COVID-19 and Adult Acute Leukemia: Our Knowledge in Progress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Clinical Courses
3. Impact of COVID-19 on AL Treatment
- (1)
- should AL treatment be delayed or discontinued in the case of SARS-CoV-2 positivity?
- (2)
- can intensive AL treatment schedules still be considered during the COVID-19 pandemic?
4. General Recommendations
5. Vaccination and Treatment of COVID-19
- in AL patients with mild COVID-19 disease, SARS-CoV-2-moab, high-titer convalescent plasma for seronegative patients, molnupiravir, nirmatrelvir/ritonavir, and/or remdesivir are recommended. Dexamethasone is not recommended [50]
- in AL patients with moderate or severe COVID-19 disease, remdesivir, dexamethasone, anti-IL-1 antibody, and anti-IL-6 antibody are recommended. If patients are seronegative, SARS-CoV-2-moab or convalescent plasma is additionally suggested. It is not recommended to discontinue or adjust any AL-specific immunosuppressive therapy [50]
- in AL patients with critical COVID-19 disease, dexamethasone and, if necessary, anti-IL-6 antibody treatment is recommended. If patients are seronegative, SARS-CoV-2-moab and/or high titer convalescent plasma are additionally suggested. It is not recommended to discontinue or adjust any AL-specific immunosuppressive therapy [50]
- patients without suspected/confirmed thrombosis who are treated in an outpatient setting should not receive anticoagulant thromboprophylaxis [99]
- patients without suspected or confirmed thrombosis who are acutely ill from COVID-19 should be treated with therapeutic-intensity anticoagulation. Acutely ill patients are defined as those who are administered to the hospital due to COVID-19 symptoms but who are not treated at an intensive care unit [99]
- patients without suspected or confirmed thrombosis who are critically ill from COVID-19 should be treated with prophylactic-intensity anticoagulation. Critically ill patients are defined as those who are administered to an intensive care unit due to COVID-19-associated symptoms [99]
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Corona Virus (COVID-19) Dash Board. Available online: https://covid19.who.int (accessed on 17 June 2022).
- Salian, V.S.; Wright, J.A.; Vedell, P.T.; Nair, S.; Li, C.; Kandimalla, M.; Tang, X.; Carmona Porquera, E.M.; Kalari, K.R.; Kandimalla, K.K. COVID-19 Transmission, Current Treatment, and Future Therapeutic Strategies. Mol. Pharm. 2021, 18, 754–771. [Google Scholar] [CrossRef] [PubMed]
- Boban, M. Novel coronavirus disease (COVID-19) update on epidemiology, pathogenicity, clinical course and treatments. Int. J. Clin. Pract. 2021, 75, e13868. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Salzberger, B.; Buder, F.; Lampl, B.; Ehrenstein, B.; Hitzenbichler, F.; Holzmann, T.; Schmidt, B.; Hanses, F. Epidemiology of SARS-CoV-2. Infection 2021, 49, 233–239. [Google Scholar] [CrossRef]
- Johansson, M.A.; Quandelacy, T.M.; Kada, S.; Prasad, P.V.; Steele, M.; Brooks, J.T.; Slayton, R.B.; Biggerstaff, M.; Butler, J.C. SARS-CoV-2 Transmission from People without COVID-19 Symptoms. JAMA Netw. Open 2021, 4, e2035057. [Google Scholar] [CrossRef]
- Lippi, G.; Mattiuzzi, C.; Henry, B.M. Updated picture of SARS-CoV-2 variants and mutations. Diagnosis 2021, 9, 11–17. [Google Scholar] [CrossRef]
- Dubey, A.; Choudhary, S.; Kumar, P.; Tomar, S. Emerging SARS-CoV-2 Variants: Genetic Variability and Clinical Implications. Curr. Microbiol. 2021, 79, 20. [Google Scholar] [CrossRef]
- U.S. Food & Drug. US FDA Moderna COVID-19 Vaccine|FDA: @US_FDA. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/spikevax-and-moderna-covid-19-vaccine (accessed on 17 June 2022).
- U.S. Food & Drug. US FDA Pfizer-BioNTech COVID-19 Vaccine. Available online: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/comirnaty-and-pfizer-biontech-covid-19-vaccine (accessed on 17 June 2022).
- European-Medicines-Agency. European-Medicines-Agency Comirnaty. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/comirnaty (accessed on 17 June 2022).
- European-Medicines-Agency. European-Medicines-Agency COVID-19 Vaccine Moderna. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/spikevax (accessed on 17 June 2022).
