholar] [CrossRef] [PubMed]
- Mikulová, M.B.; Mikuš, P. Advances in development of radiometal labeled amino acid-based compounds for cancer imaging and diagnostics. Pharmaceuticals 2021, 14, 167. [Google Scholar] [CrossRef]
- Uprimny, C.; von Guggenberg, E.; Svirydenka, A.; Mikołajczak, R.; Hubalewska-Dydejczyk, A.; Virgolini, I.J. Comparison of PET/CT imaging with [18F]FDOPA and cholecystokinin-2 receptor targeting [68Ga]Ga-DOTA-MGS5 in a patient with advanced medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2020, 48, 935–936. [Google Scholar] [CrossRef] [PubMed]
- Bodet-Milin, C.; Bailly, C.; Touchefeu, Y.; Frampas, E.; Bourgeois, M.; Rauscher, A.; Lacoeuille, F.; Drui, D.; Arlicot, N.; Goldenberg, D.M.; et al. Clinical results in medullary thyroid carcinoma suggest high potential of pretargeted immuno-PET for tumor imaging and theranostic approaches. Front. Med. 2019, 6, 124. [Google Scholar] [CrossRef]
- Bodet-Milin, C.; Faivre-Chauvet, A.; Carlier, T.; Ansquer, C.; Rauscher, A.; Frampas, E.; Toulgoat, F.; Masson, D.; Bourgeois, M.; Cerato, E.; et al. Anti-CEA pretargeted immuno-PET shows higher sensitivity than DOPA PET/CT in detecting relapsing metastatic medullary thyroid carcinoma: Post Hoc analysis of the iPET-MTC study. J. Nucl. Med. 2021, 62, 1221–1227. [Google Scholar] [CrossRef]
- Giovanella, L.; Treglia, G.; Iakovou, I.; Mihailovic, J.; Verburg, F.A.; Luster, M. EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 61–77. [Google Scholar] [CrossRef]
- Castinetti, F.; Taïeb, D. Positron emission tomography imaging in medullary thyroid carcinoma: Time for reappraisal? Thyroid 2021, 31, 151–155. [Google Scholar] [CrossRef]
- Lee, S.W.; Shim, S.R.; Jeong, S.Y.; Kim, S.J. Comparison of 5 Different PET radiopharmaceuticals for the detection of recurrent medullary thyroid carcinoma. Clin. Nucl. Med. 2020, 45, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bel, L.; Sabaté-Llobera, A.; Rossi-Seoane, S.; Reynés-Llompart, G.; Conejero, J.L.V.; Cos-Domingo, M.; Moreno-Llorente, P.; Pérez-Maraver, M.; Cortés-Romera, M.; Gámez Cenzano, C. Diagnostic accuracy of 18F-FDG PET/CT in patients with biochemical evidence of recurrent, residual, or metastatic medullary thyroid carcinoma. Clin. Nucl. Med. 2019, 44, 194–200. [Google Scholar] [CrossRef]
- Asa, S.; Sonmezoglu, K.; Uslu-Besli, L.; Sahin, O.E.; Karayel, E.; Pehlivanoglu, H.; Sager, S.; Kabasakal, L.; Ocak, M.; Sayman, H.B. Evaluation of F-18 DOPA PET/CT in the detection of recurrent or metastatic medullary thyroid carcinoma: Comparison with GA-68 DOTA-TATE PET/CT. Ann. Nucl. Med. 2021, 35, 900–915. [Google Scholar] [CrossRef]
- Castroneves, L.A.; Filho, G.C.; de Freitas, R.M.C.; Salles, R.; Moyses, R.A.; Lopez, R.V.M.; Pereira, M.A.A.; Tavares, M.R.; Jorge, A.A.D.L.; Buchpiguel, C.A.; et al. Comparison of 68Ga PET/CT to other imaging studies in medullary thyroid cancer: Superiority in detecting bone metastases. J. Clin. Endocrinol. Metab. 2018, 103, 3250–3259. [Google Scholar] [CrossRef]
- Tuncel, M.; Kılıçkap, S.; Süslü, N. Clinical impact of 68Ga-DOTATATE PET-CT imaging in patients with medullary thyroid cancer. Ann. Nucl. Med. 2020, 34, 663–674. [Google Scholar] [CrossRef]
- Hörmann, A.A.; Klingler, M.; Rangger, C.; Mair, C.; Decristoforo, C.; Uprimny, C.; Virgolini, I.J.; von Guggenberg, E. Radiopharmaceutical formulation and preclinical testing of (68)Ga-Labeled DOTA-MGS5 for the regulatory approval of a first exploratory clinical trial. Pharmaceuticals 2021, 14, 575. [Google Scholar] [CrossRef]
