Radiomics Nomogram: Prediction of 2-Year Disease-Free Survival in Young Age Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. MRI Protocol
2.3. Texture Analysis for Radiomics Feature Extraction
2.4. Clinicopathologic Information and Conventional MRI Analysis
2.5. Statistical Analysis
Creation and Validation of Rad-Score
3. Results
3.1. Patient Characteristics
3.2. Creation of Rad-Score & Assessment of Disease-Free Survival
3.3. Rad-Score-Based Recurrence Prediction Model: Radiomics Nomogram
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Material & Methods
Appendix A.1. Protocols of MRI
Appendix A.1.1. Verio, Siemens Healthcare
Appendix A.1.2. Ingenia, Philips Medical Systems
Appendix A.2. Clinicopathologic Information and Conventional MRI Analysis
Appendix B. Result
The Calibration Curves of Three Models in the Training Set
Appendix C. Discussion
References
- Jung, K.W.; Won, Y.J.; Kong, H.J.; Lee, E.S.; Community of Population-Based Regional Cancer Registries. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2015. Cancer Res. Treat. 2018, 50, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Turashvili, G.; Brogi, E. Tumor Heterogeneity in Breast Cancer. Front. Med. 2017, 4, 227. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast cancer statistics, 2013. CA Cancer J. Clin. 2014, 64, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Yap, Y.S.; Lu, Y.S.; Tamura, K.; Lee, J.E.; Ko, E.Y.; Park, Y.H.; Cao, A.Y.; Lin, C.H.; Toi, M.; Wu, J.; et al. Insights Into Breast Cancer in the East vs. the West: A Review. JAMA Oncol. 2019, 5, 1489–1496. [Google Scholar] [CrossRef]
- Youlden, D.R.; Cramb, S.M.; Yip, C.H.; Baade, P.D. Incidence and mortality of female breast cancer in the Asia-Pacific region. Cancer Biol. Med. 2014, 11, 101–115. [Google Scholar] [CrossRef]
- de la Rochefordiere, A.; Asselain, B.; Campana, F.; Scholl, S.M.; Fenton, J.; Vilcoq, J.R.; Durand, J.C.; Pouillart, P.; Magdelenat, H.; Fourquet, A. Age as prognostic factor in premenopausal breast carcinoma. Lancet 1993, 341, 1039–1043. [Google Scholar] [CrossRef]
- Fredholm, H.; Eaker, S.; Frisell, J.; Holmberg, L.; Fredriksson, I.; Lindman, H. Breast cancer in young women: Poor survival despite intensive treatment. PLoS ONE 2009, 4, e7695. [Google Scholar] [CrossRef]
- Han, W.; Kim, S.W.; Park, I.A.; Kang, D.; Kim, S.W.; Youn, Y.K.; Oh, S.K.; Choe, K.J.; Noh, D.Y. Young age: An independent risk factor for disease-free survival in women with operable breast cancer. BMC Cancer 2004, 4, 82. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: Collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 2001, 358, 1389–1399. [Google Scholar] [CrossRef]
- Claus, E.B.; Schildkraut, J.M.; Thompson, W.D.; Risch, N.J. The genetic attributable risk of breast and ovarian cancer. Cancer 1996, 77, 2318–2324. [Google Scholar] [CrossRef]