- European-Medicines-Agency. European-Medicines-Agency Vaxzevria (Previously COVID-19 Vaccine AstraZeneca). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/vaxzevria-previously-covid-19-vaccine-astrazeneca (accessed on 17 June 2022).
- Singh, D.D.; Parveen, A.; Yadav, D.K. SARS-CoV-2: Emergence of New Variants and Effectiveness of Vaccines. Front. Cell Infect. Microbiol. 2021, 11, 777212. [Google Scholar] [CrossRef]
- Lucas, C.; Vogels, C.B.F.; Yildirim, I.; Rothman, J.E.; Lu, P.; Monteiro, V.; Gehlhausen, J.R.; Campbell, M.; Silva, J.; Tabachnikova, A.; et al. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity. Nature 2021, 600, 523–529. [Google Scholar] [CrossRef]
- von Lilienfeld-Toal, M.; Berger, A.; Christopeit, M.; Hentrich, M.; Heussel, C.P.; Kalkreuth, J.; Klein, M.; Kochanek, M.; Penack, O.; Hauf, E.; et al. Community acquired respiratory virus infections in cancer patients—Guideline on diagnosis and management by the Infectious Diseases Working Party of the German Society for haematology and Medical Oncology. Eur. J. Cancer 2016, 67, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H.; et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 2020, 21, 335–337. [Google Scholar] [CrossRef]
- Dai, M.; Liu, D.; Liu, M.; Zhou, F.; Li, G.; Chen, Z.; Zhang, Z.; You, H.; Wu, M.; Zheng, Q.; et al. Patients with Cancer Appear More Vulnerable to SARS-CoV-2: A Multicenter Study during the COVID-19 Outbreak. Cancer Discov. 2020, 10, 783–791. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, F.; Xie, L.; Wang, C.; Wang, J.; Chen, R.; Jia, P.; Guan, H.Q.; Peng, L.; Chen, Y.; et al. Clinical characteristics of COVID-19-infected cancer patients: A retrospective case study in three hospitals within Wuhan, China. Ann. Oncol. 2020, 31, 894–901. [Google Scholar] [CrossRef]
- Venkatesulu, B.P.; Chandrasekar, V.T.; Girdhar, P.; Advani, P.; Sharma, A.; Elumalai, T.; Hsieh, C.; Elghazawy, H.I.; Verma, V.; Krishnan, S. A systematic review and meta-analysis of cancer patients affected by a novel coronavirus. medRxiv 2020, 5, pkaa102. [Google Scholar] [CrossRef]
- Reboot: COVID-Cancer Project. Available online: https://rebootrx.org/covid-cancer (accessed on 17 June 2022).
- Saini, K.S.; Tagliamento, M.; Lambertini, M.; McNally, R.; Romano, M.; Leone, M.; Curigliano, G.; de Azambuja, E. Mortality in patients with cancer and coronavirus disease 2019: A systematic review and pooled analysis of 52 studies. Eur. J. Cancer 2020, 139, 43–50. [Google Scholar] [CrossRef]
- Peseski, A.M.; McClean, M.; Green, S.D.; Beeler, C.; Konig, H. Management of fever and neutropenia in the adult patient with acute myeloid leukemia. Expert Rev. Anti-Infect. Ther. 2021, 19, 359–378. [Google Scholar] [CrossRef]
- Klastersky, J.; de Naurois, J.; Rolston, K.; Rapoport, B.; Maschmeyer, G.; Aapro, M.; Herrstedt, J.; Committee, E.G. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2016, 27, v111–v118. [Google Scholar] [CrossRef]
- Wu, M.; Li, C.; Zhu, X. FLT3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol. 2018, 11, 133. [Google Scholar] [CrossRef]
- Aldoss, I.; Stein, A.S. Advances in adult acute lymphoblastic leukemia therapy. Leuk Lymphoma 2018, 59, 1033–1050. [Google Scholar] [CrossRef]
- Kantarjian, H.; Jabbour, E.; Topp, M.S. Blinatumomab for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, e49. [Google Scholar] [CrossRef]
- Baron, J.; Wang, E.S. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev. Clin. Pharmacol. 2018, 11, 549–559. [Google Scholar] [CrossRef]