- Klingler, M.; Summer, D.; Rangger, C.; Haubner, R.; Foster, J.; Sosabowski, J.; Decristoforo, C.; Virgolini, I.; von Guggenberg, E. DOTA-MGS5, a new cholecystokinin-2 receptor-targeting peptide analog with an optimized targeting profile for theranostic use. J. Nucl. Med. 2019, 60, 1010–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buffet, C.; Leboulleux, S.; Kraeber-Bodéré, F.; Bodet-Milin, C.; Cabanes, L.; Dohan, A.; Leprince, P.; Schlumberger, M.; Huillard, O.; Groussin, L. Cardiac metastasis from medullary thyroid cancers with long-term survival under vandetanib. Eur. Thyroid J. 2021, 10, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Viola, D.; Elisei, R. Management of medullary thyroid cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Niederle, M.B.; Riss, P.; Selberherr, A.; Koperek, O.; Kaserer, K.; Niederle, B.; Scheuba, C. Omission of lateral lymph node dissection in medullary thyroid cancer without a desmoplastic stromal reaction. Br. J. Surg. 2021, 108, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.S.; Rogers, R.T.; Foster, T.R.; Lyden, M.L.; Morris, J.C.; Thompson, G.B.; McKenzie, T.; Dy, B.M. Medullary thyroid cancer: What is the optimal management of the lateral neck in a node negative patient at index operation? Surgery 2022, 171, 177–181. [Google Scholar] [CrossRef]
- Pena, I.; Clayman, G.L.; Grubbs, E.G.; Bergeron, J.M.; Waguespack, S.G.; Cabanillas, M.E.; Dadu, R.; Hu, M.I.; Fellman, B.M.; Li, Y.; et al. Management of the lateral neck compartment in patients with sporadic medullary thyroid cancer. Head Neck 2018, 40, 79–85. [Google Scholar] [CrossRef]
- van Beek, D.J.; Almquist, M.; Bergenfelz, A.O.; Musholt, T.J.; Nordenström, E.; Almquist, M.; Barczynski, M.; Brunaud, L.; Clerici, T.; Hansen, M.H.; et al. Complications after medullary thyroid carcinoma surgery: Multicentre study of the SQRTPA and EUROCRINE® databases. Br. J. Surg. 2021, 108, 691–701. [Google Scholar] [CrossRef]
- Wu, X.; Li, B.; Zheng, C.; Liu, W.; Hong, T.; He, X. Risk factors for lateral lymph node metastases in patients with sporadic medullary thyroid carcinoma. Technol. Cancer Res. Treat. 2020, 19, 1533033820962089. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Gandhi, A.; Scott-Coombes, D.; Perros, P. Management of thyroid cancer: United Kingdom national multidisciplinary guidelines. J. Laryngol. Otol. 2016, 130, S150–S160. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, A.; Matsuzuka, F.; Hirai, K.; Yokozawa, T.; Kobayashi, K.; Kuma, S.; Kuma, K.; Futami, H.; Yamaguchi, K. Unilateral Surgery Supported by Germline RET Oncogene Mutation Analysis in Patients with Sporadic Medullary Thyroid Carcinoma. World J. Surg. 2000, 24, 1367–1372. [Google Scholar] [CrossRef]
- Ito, Y.; Onoda, N.; Okamoto, T. The revised clinical practice guidelines on the management of thyroid tumors by the Japan Associations of Endocrine Surgeons: Core questions and recommendations for treatments of thyroid cancer. Endocr. J. 2020, 67, 669–717. [Google Scholar] [CrossRef] [Green Version]
- Machens, A.; Dralle, H. Biomarker-based risk stratification for previously untreated medullary thyroid cancer. J. Clin. Endocrinol. Metab. 2010, 95, 2655–2663. [Google Scholar] [CrossRef] [PubMed]