- Kan, Z.; Ding, Y.; Kim, J.; Jung, H.H.; Chung, W.; Lal, S.; Cho, S.; Fernandez-Banet, J.; Lee, S.K.; Kim, S.W.; et al. Multi-omics profiling of younger Asian breast cancers reveals distinctive molecular signatures. Nat. Commun. 2018, 9, 1725. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, D.; Im, S.A.; Colleoni, M.; Franke, F.; Bardia, A.; Harbeck, N.; Hurvitz, S.A.; Chow, L.; Sohn, J.; Lee, K.S.; et al. Ribociclib plus endocrine therapy for premenopausal women with hormone-receptor-positive, advanced breast cancer (MONALEESA-7): A randomised phase 3 trial. Lancet Oncol. 2018, 19, 904–915. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.H.; Kang, B.J.; Lee, A.; Park, W.C.; Hwang, J. Imaging characteristics of young age breast cancer (YABC) focusing on pathologic correlation and disease recurrence. Sci. Rep. 2021, 11, 20205. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, H.; Ko, E.S. Radiomics in Breast Imaging from Techniques to Clinical Applications: A Review. Korean J. Radiol. 2020, 21, 779–792. [Google Scholar] [CrossRef]
- Pesapane, F.; Rotili, A.; Agazzi, G.M.; Botta, F.; Raimondi, S.; Penco, S.; Dominelli, V.; Cremonesi, M.; Jereczek-Fossa, B.A.; Carrafiello, G.; et al. Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. Curr. Oncol. 2021, 28, 2351–2372. [Google Scholar] [CrossRef]
- Yang, J.; Wang, T.; Yang, L.; Wang, Y.; Li, H.; Zhou, X.; Zhao, W.; Ren, J.; Li, X.; Tian, J.; et al. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using Mammography-Based Radiomics Method. Sci. Rep. 2019, 9, 4429. [Google Scholar] [CrossRef]
- Boca Bene, I.; Ciurea, A.I.; Ciortea, C.A.; Stefan, P.A.; Lisencu, L.A.; Dudea, S.M. Differentiating Breast Tumors from Background Parenchymal Enhancement at Contrast-Enhanced Mammography: The Role of Radiomics-A Pilot Reader Study. Diagnostics 2021, 11, 1248. [Google Scholar] [CrossRef]
- Lee, S.E.; Sim, Y.; Kim, S.; Kim, E.K. Predictive performance of ultrasonography-based radiomics for axillary lymph node metastasis in the preoperative evaluation of breast cancer. Ultrasonography 2021, 40, 93–102. [Google Scholar] [CrossRef]
- Park, H.; Lim, Y.; Ko, E.S.; Cho, H.H.; Lee, J.E.; Han, B.K.; Ko, E.Y.; Choi, J.S.; Park, K.W. Radiomics Signature on Magnetic Resonance Imaging: Association with Disease-Free Survival in Patients with Invasive Breast Cancer. Clin. Cancer Res. 2018, 24, 4705–4714. [Google Scholar] [CrossRef] [Green Version]