- Marchesi, F.; Salmanton-Garcia, J.; Emarah, Z.; Piukovics, K.; Nucci, M.; Lopez-Garcia, A.; Racil, Z.; Farina, F.; Popova, M.; Zompi, S.; et al. COVID-19 in adult acute myeloid leukemia patients: A long-term followup study from the European Hematology Association survey (EPICOVIDEHA). Haematologica 2022. [Google Scholar] [CrossRef]
- Mitrovic, M.; Pantic, N.; Sabljic, N.; Vucic, M.; Bukumiric, Z.; Virijevic, M.; Pravdic, Z.; Rajic, J.; Todorovic-Balint, M.; Vidovic, A.; et al. Acute leukemia and SARS-CoV-2 infection: Clinical characteristics and risk factors for mortality. Leuk Lymphoma 2021, 62, 3516–3520. [Google Scholar] [CrossRef]
- Demichelis-Gomez, R.; Alvarado-Ibarra, M.; Vasquez-Chavez, J.; Delgado-Lopez, N.; Gomez-Cortes, C.; Espinosa-Bautista, K.; Cooke-Tapia, A.; Milan-Salvatierra, A.; Gomez-De Leon, A.; Lee-Tsai, Y.L.; et al. Treating Acute Leukemia During the COVID-19 Pandemic in an Environment with Limited Resources: A Multicenter Experience in Four Latin American Countries. JCO Glob. Oncol. 2021, 7, 577–584. [Google Scholar] [CrossRef]
- Pagano, L.; Salmanton-Garcia, J.; Marchesi, F.; Busca, A.; Corradini, P.; Hoenigl, M.; Klimko, N.; Koehler, P.; Pagliuca, A.; Passamonti, F.; et al. COVID-19 infection in adult patients with hematological malignancies: A European Hematology Association Survey (EPICOVIDEHA). J. Hematol. Oncol. 2021, 14, 168. [Google Scholar] [CrossRef]
- Palanques-Pastor, T.; Megias-Vericat, J.E.; Martinez, P.; Lopez Lorenzo, J.L.; Cornago Navascues, J.; Rodriguez Macias, G.; Cano, I.; Arnan Sangerman, M.; Vidriales Vicente, M.B.; Algarra Algarra, J.L.; et al. Characteristics, clinical outcomes, and risk factors of SARS-CoV-2 infection in adult acute myeloid leukemia patients: Experience of the PETHEMA group. Leuk Lymphoma 2021, 62, 2928–2938. [Google Scholar] [CrossRef]
- Martínez, P.; Palanques Pastor, T.; Lopez Lorenzo, J.L.; Cornago Navascués, J.; Rodriguez-Macías, G.; Cano, I.; Arnan Sangerman, M.; Vidriales, M.-B.; Algarra, J.L.; Foncillas, M.A.; et al. Impact of SARS-CoV-2 Infection in Acute Myeloid Leukemia Patients: Experience of the Pethema Registry. Blood 2020, 136, 7–8. [Google Scholar] [CrossRef]
- Passamonti, F.; Cattaneo, C.; Arcaini, L.; Bruna, R.; Cavo, M.; Merli, F.; Angelucci, E.; Krampera, M.; Cairoli, R.; Della Porta, M.G.; et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: A retrospective, multicentre, cohort study. Lancet Haematol. 2020, 7, e737–e745. [Google Scholar] [CrossRef]
- Garcia-Suarez, J.; de la Cruz, J.; Cedillo, A.; Llamas, P.; Duarte, R.; Jimenez-Yuste, V.; Hernandez-Rivas, J.A.; Gil-Manso, R.; Kwon, M.; Sanchez-Godoy, P.; et al. Impact of hematologic malignancy and type of cancer therapy on COVID-19 severity and mortality: Lessons from a large population-based registry study. J. Hematol. Oncol. 2020, 13, 133. [Google Scholar] [CrossRef] [PubMed]
- Ruthrich, M.M.; Giessen-Jung, C.; Borgmann, S.; Classen, A.Y.; Dolff, S.; Gruner, B.; Hanses, F.; Isberner, N.; Kohler, P.; Lanznaster, J.; et al. COVID-19 in cancer patients: Clinical characteristics and outcome-an analysis of the LEOSS registry. Ann. Hematol. 2021, 100, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Torron, C.; Garcia-Gutierrez, V.; Tenorio-Nunez, M.C.; Moreno-Jimenez, G.; Lopez-Jimenez, F.J.; Herrera-Puente, P. Poor outcome in patients with acute leukemia on intensive chemotherapy and COVID-19. Bone Marrow Transpl. 2021, 56, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Yigenoglu, T.N.; Ata, N.; Altuntas, F.; Basci, S.; Dal, M.S.; Korkmaz, S.; Namdaroglu, S.; Basturk, A.; Hacibekiroglu, T.; Dogu, M.H.; et al. The outcome of COVID-19 in patients with hematological malignancy. J. Med. Virol. 2021, 93, 1099–1104. [Google Scholar] [CrossRef]