- Spanheimer, P.M.; Ganly, I.; Chou, J.F.; Capanu, M.; Nigam, A.; Ghossein, R.A.; Tuttle, R.M.; Wong, R.J.; Shaha, A.R.; Brennan, M.F.; et al. Prophylactic lateral neck dissection for medullary thyroid carcinoma is not associated with improved survival. Ann. Surg. Oncol. 2021, 28, 6572–6579. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.Y.; Jung, S.P.; Choe, J.H.; Kim, J.S.; Kim, J.H. Prediction of lateral neck lymph node metastasis according to preoperative calcitonin level and tumor size for medullary thyroid carcinoma. Kaohsiung J. Med. Sci. 2019, 35, 772–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opsahl, E.M.; Akslen, L.A.; Schlichting, E.; Aas, T.; Brauckhoff, K.; Hagen, A.I.; Rosenlund, A.F.; Sigstad, E.; Grøholt, K.K.; Jørgensen, L.H.; et al. The role of calcitonin in predicting the extent of surgery in medullary thyroid carcinoma: A nationwide population-based study in Norway. Eur. Thyroid J. 2019, 8, 159–166. [Google Scholar] [CrossRef]
- Zhuang, S.M.; Xie, L.E.; Pang, F.; Zhong, Q.Y.; Sun, X.M.; Wen, W.P.; Liu, T.R. Role of primary tumor resection in patients with metastatic medullary thyroid cancer who have unresectable distant metastases. Head Neck 2021, 43, 3386–3392. [Google Scholar] [CrossRef]
- Russell, J.O.; Inabnet, W.B., III; Tufano, R.P. Transoral Neck Surgery; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Jongekkasit, I.; Jitpratoom, P.; Sasanakietkul, T.; Anuwong, A. Transoral endoscopic thyroidectomy for thyroid cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 165–180. [Google Scholar] [CrossRef]
- Chen, Z.X.; Cao, Y.; Zheng, W.W.; Qin, Y. Transoral endoscopic thyroidectomy vestibular approach for cT1N0M0 medullary thyroid carcinoma—A case report. Indian J. Surg. 2021. [Google Scholar] [CrossRef]
- Tai, D.K.C.; Kim, H.Y. ASO author reflections: The application of transoral robotic thyroidectomy (TORT) for papillary thyroid carcinoma. Ann. Surg. Oncol. 2020, 27, 3849–3850. [Google Scholar] [CrossRef] [PubMed]
- Kaliszewski, K.; Wojtczak, B.; Sutkowski, K.; Rudnicki, J. Thyroid cancer surgery—In what direction are we going? A mini-review. J. Int. Med. Res. 2020, 48, 300060520914803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christou, N.; Mathonnet, M. Complications after total thyroidectomy. J. Visc. Surg. 2013, 150, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Solórzano, C.C.; Thomas, G.; Berber, E.; Wang, T.S.; Randolph, G.W.; Duh, Q.Y.; Triponez, F. Current state of intraoperative use of near infrared fluorescence for parathyroid identification and preservation. Surgery 2021, 169, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Spartalis, E.; Ntokos, G.; Georgiou, K.; Zografos, G.; Tsourouflis, G.; Dimitroulis, D.; Nikiteas, N.I. Intraoperative indocyanine green (ICG) angiography for the identification of the parathyroid glands: Current evidence and future perspectives. In Vivo 2020, 34, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Wong, J.C.Y.; Pandey, P.U.; Wiseman, S.M. Novel techniques for intraoperative parathyroid gland identification: A comprehensive review. Expert Rev. Endocrinol. Metab. 2020, 15, 439–457. [Google Scholar] [CrossRef]