- Bae, M.S.; Shin, S.U.; Ryu, H.S.; Han, W.; Im, S.A.; Park, I.A.; Noh, D.Y.; Moon, W.K. Pretreatment MR Imaging Features of Triple-Negative Breast Cancer: Association with Response to Neoadjuvant Chemotherapy and Recurrence-Free Survival. Radiology 2016, 281, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Choi, H.; Choi, S.A.; Youk, J.H. Dynamic contrast-enhanced breast magnetic resonance imaging for the prediction of early and late recurrences in breast cancer. Medicine 2016, 95, e5330. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Riley, R.D.; Ensor, J.; Snell, K.I.E.; Harrell, F.E., Jr.; Martin, G.P.; Reitsma, J.B.; Moons, K.G.M.; Collins, G.; van Smeden, M. Calculating the sample size required for developing a clinical prediction model. BMJ 2020, 368, m441. [Google Scholar] [CrossRef]
- Sung, J.S.; Jochelson, M.S.; Brennan, S.; Joo, S.; Wen, Y.H.; Moskowitz, C.; Zheng, J.; Dershaw, D.D.; Morris, E.A. MR imaging features of triple-negative breast cancers. Breast J. 2013, 19, 643–649. [Google Scholar] [CrossRef]
- Dogan, B.E.; Turnbull, L.W. Imaging of triple-negative breast cancer. Ann. Oncol. 2012, 23 (Suppl. 6), vi23–vi29. [Google Scholar] [CrossRef]
- Fan, M.; Xia, P.; Liu, B.; Zhang, L.; Wang, Y.; Gao, X.; Li, L. Tumour heterogeneity revealed by unsupervised decomposition of dynamic contrast-enhanced magnetic resonance imaging is associated with underlying gene expression patterns and poor survival in breast cancer patients. Breast Cancer Res. 2019, 21, 112. [Google Scholar] [CrossRef]
- Kim, J.H.; Ko, E.S.; Lim, Y.; Lee, K.S.; Han, B.K.; Ko, E.Y.; Hahn, S.Y.; Nam, S.J. Breast Cancer Heterogeneity: MR Imaging Texture Analysis and Survival Outcomes. Radiology 2017, 282, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.S.; Kim, J.H.; Lim, Y.; Han, B.K.; Cho, E.Y.; Nam, S.J. Assessment of Invasive Breast Cancer Heterogeneity Using Whole-Tumor Magnetic Resonance Imaging Texture Analysis: Correlations With Detailed Pathological Findings. Medicine 2016, 95, e2453. [Google Scholar] [CrossRef]
- Zulfiqar, M.; Yousem, D.M.; Lai, H. ADC values and prognosis of malignant astrocytomas: Does lower ADC predict a worse prognosis independent of grade of tumor?—A meta-analysis. AJR Am. J. Roentgenol. 2013, 200, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Park, E.K.; Cho, K.R.; Seo, B.K.; Woo, O.H.; Cho, S.B.; Bae, J.W. Additional Value of Diffusion-Weighted Imaging to Evaluate Prognostic Factors of Breast Cancer: Correlation with the Apparent Diffusion Coefficient. Iran J. Radiol. 2016, 13, e33133. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.A.; Reis-Filho, J.S.; Morrow, M.; Carey, L.A.; King, T.A. The 2014 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: Triple-negative breast cancer. Ann. Surg. Oncol. 2015, 22, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [Google Scholar] [CrossRef]
- Collins, L.C.; Marotti, J.D.; Gelber, S.; Cole, K.; Ruddy, K.; Kereakoglow, S.; Brachtel, E.F.; Schapira, L.; Come, S.E.; Winer, E.P.; et al. Pathologic features and molecular phenotype by patient age in a large cohort of young women with breast cancer. Breast Cancer Res. Treat. 2012, 131, 1061–1066. [Google Scholar] [CrossRef]