- Wood, W.A.; Neuberg, D.S.; Thompson, J.C.; Tallman, M.S.; Sekeres, M.A.; Sehn, L.H.; Anderson, K.C.; Goldberg, A.D.; Pennell, N.A.; Niemeyer, C.M.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A report from the ASH Research Collaborative Data Hub. Blood Adv. 2020, 4, 5966–5975. [Google Scholar] [CrossRef]
- Chiaretti, S.; Bonifacio, M.; Agrippino, R.; Giglio, F.; Annunziata, M.; Curti, A.; Principe, M.I.D.; Salutari, P.; Sciume, M.; Delia, M.; et al. COVID-19 Infection in acute lymphoblastic leukemia over 15 months of the pandemic. A CAMPUS ALL report. Haematologica 2022. [Google Scholar] [CrossRef]
- Ribera, J.M.; Morgades, M.; Coll, R.; Barba, P.; Lopez-Lorenzo, J.L.; Montesinos, P.; Foncillas, M.A.; Cabrero, M.; Gomez-Centurion, I.; Morales, M.D.; et al. Frequency, Clinical Characteristics and Outcome of Adults with Acute Lymphoblastic Leukemia and COVID 19 Infection in the First vs. Second Pandemic Wave in Spain. Clin. Lymphoma Myeloma Leuk 2021, 21, e801–e809. [Google Scholar] [CrossRef]
- Ghandili, S.; Pfefferle, S.; Roedl, K.; Sonnemann, P.; Karagiannis, P.; Boenisch, O.; Kluge, S.; Schmiedel, S.; Ittrich, H.; Rohde, H.; et al. Challenges in treatment of patients with acute leukemia and COVID-19: A series of 12 patients. Blood Adv. 2020, 4, 5936–5941. [Google Scholar] [CrossRef]
- Taurino, D.; Frigeni, M.; Grassi, A.; Cavallaro, G.; Salmoiraghi, S.; Spinelli, O.; Rambaldi, A.; Lussana, F. Concurrent Diagnosis of Acute Myeloid Leukemia and Symptomatic COVID-19 Infection: A Case Report Successfully Treated with Azacitidine-Venetoclax Combination. Mediterr. J. Hematol. Infect. Dis. 2021, 13, e2021057. [Google Scholar] [CrossRef]
- Rajasurya, V.; Elliott, K.; Dugan, J.; Moreb, J.S. COVID-19 in patients with acute leukemia: Two cases with different outcomes. Leuk Res. Rep. 2021, 15, 100232. [Google Scholar] [CrossRef]
- Ferrara, F.; Zappasodi, P.; Roncoroni, E.; Borlenghi, E.; Rossi, G. Impact of COVID-19 on the treatment of acute myeloid leukemia. Leukemia 2020, 34, 2254–2256. [Google Scholar] [CrossRef]
- Papamichalis, P.; Tsinti, G.; Papapostolou, E.; Hadjichristodoulou, C.; Speletas, M. Newly Diagnosed Acute Myeloid Leukemia in a Patient with Severe SARS-CoV-2 Infection. Cureus 2021, 13, e14480. [Google Scholar] [CrossRef]
- Cesaro, S.; Ljungman, P.; Mikulska, M.; Hirsch, H.H.; von Lilienfeld-Toal, M.; Cordonnier, C.; Meylan, S.; Mehra, V.; Styczynski, J.; Marchesi, F.; et al. Recommendations for the management of COVID-19 in patients with haematological malignancies or haematopoietic cell transplantation, from the 2021 European Conference on Infections in Leukaemia (ECIL 9). Leukemia 2022, 36, 1467–1480. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Boddu, P.C.; Patnaik, M.M.; Bewersdorf, J.P.; Stahl, M.; Rampal, R.K.; Shallis, R.; Steensma, D.P.; Savona, M.R.; Sekeres, M.A.; et al. Special considerations in the management of adult patients with acute leukaemias and myeloid neoplasms in the COVID-19 era: Recommendations from a panel of international experts. Lancet Haematol. 2020, 7, e601–e612. [Google Scholar] [CrossRef]
- American Society of Hematology. COVID-19 and Acute Myeloid Leukemia: Frequently Asked Questions. 2022. Available online: https://www.hematology.org/covid-19/covid-19-and-acute-myeloid-leukemia (accessed on 17 June 2022).