- Rudin, A.V.; McKenzie, T.J.; Thompson, G.B.; Farley, D.R.; Lyden, M.L. Evaluation of parathyroid glands with indocyanine green fluorescence angiography after thyroidectomy. World J. Surg. 2019, 43, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Tjahjono, R.; Nguyen, K.; Phung, D.; Riffat, F.; Palme, C.E. Methods of identification of parathyroid glands in thyroid surgery: A literature review. ANZ J. Surg. 2021, 91, 1711–1716. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Solórzano, C.C.; Baregamian, N.; Mannoh, E.A.; Gautam, R.; Irlmeier, R.T.; Ye, F.; Nelson, J.A.; Long, S.E.; Gauger, P.G.; et al. Comparing intraoperative parathyroid identification based on surgeon experience versus near infrared autofluorescence detection—A surgeon-blinded multi-centric study. Am. J. Surg. 2021, 222, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Saravana-Bawan, B.B.; Pasternak, J.D. Does autofluorescence-based detection of the parathyroid glands during thyroid surgery affect hypoparathyroidism rates? Clin. Thyroidol. 2021, 33, 541–544. [Google Scholar] [CrossRef]
- Demarchi, M.S.; Karenovics, W.; Bédat, B.; Triponez, F. Intraoperative autofluorescence and indocyanine green angiography for the detection and preservation of parathyroid glands. J. Clin. Med. 2020, 9, 830. [Google Scholar] [CrossRef] [Green Version]
- McWade, M.A.; Paras, C.; White, L.M.; Phay, J.E.; Solórzano, C.C.; Broome, J.T.; Mahadevan-Jansen, A. Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging. J. Clin. Endocrinol. Metab. 2014, 99, 4574–4580. [Google Scholar] [CrossRef]
- Benmiloud, F.; Godiris-Petit, G.; Gras, R.; Gillot, J.C.; Turrin, N.; Penaranda, G.; Noullet, S.; Chéreau, N.; Gaudart, J.; Chiche, L.; et al. Association of autofluorescence-based detection of the parathyroid glands during total thyroidectomy with postoperative hypocalcemia risk: Results of the PARAFLUO multicenter randomized clinical trial. JAMA Surg. 2020, 155, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Bartz-Kurycki, M.A.; Oluwo, O.E.; Morris-Wiseman, L.F. Medullary thyroid carcinoma: Recent advances in identification, treatment, and prognosis. Ther. Adv. Endocrinol. Metab. 2021, 12, 20420188211049611. [Google Scholar] [CrossRef] [PubMed]
- Matrone, A.; Gambale, C.; Prete, A.; Elisei, R. Sporadic medullary thyroid carcinoma: Towards a precision medicine. Front. Endocrinol. 2022, 13, 864253. [Google Scholar] [CrossRef]
- Okafor, C.; Hogan, J.; Raygada, M.; Thomas, B.J.; Akshintala, S.; Glod, J.W.; Del Rivero, J. Update on targeted therapy in medullary thyroid cancer. Front. Endocrinol. 2021, 12, 708949. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A.; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: A randomized, double-blind phase III trial. J. Clin. Oncol. 2012, 30, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; et al. Cabozantinib in progressive medullary thyroid cancer. J. Clin. Oncol. 2013, 31, 3639–3646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreissl, M.C.; Bastholt, L.; Elisei, R.; Haddad, R.; Hauch, O.; Jarząb, B.; Robinson, B.; Colzani, R.; Foster, M.; Weiss, R.; et al. Efficacy and safety of vandetanib in progressive and symptomatic medullary thyroid cancer: Post hoc analysis From the ZETA trial. J. Clin. Oncol. 2020, 38, 2773–2781. [Google Scholar] [CrossRef]
- Tappenden, P.; Carroll, C.; Hamilton, J.; Kaltenthaler, E.; Wong, R.; Wadsley, J.; Moss, L.; Balasubramanian, S. Cabozantinib and vandetanib for unresectable locally advanced or metastatic medullary thyroid cancer: A systematic review and economic model. Health Technol. Assess. 2019, 23, 1–144. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Yang, D.; Velcheti, V.; Drilon, A.; Meric-Bernstam, F. State-of-the-art strategies for targeting RET-dependent cancers. J. Clin. Oncol. 2020, 38, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Habra, M.A. Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat. Rev. 2016, 42, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Du, F.; Gao, M.; Ji, Q.; Li, Z.; Zhang, Y.; Guo, Z.; Wang, J.; Chen, X.; Wang, J.; et al. Anlotinib for the treatment of patients with locally advanced or metastatic medullary thyroid cancer. Thyroid 2018, 28, 1455–1461. [Google Scholar] [CrossRef]