- Melvin, J.C.; Wulaningsih, W.; Hana, Z.; Purushotham, A.D.; Pinder, S.E.; Fentiman, I.; Gillett, C.; Mera, A.; Holmberg, L.; Van Hemelrijck, M. Family history of breast cancer and its association with disease severity and mortality. Cancer Med. 2016, 5, 942–949. [Google Scholar] [CrossRef]
- Copson, E.R.; Maishman, T.C.; Tapper, W.J.; Cutress, R.I.; Greville-Heygate, S.; Altman, D.G.; Eccles, B.; Gerty, S.; Durcan, L.T.; Jones, L.; et al. Germline BRCA mutation and outcome in young-onset breast cancer (POSH): A prospective cohort study. Lancet Oncol. 2018, 19, 169–180. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Training Set (n = 111) | Validation Set (n = 44) | p Value |
---|---|---|---|
Age | 34.94 ± 5.25 | 35.73 ± 3.48 | 0.511 |
Rad-score | −0.01 ± 0.36 | 0.04 ± 0.45 | 0.358 |
Operation | 0.103 | ||
Breast-conserving surgery | 70 (63.06%) | 21 (47.73%) | |
Mastectomy | 41(36.94%) | 23 (52.27%) | |
Adjuvant radiation therapy | 0.237 | ||
Yes | 95 (85.59%) | 34 (77.27%) | |
No | 16 (14.41%) | 10 (22.73%) | |
Adjuvant chemotherapy | 0.537 | ||
Yes | 86 (77.48%) | 32 (72.73%) | |
No | 25 (22.52%) | 12 (27.27%) | |
Adjuvant endocrine therapy | 0.549 | ||
Yes | 79 (71.17%) | 34 (77.27%) | |
No | 32 (28.83%) | 10 (22.73%) | |
Adjuvant target therapy | 0.624 | ||
Yes | 16 (14.41%) | 8 (18.18%) | |
No | 95 (85.59%) | 36 (81.82%) | |
T stage | 1 | ||
1 | 35 (31.53%) | 14 (31.82%) | |
2 | 55 (49.55%) | 21 (47.73%) | |
3 | 19 (17.12%) | 8 (18.18%) | |
4 | 2 (1.80%) | 1 (2.27%) | |
N stage | 0.780 | ||
0 | 49 (44.14%) | 23 (52.27%) | |
1 | 41 (36.94%) | 13 (29.55%) | |
2 | 12 (10.81%) | 4 (9.09%) | |
3 | 9 (8.11%) | 4 (9.09%) | |
M stage | 1 | ||
0 | 110 (99.10%) | 44 (100%) | |
1 | 1 (0.90%) | 0 (0%) | |
Overall stage | 0.921 | ||
I | 24 (21.62%) | 10 (22.73%) | |
II | 59 (53.15%) | 22 (50%) | |
III | 27 (24.32%) | 12 (27.27%) | |
IV | 1 (0.90%) | 0 (0%) | |
Histologic type | 0.537 | ||
Invasive breast cancer | 97 (87.39%) | 41 (93.18%) | |
Invasive lobular carcinoma | 4 (3.60%) | 0 (0%) | |
Others | 10 (9.01%) | 3 (6.82%) | |
Histologic grade | 0.843 | ||
1 | 20 (18.02%) | 8 (18.18%) | |
2 | 53 (47.75%) | 19 (43.18%) | |
3 | 38 (34.23%) | 17 (38.64%) | |
Lymphovascular invasion | 0.858 | ||
Present (yes) | 48 (43.24%) | 20 (45.45%) | |
Absent (no) | 63 (56.76%) | 24 (54.55%) | |
Estrogen receptor | 0.693 | ||
Positive | 78 (70.27%) | 33 (75%) | |
Negative | 33 (29.73%) | 11 (25%) | |
Progesterone receptor | 0.717 | ||
Positive | 66 (59.46%) | 28 (63.64%) | |
Negative | 45 (40.54%) | 16 (36.36%) | |
HER2 | 0.461 | ||
Positive | 15 (13.51%) | 8 (18.18%) | |
Negative | 96 (86.49%) | 36 (81.82%) | |
Ki67 index | 0.894 | ||
Mean (± SD) | 36.06 ± 27.46 | 36.23 ± 27.24 | |
Tumor size | 0.250 | ||
Mean (± SD) | 3.59 ± 2.27 | 4.05 ± 2.48 | |
Tumor laterality | 0.481 | ||
Right | 62 (55.86%) | 22 (50%) | |