- Altamirano-Molina, M.; Pacheco-Modesto, I.; Amado-Tineo, J. Prolonged viral shedding of SARS-CoV-2 in patients with acute leukemia. Hematol. Transfus. Cell Ther. 2022, 44, 299–300. [Google Scholar] [CrossRef]
- NCRI AML Working Party. Recommendations for the Managemant of Patients with AML during the COVID 19 Outbreak: A Statement from the NCRI AML Workung Party. 2020. Available online: https://www.rcpath.org/uploads/assets/d23030b6-7379-4f80-9ed9178c5f864343/Recommendations-for-the-management-of-patients-with-acute-myeloid-leukaemia-AML-during-the-COVID19-outbreak.pdf (accessed on 17 June 2022).
- Brissot, E.; Labopin, M.; Baron, F.; Bazarbachi, A.; Bug, G.; Ciceri, F.; Esteve, J.; Giebel, S.; Gilleece, M.H.; Gorin, N.C.; et al. Management of patients with acute leukemia during the COVID-19 outbreak: Practical guidelines from the acute leukemia working party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transpl. 2021, 56, 532–535. [Google Scholar] [CrossRef]
- Cristiano, A.; Palmieri, R.; Fabiani, E.; Ottone, T.; Divona, M.; Savi, A.; Buccisano, F.; Maurillo, L.; Tarella, C.; Arcese, W.; et al. The Venetoclax/Azacitidine Combination Targets the Disease Clone in Acute Myeloid Leukemia, Being Effective and Safe in a Patient with COVID-19. Mediterr. J. Hematol. Infect. Dis. 2022, 14, e2022041. [Google Scholar] [CrossRef]
- Othman, J.; Amer, M.; Amofa, R.; Anderson, L.; Austin, M.J.; Bashford, A.; Belsham, E.; Boot, J.; Campbell, V.L.; Coats, T.; et al. Venetoclax with Azacitidine or Low Dose Cytarabine As an Alternative to Intensive Chemotherapy in Fit Adults during the COVID-19 Pandemic: Real World Data from the UK National Health Service. Blood 2021, 138, 2321. [Google Scholar] [CrossRef]
- American Society of Hematology. COVID-19 and Adult ALL: Frequently Asked Questions. 2021. Available online: https://www.hematology.org/covid-19/covid-19-and-all (accessed on 17 June 2022).
- Foa, R.; Bonifacio, M.; Chiaretti, S.; Curti, A.; Candoni, A.; Fava, C.; Ciccone, M.; Pizzolo, G.; Ferrara, F. Philadelphia-positive acute lymphoblastic leukaemia (ALL) in Italy during the COVID-19 pandemic: A Campus ALL study. Br. J. Haematol. 2020, 190, e3–e5. [Google Scholar] [CrossRef]
- Stahl, M.; Narendra, V.; Jee, J.; Derkach, A.; Maloy, M.; Geyer, M.B.; Mato, A.R.; Roeker, L.E.; Tallman, M.S.; Shah, G.L.; et al. Neutropenia in adult acute myeloid leukemia patients represents a powerful risk factor for COVID-19 related mortality. Leuk Lymphoma 2021, 62, 1940–1948. [Google Scholar] [CrossRef]
- Yarza, R.; Bover, M.; Paredes, D.; Lopez-Lopez, F.; Jara-Casas, D.; Castelo-Loureiro, A.; Baena, J.; Mazarico, J.M.; Folgueira, M.D.; Melendez-Carmona, M.A.; et al. SARS-CoV-2 infection in cancer patients undergoing active treatment: Analysis of clinical features and predictive factors for severe respiratory failure and death. Eur. J. Cancer 2020, 135, 242–250. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.; Paul, D.; Jain, K. Treatment of Acute Leukemia during COVID-19: Focused Review of Evidence. Clin. Lymphoma Myeloma Leuk 2021, 21, 289–294. [Google Scholar] [CrossRef]
- Thu, T.P.B.; Ngoc, P.N.H.; Hai, N.M.; Tuan, L.A. Effect of the social distancing measures on the spread of COVID-19 in 10 highly infected countries. Sci. Total Environ. 2020, 742, 140430. [Google Scholar] [CrossRef]
- Esposito, S.; Principi, N.; Leung, C.C.; Migliori, G.B. Universal use of face masks for success against COVID-19: Evidence and implications for prevention policies. Eur. Respir. J. 2020, 55, 2001260. [Google Scholar] [CrossRef]
- Infectious Diseases Society of America (IDSA). Infectious Diseases Society of America Guidelines on Infection Prevention for Healthcare Personnel Caring for Patients with Suspected or Known COVID-19. Available online: https://www.idsociety.org/practice-guideline/covid-19-guideline-infection-prevention/ (accessed on 17 June 2022).