- Ratajczak, M.; Gaweł, D.; Godlewska, M. Novel Inhibitor-Based Therapies for Thyroid Cancer—An Update. Int. J. Mol. Sci. 2021, 22, 11829. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Schlumberger, M.; Jarzab, B.; Martins, R.G.; Pacini, F.; Robinson, B.; McCaffrey, J.C.; Shah, M.H.; Bodenner, D.L.; Topliss, D.; et al. A phase 2 trial of lenvatinib (E7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: A clinical outcomes and biomarker assessment. Cancer 2015, 121, 2749–2756. [Google Scholar] [CrossRef]
- Matrone, A.; Prete, A.; Nervo, A.; Ragni, A.; Agate, L.; Molinaro, E.; Giani, C.; Valerio, L.; Minaldi, E.; Piovesan, A.; et al. Lenvatinib as a salvage therapy for advanced metastatic medullary thyroid cancer. J. Endocrinol. Investig. 2021, 44, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chi, Y.; Chen, X.; Ge, M.; Zhang, Y.; Guo, Z.; Wang, J.; Chen, J.; Zhang, J.; Cheng, Y.; et al. Anlotinib in Locally Advanced or Metastatic Medullary Thyroid Carcinoma: A Randomized, Double-Blind Phase IIB Trial. Clin. Cancer Res. 2021, 27, 3567–3575. [Google Scholar] [CrossRef]
- Hong, S.K.; Starenki, D.; Johnson, O.T.; Gestwicki, J.E.; Park, J.I. Analogs of the heat shock protein 70 inhibitor MKT-077 suppress medullary thyroid carcinoma cells. Int. J. Mol. Sci. 2022, 23, 1063. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Bradford, D.; Larkins, E.; Pai-Scherf, L.H.; Chatterjee, S.; Mishra-Kalyani, P.S.; Wearne, E.; Helms, W.S.; Ayyoub, A.; Bi, J.; et al. FDA Approval Summary: Pralsetinib for the Treatment of Lung and Thyroid Cancers with RET Gene Mutations or Fusions. Clin. Cancer Res. 2021, 27, 5452–5456. [Google Scholar] [CrossRef]
- Bradford, D.; Larkins, E.; Mushti, S.L.; Rodriguez, L.; Skinner, A.M.; Helms, W.S.; Price, L.S.L.; Zirkelbach, J.F.; Li, Y.; Liu, Y.; et al. FDA Approval Summary: Selpercatinib for the Treatment of Lung and Thyroid Cancers with RET Gene Mutations or Fusions. Clin. Cancer Res. 2021, 27, 2130–2135. [Google Scholar] [CrossRef] [PubMed]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of selpercatinib in RET-altered thyroid cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Subbiah, V.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Brose, M.S.; Curigliano, G.; Leboulleux, S.; Zhu, V.W.; Keam, B.; et al. 1913O Results from the registrational phase I/II ARROW trial of pralsetinib (BLU-667) in patients (pts) with advanced RET mutation-positive medullary thyroid cancer (RET + MTC). Ann. Oncol. 2020, 31, S1084. [Google Scholar] [CrossRef]
- Solomon, B.J.; Tan, L.; Lin, J.J.; Wong, S.Q.; Hollizeck, S.; Ebata, K.; Tuch, B.B.; Yoda, S.; Gainor, J.F.; Sequist, L.V.; et al. RET solvent front mutations mediate acquired resistance to selective RET inhibition in RET-driven malignancies. J. Thorac. Oncol. 2020, 15, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Vander Velde, R.; Yoon, N.; Marusyk, V.; Durmaz, A.; Dhawan, A.; Miroshnychenko, D.; Lozano-Peral, D.; Desai, B.; Balynska, O.; Poleszhuk, J.; et al. Resistance to targeted therapies as a multifactorial, gradual adaptation to inhibitor specific selective pressures. Nat. Commun. 2020, 11, 2393. [Google Scholar] [CrossRef] [PubMed]