Left | 48 (43.24%) | 22 (50%) | |
Lesion type | 0.866 | ||
Mass | 80 (72.07%) | 33 (75%) | |
Non-mass enhancement (NME) | 9 (8.11%) | 2 (4.55%) | |
Mass with NME | 22 (19.82%) | 9 (20.45%) | |
Peritumoral edema on T2WI | 0.722 | ||
Present (yes) | 53 (47.75%) | 19 (43.18%) | |
Absent (no) | 58 (52.25%) | 25 (56.82%) | |
Ipsilateral vascularity | 0.102 | ||
Mean (± SD) | 3.29 ± 2.7 | 3.82 ± 2.6 | |
Multifocality | 1 | ||
Yes | 54 (48.65%) | 22 (50%) | |
No | 57 (51.35%) | 22 (50%) | |
Early enhancement pattern | 0.482 | ||
Rapid | 105 (94.59%) | 44 (100%) | |
Medium | 2 (1.80%) | 0 (0%) | |
Slow | 4 (3.60%) | 0 (0%) | |
Delayed enhancement pattern | 0.005 | ||
Washout | 80 (72.07%) | 32 (72.73%) | |
Plateau | 16 (14.41%) | 12 (27.27%) | |
Persistent | 15 (13.51%) | 0 (0%) | |
Fibroglandular tissue | 0.617 | ||
Fatty | 0 (0%) | 0 (0%) | |
Scattered | 5 (4.50%) | 2 (4.55%) | |
Heterogenous | 75 (67.57%) | 33 (75%) | |
Extreme | 31 (27.93%) | 9 (20.45%) | |
Background parenchymal enhancement | 1 | ||
Minimal | 51 (45.95%) | 20 (45.45%) | |
Mild | 21 (18.92%) | 8 (18.18%) | |
Moderate | 26 (23.42%) | 11 (25%) | |
Marked | 13 (11.71%) | 5 (11.36%) |
Characteristics | Low-Risk Group (n = 65) | High-Risk Group (n = 46) | p Value |
---|---|---|---|
Age | 35.05 ± 6.09 | 34.78 ± 3.82 | 0.141 |
Rad-score | −0.22 ± 0.14 | 0.27 ± 0.38 | <0.001 |
Operation | <0.001 | ||
Breast conserving surgery | 51 (78.46%) | 19 (41.30%) | |
Mastectomy | 14 (21.54%) | 27 (58.70%) | |
Adjuvant radiation therapy | 0.585 | ||
Yes | 57 (87.69%) | 38 (81.61%) | |
No | 8 (12.31%) | 8 (17.39%) | |
Adjuvant chemotherapy | 0.494 | ||
Yes | 52 (80%) | 34 (73.91%) | |
No | 13 (20%) | 12 (26.09%) | |
Adjuvant endocrine therapy | 0.833 | ||
Yes | 47 (72.31%) | 32 (69.57%) | |
No | 18 (27.69%) | 14 (30.43%) | |
Adjuvant target therapy | 0.273 | ||
Yes | 7 (10.77%) | 9 (19.57%) | |
No | 58 (89.23%) | 37 (80.43%) | |
T stage | <0.001 | ||
1 | 32 (49.23%) | 3 (6.52%) | |
2 | 31 (47.69%) | 24 (52.17%) | |
3 | 2 (3.08%) | 17 (36.96%) | |
4 | 0 (0%) | 2 (4.35%) | |
N stage | 0.003 | ||
0 | 33 (50.77%) | 16 (34.78%) | |
1 | 27 (41.54%) | 14 (30.43%) | |
2 | 4 (6.15%) | 8 (17.39%) | |
3 | 1 (1.54%) | 8 (17.39%) | |
M stage | 1 | ||
0 | 64 (98.46%) | 46 (100%) | |
1 | 1 (1.54%) | 0 (0%) | |
Overall stage | <0.001 | ||
I | 22 (33.85%) | 2 (4.35%) | |
II | 36 (55.38%) | 23 (50%) | |
III | 6 (9.23%) | 21 (45.65%) | |
IV | 1 (1.54%) | 0 (0%) | |
Histologic type | 0.740 | ||
Invasive breast cancer | 57 (87.69%) | 40 (86.96%) | |
Invasive lobular carcinoma | 3 (4.62%) | 1 (2.17%) | |
Others | 5 (7.69%) | 5 (10.87%) | |
Histologic grade | 0.844 | ||
1 | 13 (20%) | 7 (15.22%) | |
2 | 30 (46.15%) | 23 (50%) | |
3 | 22 (33.85%) | 16 (34.78%) | |
Lymphovascular invasion | 0.846 | ||
Present (yes) | 29 (44.62%) | 19 (41.30%) | |