- Wu, S.; Wang, Y.; Jin, X.; Tian, J.; Liu, J.; Mao, Y. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am. J. Infect. Control 2020, 48, 910–914. [Google Scholar] [CrossRef]
- Gharpure, R.; Miller, G.F.; Hunter, C.M.; Schnall, A.H.; Kunz, J.; Garcia-Williams, A.G. Safe Use and Storage of Cleaners, Disinfectants, and Hand Sanitizers: Knowledge, Attitudes, and Practices among U.S. Adults during the COVID-19 Pandemic, May 2020. Am. J. Trop Med. Hyg. 2020, 104, 496–501. [Google Scholar] [CrossRef]
- Greenberger, L.M.; Saltzman, L.A.; Senefeld, J.W.; Johnson, P.W.; DeGennaro, L.J.; Nichols, G.L. Antibody response to SARS-CoV-2 vaccines in patients with hematologic malignancies. Cancer Cell 2021, 39, 1031–1033. [Google Scholar] [CrossRef]
- Herzog Tzarfati, K.; Gutwein, O.; Apel, A.; Rahimi-Levene, N.; Sadovnik, M.; Harel, L.; Benveniste-Levkovitz, P.; Bar Chaim, A.; Koren-Michowitz, M. BNT162b2 COVID-19 vaccine is significantly less effective in patients with hematologic malignancies. Am. J. Hematol. 2021, 96, 1195–1203. [Google Scholar] [CrossRef]
- Candoni, A.; Callegari, C.; Zannier, M.E.; Fanin, R. Antibody response to mRNA vaccination for COVID-19 in patients with AML receiving hypomethylating agents alone or with venetoclax. Blood Adv. 2022, 6, 3068–3071. [Google Scholar] [CrossRef]
- Jain, A.G.; Dong, N.C.; Ball, S.; Tan, E.S.; Whiting, J.; Komrokji, R.S.; Sweet, K.; Chan, O.; Sallman, D.A.; Padron, E.; et al. Responses to SARS-CoV-2 Vaccines in Patients with Myelodysplastic Syndrome and Acute Myeloid Leukemia. Blood 2021, 138, 217. [Google Scholar] [CrossRef]
- U.S. Food & Drug. US FDA Frequently Asked Questions on the Emergency Use Authorization for Evusheld (tixagevimab co- packaged with cilgavimab) for Pre-exposure Prophylaxis (PrEP) of COVID-19. 2022. Available online: https://www.fda.gov/media/154703/download (accessed on 17 June 2022).
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.P.; Forleo-Neto, E.; Musser, B.J.; Isa, F.; Chan, K.C.; Sarkar, N.; Bar, K.J.; Barnabas, R.V.; Barouch, D.H.; Cohen, M.S.; et al. Subcutaneous REGEN-COV Antibody Combination to Prevent COVID-19. N. Engl. J. Med. 2021, 385, 1184–1195. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferri, F.; Mirandola, M.; Savoldi, A.; De Nardo, P.; Morra, M.; Tebon, M.; Armellini, M.; De Luca, G.; Calandrino, L.; Sasset, L.; et al. Exploratory data on the clinical efficacy of monoclonal antibodies against SARS-CoV-2 Omicron Variant of Concern. medRxiv 2022, 386, 2188–2200. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, J.; Jian, F.; Xiao, T.; Song, W.; Yisimayi, A.; Huang, W.; Li, Q.; Wang, P.; An, R.; et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022, 602, 657–663. [Google Scholar] [CrossRef]
- Lilly’s Bebtelovimab Receives Emergency Use Authorization for the Treatment of Mild-to-Moderate COVID-19. Available online: https://investor.lilly.com/node/46666/pdf (accessed on 25 July 2022).