- Schoffski, P.; Cho, B.C.; Italiano, A.; Loong, H.H.F.; Massard, C.; Rodriguez, L.M.; Shih, J.-Y.; Subbiah, V.; Verlingue, L.; Andreas, K.; et al. BOS172738, a highly potent and selective RET inhibitor, for the treatment of RET-altered tumors including RET-Fusion+ NSCLC and RET-mutant MTC: Phase 1 study results. J. Clin. Oncol. 2021, 39, 3008. [Google Scholar] [CrossRef]
- Subbiah, V.; Shen, T.; Terzyan, S.S.; Liu, X.; Hu, X.; Patel, K.P.; Hu, M.; Cabanillas, M.; Behrang, A.; Meric-Bernstam, F.; et al. Structural basis of acquired resistance to selpercatinib and pralsetinib mediated by non-gatekeeper RET mutations. Ann. Oncol. 2021, 32, 261–268. [Google Scholar] [CrossRef]
- Agrawal, N.; Jiao, Y.; Sausen, M.; Leary, R.; Bettegowda, C.; Roberts, N.J.; Bhan, S.; Ho, A.S.; Khan, Z.; Bishop, J.; et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J. Clin. Endocrinol. Metab. 2013, 98, E364–E369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prete, A.; de Souza, P.B.; Censi, S.; Muzza, M.; Nucci, N.; Sponziello, M. Update on fundamental mechanisms of thyroid cancer. Front. Endocrinol. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.M.; Cavaco, B.M.; Leite, V. RAS proto-oncogene in medullary thyroid carcinoma. Endocr. Relat. Cancer 2015, 22, R235–R252. [Google Scholar] [CrossRef]
- Sherman, S.I.; Clary, D.O.; Elisei, R.; Schlumberger, M.J.; Cohen, E.E.; Schoffski, P.; Wirth, L.J.; Mangeshkar, M.; Aftab, D.T.; Brose, M.S. Correlative analyses of RET and RAS mutations in a phase 3 trial of cabozantinib in patients with progressive, metastatic medullary thyroid cancer. Cancer 2016, 122, 3856–3864. [Google Scholar] [CrossRef] [PubMed]
- Molina-Arcas, M.; Samani, A.; Downward, J. Drugging the undruggable: Advances on RAS targeting in cancer. Genes 2021, 12, 899. [Google Scholar] [CrossRef]
- Tran, E.; Robbins, P.F.; Lu, Y.C.; Prickett, T.D.; Gartner, J.J.; Jia, L.; Pasetto, A.; Zheng, Z.; Ray, S.; Groh, E.M.; et al. T-cell transfer therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 2016, 375, 2255–2262. [Google Scholar] [CrossRef] [Green Version]
- Schott, M.; Seissler, J.; Lettmann, M.; Fouxon, V.; Scherbaum, W.A.; Feldkamp, J. Immunotherapy for medullary thyroid carcinoma by dendritic cell vaccination. J. Clin. Endocrinol. Metab. 2001, 86, 4965–4969. [Google Scholar] [CrossRef]
- Bhoj, V.G.; Li, L.; Parvathaneni, K.; Zhang, Z.; Kacir, S.; Arhontoulis, D.; Zhou, K.; McGettigan-Croce, B.; Nunez-Cruz, S.; Gulendran, G.; et al. Adoptive T cell immunotherapy for medullary thyroid carcinoma targeting GDNF family receptor alpha 4. Mol. Ther. Oncolytics 2021, 20, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Cunha, L.L.; Ward, L.S. Translating the immune microenvironment of thyroid cancer into clinical practice. Endocr. Relat. Cancer 2022, 29, R67–R83. [Google Scholar] [CrossRef]
- Naoum, G.E.; Morkos, M.; Kim, B.; Arafat, W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol. Cancer 2018, 17, 51. [Google Scholar] [CrossRef] [PubMed]
- Di Molfetta, S.; Dotto, A.; Fanciulli, G.; Florio, T.; Feola, T.; Colao, A.; Faggiano, A. Immune checkpoint inhibitors: New weapons against medullary thyroid cancer? Front. Endocrinol. 2021, 12, 667784. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, C.W.; Tan, L.C.; Wen, S.S.; Liao, T.; Zhang, Y.; Chen, T.Z.; Ma, B.; Yu, P.C.; Lu, Z.W.; et al. Immune co-inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT in medullary thyroid cancers: A large cohort study. J. Clin. Endocrinol. Metab. 2021, 106, 120–132. [Google Scholar] [CrossRef]