Absent (no) | 36 (55.38%) | 27 (58.70%) | |
Estrogen receptor | 0.207 | ||
Positive | 49 (75.38%) | 29 (63.04%) | |
Negative | 16 (24.62%) | 17 (36.96%) | |
Progesterone receptor | 0.240 | ||
Positive | 42 (64.62%) | 24 (52.17%) | |
Negative | 23 (35.38%) | 22 (47.83%) | |
HER2 | 0.159 | ||
Positive | 6 (9.23%) | 9 (19.57%) | |
Negative | 59 (90.77%) | 37 (80.43%) | |
Ki67 index | 0.636 | ||
Mean (±SD) | 34.34 ± 26.38 | 38.49 ± 29.04 | |
Tumor size | <0.001 | ||
Mean (±SD) | 2.74 ± 1.84 | 4.8 ± 2.28 | |
Tumor laterality | 0.172 | ||
Right | 40 (61.54%) | 22 (47.83%) | |
Left | 24 (36.92%) | 24 (52.17%) | |
Lesion type | 0.026 | ||
Mass | 53 (81.54%) | 27 (58.70%) | |
Non-mass enhancement (NME) | 4 (6.15%) | 5 (10.87%) | |
Mass with NME | 8 (12.31%) | 14 (30.43%) | |
Peritumoral edema on T2WI | <0.001 | ||
Present (yes) | 22 (33.85%) | 31 (67.39%) | |
Absent (no) | 43 (66.15%) | 15 (32.61%) | |
Ipsilateral vascularity | <0.001 | ||
Mean (±SD) | 2.42 ± 1.98 | 4.5 ± 3.09 | |
Multifocality | 0.086 | ||
Yes | 27 (41.54%) | 27 (58.70%) | |
No | 38 (58.46%) | 19 (41.30%) | |
Early enhancement pattern | 0.824 | ||
Rapid | 61 (93.85%) | 44 (95.65%) | |
Medium | 1 (1.54%) | 1 (2.17%) | |
Slow | 3 (4.62%) | 1 (2.17%) | |
Delayed enhancement pattern | 0.785 | ||
Washout | 48 (73.85%) | 32 (69.57%) | |
Plateau | 8 (12.31%) | 8 (17.39%) | |
Persistent | 9 (13.85%) | 6 (13.04%) | |
Fibroglandular tissue | 0.239 | ||
Fatty | 0 (0%) | 0 (0%) | |
Scattered | 1 (1.54%) | 4 (8.70%) | |
Heterogenous | 46 (70.77%) | 29 (63.04%) | |
Extreme | 18 (27.69%) | 13 (28.26%) | |
Background parenchymal enhancement | 0.466 | ||
Minimal | 32 (49.23%) | 19 (41.30%) | |
Mild | 12 (18.46%) | 9 (19.57%) | |
Moderate | 12 (18.46%) | 14 (30.43%) | |
Marked | 9 (13.85%) | 4 (8.70%) |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
Characteristics | Hazard Ratio (95% CI) | p Value | Hazard Ratio (95% CI) | p Value |
Age | 1.00 (0.93–1.07) | 0.985 | ||
Rad-score | 5.15 (2.60–10.20) | <0.001 | 5.87 (2.87–11.99) | <0.001 |
Operation | ||||
Breast-conserving surgery | Ref | |||
Mastectomy | 1.02 (0.48–2.16) | 0.96 | ||
Adjuvant radiation therapy | ||||
Yes | 0.52 (0.21–1.28) | 0.154 | ||
No | Ref | |||
Adjuvant chemotherapy | ||||
Yes | 0.89 (0.332–2.386) | 0.817 | ||
No | Ref | |||
Adjuvant endocrine therapy | ||||
Yes | 0.48 (0.23–0.99) | 0.05 | ||
No | Ref | |||
Adjuvant target therapy | ||||
Yes | 1.38 (0.52–3.62) | 0.512 | ||
No | Ref | |||
T stage | ||||
1 | Ref | |||
2 | 2.52 (0.91–7.0) | 0.075 | ||
3 | 3.09 (1.01–9.46) | 0.048 | ||
4 | 7.94 (0.90–70.18) | 0.063 | ||
N stage | ||||
0 | Ref | |||
1 | 0.53 (0.64–3.63) | 0.337 | ||
2 | 1.36 (0.37–5.0) | 0.647 | ||
3 | 5.13 (1.71–15.39) | 0.003 | ||
M stage | ||||
0 | Ref | |||
1 | 0 (0-∞) | 0.997 | ||
Stage | ||||
I | Ref | |||
II | 1.79 (0.59–5.40) | 0.301 | ||