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simon-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martin-Quiros, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Gottlieb, R.L.; Vaca, C.E.; Paredes, R.; Mera, J.; Webb, B.J.; Perez, G.; Oguchi, G.; Ryan, P.; Nielsen, B.U.; Brown, M.; et al. Early Remdesivir to Prevent Progression to Severe COVID-19 in Outpatients. N. Engl. J. Med. 2022, 386, 305–315. [Google Scholar] [CrossRef]
- Levy, I.; Lavi, A.; Zimran, E.; Grisariu, S.; Aumann, S.; Itchaki, G.; Berger, T.; Raanani, P.; Harel, R.; Aviv, A.; et al. COVID-19 among patients with hematological malignancies: A national Israeli retrospective analysis with special emphasis on treatment and outcome. Leuk Lymphoma 2021, 62, 3384–3393. [Google Scholar] [CrossRef]
- Siemieniuk, R.A.; Bartoszko, J.J.; Ge, L.; Zeraatkar, D.; Izcovich, A.; Kum, E.; Pardo-Hernandez, H.; Qasim, A.; Martinez, J.P.D.; Rochwerg, B.; et al. Drug treatments for COVID-19: Living systematic review and network meta-analysis. BMJ 2020, 370, m2980. [Google Scholar] [CrossRef]
- Agarwal, A.; Rochwerg, B.; Lamontagne, F.; Siemieniuk, R.A.; Agoritsas, T.; Askie, L.; Lytvyn, L.; Leo, Y.S.; Macdonald, H.; Zeng, L.; et al. A living WHO guideline on drugs for COVID-19. BMJ 2020, 370, m3379. [Google Scholar] [CrossRef]
- Bruel, T.; Hadjadj, J.; Maes, P.; Planas, D.; Seve, A.; Staropoli, I.; Guivel-Benhassine, F.; Porrot, F.; Bolland, W.H.; Nguyen, Y.; et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nat. Med. 2022, 28, 1297–1302. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Rodrigues Falci, D.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Effect of Sotrovimab on Hospitalization or Death Among High-risk Patients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2022, 327, 1236–1246. [Google Scholar] [CrossRef]
- Chen, P.; Nirula, A.; Heller, B.; Gottlieb, R.L.; Boscia, J.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 229–237. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Xiao, J.; Hooper, A.T.; Hamilton, J.D.; Musser, B.J.; et al. REGEN-COV Antibody Combination and Outcomes in Outpatients with COVID-19. N. Engl. J. Med. 2021, 385, e81. [Google Scholar] [CrossRef]
- Janiaud, P.; Axfors, C.; Schmitt, A.M.; Gloy, V.; Ebrahimi, F.; Hepprich, M.; Smith, E.R.; Haber, N.A.; Khanna, N.; Moher, D.; et al. Association of Convalescent Plasma Treatment with Clinical Outcomes in Patients with COVID-19: A Systematic Review and Meta-analysis. JAMA 2021, 325, 1185–1195. [Google Scholar] [CrossRef]
- Libster, R.; Perez Marc, G.; Wappner, D.; Coviello, S.; Bianchi, A.; Braem, V.; Esteban, I.; Caballero, M.T.; Wood, C.; Berrueta, M.; et al. Early High-Titer Plasma Therapy to Prevent Severe COVID-19 in Older Adults. N. Engl. J. Med. 2021, 384, 610–618. [Google Scholar] [CrossRef]
- Thompson, M.A.; Henderson, J.P.; Shah, P.K.; Rubinstein, S.M.; Joyner, M.J.; Choueiri, T.K.; Flora, D.B.; Griffiths, E.A.; Gulati, A.P.; Hwang, C.; et al. Association of Convalescent Plasma Therapy with Survival in Patients with Hematologic Cancers and COVID-19. JAMA Oncol. 2021, 7, 1167–1175. [Google Scholar] [CrossRef]
- Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transpl. 2020, 39, 405–407. [Google Scholar] [CrossRef] [Green Version]
- Group, R.C.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Group, C.S.T.; Munch, M.W.; Myatra, S.N.; Vijayaraghavan, B.K.T.; Saseedharan, S.; Benfield, T.; Wahlin, R.R.; Rasmussen, B.S.; Andreasen, A.S.; Poulsen, L.M.; et al. Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults with COVID-19 and Severe Hypoxemia: The COVID STEROID 2 Randomized Trial. JAMA 2021, 326, 1807–1817. [Google Scholar] [CrossRef]
- Salama, C.; Mohan, S.V. Tocilizumab in Patients Hospitalized with COVID-19 Pneumonia. Reply. N. Engl. J. Med. 2021, 384, 1473–1474. [Google Scholar] [CrossRef]
- Group, R.C. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar] [CrossRef]
- Gordon, A.C.; Angus, D.C.; Derde, L.P.G. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. Reply. N. Engl. J. Med. 2021, 385, 1147–1149. [Google Scholar] [CrossRef]
- Kyriazopoulou, E.; Poulakou, G.; Milionis, H.; Metallidis, S.; Adamis, G.; Tsiakos, K.; Fragkou, A.; Rapti, A.; Damoulari, C.; Fantoni, M.; et al. Author Correction: Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: A double-blind, randomized controlled phase 3 trial. Nat. Med. 2021, 27, 1850. [Google Scholar] [CrossRef]
- Gorog, D.A.; Storey, R.F.; Gurbel, P.A.; Tantry, U.S.; Berger, J.S.; Chan, M.Y.; Duerschmied, D.; Smyth, S.S.; Parker, W.A.E.; Ajjan, R.A.; et al. Current and novel biomarkers of thrombotic risk in COVID-19: A Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat. Rev. Cardiol. 2022, 19, 475–495. [Google Scholar] [CrossRef]
- U.S. Food & Drug. ASH Guidelines on Use of Anticoagulation in Patients with COVID-19. 2022. Available online: https://www.hematology.org/education/clinicians/guidelines-and-quality-care/clinical-practice-guidelines/venous-thromboembolism-guidelines/ash-guidelines-on-use-of-anticoagulation-in-patients-with-covid-19 (accessed on 17 June 2022).