- Rowell, N.P. The role of external beam radiotherapy in the management of medullary carcinoma of the thyroid: A systematic review. Radiother. Oncol. 2019, 136, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Megwalu, U.C.; Noel, J.E. External beam radiotherapy for medullary thyroid cancer following total or near-total thyroidectomy. Otolaryngol. Head Neck Surg. 2020, 164, 97–103. [Google Scholar] [CrossRef]
- Groen, A.; Beckham, T.; Links, T.; Sherman, E.; Tuttle, R.M.; Fagin, J.; Shaha, A.; Sabol, C.; Tsai, C.J.; McBride, S.; et al. Impact of surgery and external beam radiation therapy on local control in the treatment of medullary thyroid carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, e230. [Google Scholar] [CrossRef]
- Erba, P.A.; Maecke, H.; Mikolajczak, R.; Decristoforo, C.; Zaletel, K.; Maina-Nock, T.; Peitl, P.K.; Garnuszek, P.; Froberg, A.; Goebel, G.; et al. A novel CCK2/gastrin receptor-localizing radiolabeled peptide probe for personalized diagnosis and therapy of patients with progressive or metastatic medullary thyroid carcinoma: A multicenter phase I GRAN-T-MTC study. Pol. Arch. Intern. Med. 2018, 128, 791–795. [Google Scholar] [CrossRef]
- Grossrubatscher, E.; Fanciulli, G.; Pes, L.; Sesti, F.; Dolci, C.; de Cicco, F.; Colao, A.; Faggiano, A.; Nike, G. Advances in the management of medullary thyroid carcinoma: Focus on peptide receptor radionuclide therapy. J. Clin. Med. 2020, 9, 3507. [Google Scholar] [CrossRef]
- Maghsoomi, Z.; Emami, Z.; Malboosbaf, R.; Malek, M.; Khamseh, M.E. Efficacy and safety of peptide receptor radionuclide therapy in advanced radioiodine-refractory differentiated thyroid cancer and metastatic medullary thyroid cancer: A systematic review. BMC Cancer 2021, 21, 579. [Google Scholar] [CrossRef] [PubMed]
- Parghane, R.V.; Naik, C.; Talole, S.; Desmukh, A.; Chaukar, D.; Banerjee, S.; Basu, S. Clinical utility of 177Lu-DOTATATE PRRT in somatostatin receptor-positive metastatic medullary carcinoma of thyroid patients with assessment of efficacy, survival analysis, prognostic variables, and toxicity. Head Neck 2019, 42, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, S.; Mittal, B.R.; Sood, A.; Verma, R.; Panda, N. Efficacy and safety of concomitant 177Lu-DOTATATE and low-dose capecitabine in advanced medullary thyroid carcinoma: A single-centre experience. Nucl. Med. Commun. 2020, 41, 629–635. [Google Scholar] [CrossRef]
- Rottenburger, C.; Nicolas, G.P.; McDougall, L.; Kaul, F.; Cachovan, M.; Vija, A.H.; Schibli, R.; Geistlich, S.; Schumann, A.; Rau, T.; et al. Cholecystokinin 2 receptor agonist (177)Lu-PP-F11N for radionuclide therapy of medullary thyroid carcinoma: Results of the lumed phase 0a study. J. Nucl. Med. 2020, 61, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Grzmil, M.; Qin, Y.; Schleuniger, C.; Frank, S.; Imobersteg, S.; Blanc, A.; Spillmann, M.; Berger, P.; Schibli, R.; Behe, M. Pharmacological inhibition of mTORC1 increases CCKBR-specific tumor uptake of radiolabeled minigastrin analogue [(177)Lu]Lu-PP-F11N. Theranostics 2020, 10, 10861–10873. [Google Scholar] [CrossRef] [PubMed]
T—Primary Tumor | T/N/M | Characterization |
---|---|---|
T1 | Tumor 2 cm or less in greatest dimension, limited to the thyroid | |
T1a | Tumor ≤ 1 cm in greatest dimension, limited to the thyroid | |
T1b | Tumor > 1 cm but ≤2 cm in greatest dimension, limited to the thyroid | |
T2 | Tumor > 2 cm but ≤4 cm in greatest dimension, limited to the thyroid | |