III | 2.66 (0.83–8.47) | 0.099 | ||
IV | 0 (0-∞) | 0.997 | ||
Histologic type | ||||
Invasive breast cancer | Ref | |||
Invasive lobular carcinoma | 0 (0-∞) | 0.997 | ||
Others | 1.23 (0.37–4.06) | 0.737 | ||
Histologic grade | ||||
1 | Ref | |||
2 | 1.6 (0.45–5.62) | 0.463 | ||
3 | 2.39 (0.68–8.34) | 0.174 | ||
Lymphovascular invasion | ||||
Present (yes) | 0.75 (0.36–1.56) | 0.455 | ||
Absent (no) | Ref | |||
Estrogen receptor | ||||
Positive | 0.47 (0.23–0.98) | 0.044 | 0.41 (0.19–0.86) | 0.019 |
Negative | Ref | Ref | ||
Progesterone receptor | ||||
Positive | 0.514 (0.247–1.07) | 0.075 | ||
Negative | Ref | |||
HER2 | ||||
Positive | 2.043 (0.829–5.035) | 0.12 | ||
Negative | Ref | |||
Ki67 index | 1.011 (0.998–1.024) | 0.094 | ||
Tumor size | 1.119 (0.972–1.287) | 0.118 | ||
Tumor laterality | ||||
Right | Ref | |||
Left | 1.199 (0.579–2.485) | 0.625 | ||
Lesion type | ||||
Mass | Ref | |||
Non-mass enhancement (NME) | 0.605 (0.141–2.595) | 0.499 | ||
Mass with NME | 0.935 (0.377–2.318) | 0.885 | ||
Peritumoral edema on T2WI | ||||
Present (yes) | 1.873 (0.884–3.967) | 0.101 | ||
Absent (no) | Ref | |||
Ipsilateral vascularity | 1.124 (0.995–1.269) | 0.06 | ||
Multifocality | ||||
Yes | 0.942 (0.453–1.957) | 0.873 | ||
No | Ref | |||
Early enhancement pattern | ||||
Rapid | Ref | |||
Medium | 1.999 (0.27–14.778) | 0.497 | ||
Slow | 1.311 (0.18–9.66) | 0.79 | ||
Delayed enhancement pattern | ||||
Washout | Ref | |||
Plateau | 1.158 (0.43–3.11) | 0.77 | ||
Persistent | 1.469 (0.55–3.94) | 0.445 | ||
Fibroglandular tissue | ||||
Fatty | NA | |||
Scattered | Ref | |||
Heterogenous | 0.625 (0.14–2.71) | 0.529 | ||
Extreme | 0.815 (0.18–3.73) | 0.792 | ||
Background parenchymal enhancement | ||||
Minimal | Ref | |||
Mild | 1.54 (0.62–3.87) | 0.356 | ||
Moderate | 0.95 (0.38–2.38) | 0.909 | ||
Marked | 0.53 (0.12–2.37) | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Kim, S.H.; Kim, Y.; Park, J.; Park, G.E.; Kang, B.J. Radiomics Nomogram: Prediction of 2-Year Disease-Free Survival in Young Age Breast Cancer. Cancers 2022, 14, 4461. https://doi.org/10.3390/cancers14184461
Lee J, Kim SH, Kim Y, Park J, Park GE, Kang BJ. Radiomics Nomogram: Prediction of 2-Year Disease-Free Survival in Young Age Breast Cancer. Cancers. 2022; 14(18):4461. https://doi.org/10.3390/cancers14184461
Chicago/Turabian StyleLee, Jeongmin, Sung Hun Kim, Yelin Kim, Jaewoo Park, Ga Eun Park, and Bong Joo Kang. 2022. "Radiomics Nomogram: Prediction of 2-Year Disease-Free Survival in Young Age Breast Cancer" Cancers 14, no. 18: 4461. https://doi.org/10.3390/cancers14184461
APA StyleLee, J., Kim, S. H., Kim, Y., Park, J., Park, G. E., & Kang, B. J. (2022). Radiomics Nomogram: Prediction of 2-Year Disease-Free Survival in Young Age Breast Cancer. Cancers, 14(18), 4461. https://doi.org/10.3390/cancers14184461