Author (Year) | Observation Period | Number of AML Patients (n) | Number of ALL Patients (n) | Study Design | Reference |
---|---|---|---|---|---|
Marchesi et al. (2022) | 02/2020–10/2021 | 388 | NA | Multicenter, European registry | [31] |
Pagano et al. (2021) | 03–12/2020 | 497 | 169 | Multicenter, Eurpean registry | [34] |
García-Suárez et al. (2020) | 02–05/2020 | 61 | 13 | Multicenter, Spanish registry | [38] |
Palanques-Pastor et al. (2021) | 03–05/2020 | 108 | NA | Observational study | [35] |
Mitrovic et al. (2021) | Pre-vaccination era | 51 1 | 51 1 | Unknown | [32] |
Yigenoglu et al. (2020) | 03–06/2020 | 40 | 18 | Retrospective, Turkish trial | [41] |
Demichelis-Gómez et al. (2021) | 02–07/2020 | 83 1 | 83 1 | Multicenter, prospective Latin American cohort study | [33] |
Martínez et al. (2020) | 03–05/2020 | 117 1 | 117 1 | Multicenter, Spanish observational study | [36] |
Chiaretti et al. (2022) | 02/2020–02/2021 | NA | 63 | Multicenter, Italian observational study | [43] |
Ribera et al. (2021) | 02/2020–02/2021 | NA | 52 | Multicenter, Spanish observation study | [44] |
Wood et al. (2020) | 04–07/2020 | 80 1 | 80 1 | Multicenter, global registry | [42] |
Author (Year) | Proportion of Severe COVID-19 (%) | Proportion of Critical COVID-19 (%) | Death Caused Primary by COVID-19 (AML/ALL) (%) | Overall Mortality (AML/ALL) (%) | Reference |
---|---|---|---|---|---|
Marchesi et al. (2022) | 41 | 21 | 20/NA | 46/NA | [31] |
Pagano et al. (2021) | NA | NA | NA | 40/26 | [34] |
García-Suárez et al. (2020) | 48 and 31 in AML and ALL, respectively | 26 and 23 in AML and ALL, respectively | NA | 44/15 | [38] |
Palanques-Pastor et al. (2021) | NA | NA | NA | 44/NA | [35] |
Mitrovic et al. (2021) | NA | NA | 29 1 | NA | [32] |
Yigenoglu et al. (2020) | NA | NA | NA | 20/17 | [41] |
Demichelis-Gómez et al. (2021) | 48 | 48 | 48/52 | NA | [33] |
Martínez et al. (2020) | 54 (including severe and clinical courses) | NA | NA | 48 1 | [36] |
Chiaretti et al. (2022) | NA | NA | NA | NA/11 | [43] |
Ribera et al. (2021) | NA | NA | NA/29 | NA/33 | [44] |
Wood et al. (2020) | 63 (including moderate and severe courses) | NA | NA | 33 1 | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modemann, F.; Ghandili, S.; Schmiedel, S.; Weisel, K.; Bokemeyer, C.; Fiedler, W. COVID-19 and Adult Acute Leukemia: Our Knowledge in Progress. Cancers 2022, 14, 3711. https://doi.org/10.3390/cancers14153711
Modemann F, Ghandili S, Schmiedel S, Weisel K, Bokemeyer C, Fiedler W. COVID-19 and Adult Acute Leukemia: Our Knowledge in Progress. Cancers. 2022; 14(15):3711. https://doi.org/10.3390/cancers14153711
Chicago/Turabian StyleModemann, Franziska, Susanne Ghandili, Stefan Schmiedel, Katja Weisel, Carsten Bokemeyer, and Walter Fiedler. 2022. "COVID-19 and Adult Acute Leukemia: Our Knowledge in Progress" Cancers 14, no. 15: 3711. https://doi.org/10.3390/cancers14153711
APA StyleModemann, F., Ghandili, S., Schmiedel, S., Weisel, K., Bokemeyer, C., & Fiedler, W. (2022). COVID-19 and Adult Acute Leukemia: Our Knowledge in Progress. Cancers, 14(15), 3711. https://doi.org/10.3390/cancers14153711