T3 | Tumor > 4 cm in greatest dimension, limited to the thyroid or with gross extrathyroidal extension invading only strap muscles (sternohyoid, sternothyroid or omohyoid muscles) | |
T4a | Tumor extends beyond the thyroid capsule and invades any of the following: subcutaneous soft tissues, larynx, trachea, esophagus, recurrent laryngeal nerve | |
T4b | Tumor invades prevertebral fascia or encasing the carotid artery or mediastinal vessels from a tumor of any size | |
N—regional lymph nodes | ||
N0 | No evidence of locoregional lymph node metastasis | |
N1a | Metastasis to level VI (pretracheal, paratracheal and prelaryngeal/Delphian lymph nodes) or upper/superior mediastinum | |
N1b | Metastasis in other unilateral, bilateral or contralateral cervical compartments (levels I, II, III, IV or V) or retropharyngeal | |
M—distant metastasis | ||
M0 | No distant metastasis | |
M1 | Distant metastasis |
Stage | T (Primary Tumor) | N (Regional Lymph Nodes) | M (Distant Metastasis) |
---|---|---|---|
I | T1a, T1b | N0 | M0 |
II | T2, T3 | N0 | M0 |
III | T1–T3 | N1a | M0 |
IVA | T1–T3 | N1b | M0 |
T4 | Any N | M0 | |
IVB | T4b | Any N | M0 |
IVC | Any T | Any N | M1 |
Diagnostics | Sensitivity | Annotations | |
---|---|---|---|
US | Primary tumor | 75–90% | Standard procedure |
Lateral neck LN | 56% | ||
Central neck LN | 6% | ||
US + serum Ctn and CEA | Primary tumor | 95% | |
CT | Overall | 77–85% | Standard procedure |
LN | 82% | ||
Liver | 87% | ||
Bones | - | ||
Lungs | 100% | ||
MRI | Bones | 89–92% | Standard procedure |
Liver | 76–89% | ||
18F-FDOPA-PET/CT | Overall | 45–93% | ATA 2015: not recommended ESMO 2019: recommended |
LN | 72% | ||
Liver | 65% | ||
Bones | 68% | ||
Lungs | 14% | ||
Lateral neck LN | 75% | ||
Central neck LN | 28% | ||
68Ga-DOTA-TATE-PET/CT | Overall | 84% | New |
Neck LN | 56–63% | ||
Mediastinal LN | 100% | ||
Liver | 9% | ||
Bones | 100% | ||
Lungs | 57–63% | ||
68Ga-DOTA-MGS5-PET/CT | Not enough data | New | |
68Ga-IMP288-PET/CT | Overall | 89–92% | New |
LN | 98–100% | ||
Liver | 98–100% | ||
Bones | 87–92% | ||
Lungs | 29–42% |
Calcitonin Level [pg/mL] | Procedure for MTC Treatment | ||
---|---|---|---|
Neck US—Negative | Neck US—Positive | ||
<20 | TT | TT + bilateral CCLND + dissection of involved levels | |
20–50 | TT +/− bilateral CCLND | ||
50–200 | TT + bilateral CCLND + ipsilateral LCLND * | ||
200–500 | TT + bilateral CCLND + bilateral LCLND * | TT + bilateral CCLND + dissection of involved levels + contralateral lymph node dissection | |
>500 | M0 | M1 | |
TT + bilateral CCLND + bilateral LCLND * | Range of surgery based on disease progression and symptoms |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaliszewski, K.; Ludwig, M.; Ludwig, B.; Mikuła, A.; Greniuk, M.; Rudnicki, J. Update on the Diagnosis and Management of Medullary Thyroid Cancer: What Has Changed in Recent Years? Cancers 2022, 14, 3643. https://doi.org/10.3390/cancers14153643
Kaliszewski K, Ludwig M, Ludwig B, Mikuła A, Greniuk M, Rudnicki J. Update on the Diagnosis and Management of Medullary Thyroid Cancer: What Has Changed in Recent Years? Cancers. 2022; 14(15):3643. https://doi.org/10.3390/cancers14153643
Chicago/Turabian StyleKaliszewski, Krzysztof, Maksymilian Ludwig, Bartłomiej Ludwig, Agnieszka Mikuła, Maria Greniuk, and Jerzy Rudnicki. 2022. "Update on the Diagnosis and Management of Medullary Thyroid Cancer: What Has Changed in Recent Years?" Cancers 14, no. 15: 3643. https://doi.org/10.3390/cancers14153643