Breast-Specific Gamma Imaging: An Added Value in the Diagnosis of Breast Cancer, a Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schillaci, O.; Danieli, R.; Romano, P.; Santoni, R.; Simonetti, G. Scintimammography for the detection of breast cancer. Expert Rev. Med. Devices 2005, 2, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Follacchio, G.A.; Monteleone, F.; Anibaldi, P.; De Vincentis, G.; Iacobelli, S.; Merola, R.; D’Orazi, V.; Monti, M.; Pasta, V. A modified sentinel node and occult lesion localization (SNOLL) technique in non-palpable breast cancer: A pilot study. J. Exp. Clin. Cancer Res. 2015, 34, 113. [Google Scholar] [CrossRef] [PubMed]
- Kolb, T.M.; Lichy, J.; Newhouse, J.H. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology 2002, 225, 165–175. [Google Scholar] [CrossRef]
- Sardanelli, F.; Podo, F.; D’Agnolo, G.; Verdecchia, A.; Santaquilani, M.; Musumeci, R.; Trecate, G.; Manoukian, S.; Morassut, S.; de Giacomi, C.; et al. Multicenter comparative multimodality surveillance of women at genetic-familial high risk for breast cancer (HIBCRIT study): Interim results. Radiology 2007, 242, 698–715. [Google Scholar] [CrossRef]
- Lehman, C.D. Role of MRI in screening women at high risk for breast cancer. J. Magn. Reson. Imaging 2006, 24, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Kopans, D.B. The positive predictive value of mammography. AJR Am. J. Roentgenol. 1992, 158, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Birdwell, R.L.; Ikeda, D.M.; O’Shaughnessy, K.F.; Sickles, E.A. Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection. Radiology 2001, 219, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Łuczyńska, E.; Pawlak, M.; Popiela, T.; Rudnicki, W. The Role of ABUS in The Diagnosis of Breast Cancer. J. Ultrason. 2022, 22, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Leithner, D.; Wengert, G.J.; Helbich, T.H.; Thakur, S.; Ochoa-Albiztegui, R.E.; Morris, E.A.; Pinker, K. Clinical role of breast MRI now and going forward. Clin. Radiol. 2018, 73, 700–714. [Google Scholar] [CrossRef]
- Polito, C.; Pellegrini, R.; Cinti, M.N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V.O.; Pani, R. Dual-modality imaging with a ultrasound-gamma device for oncology. Radiat. Phys. Chem. 2018, 147, 77–84. [Google Scholar] [CrossRef]
- Follacchio, G.A.; Monteleone, F.; Meggiorini, M.L.; Nusiner, M.P.; De Felice, C.; De Vincentis, G.; Liberatore, M. Radio-localization of Non-Palpable Breast Lesions Under Ultrasonographic Guidance: Current Status and Future Perspectives. Curr. Radiopharm. 2017, 10, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhan, H.; Sun, D.; Zhang, Y. Comparison of BSGI, MRI, mammography, and ultrasound for the diagnosis of breast lesions and their correlations with specific molecular subtypes in Chinese women. BMC Med. Imaging 2020, 20, 98. [Google Scholar] [CrossRef] [PubMed]
- DeCesare, A.; De Vincentis, G.; Gervasi, S.; Crescentini, G.; Fiori, E.; Bonomi, M.; Crocetti, A.; Sterpetti, A.V. Single-photon-emission computed tomography (SPECT) with technetium-99m sestamibi in the diagnosis of small breast cancer and axillary lymph node involvement. World J. Surg. 2011, 35, 2668–2672. [Google Scholar] [CrossRef] [PubMed]
- Rizk, T.H.; Nagalli, S. Technetium (99mTc) Sestamibi. In StatPearls [Internet]; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Huppe, A.I.; Mehta, A.K.; Brem, R.F. Molecular Breast Imaging: A Comprehensive Review. Semin. Ultrasound CT MR 2018, 39, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Dibble, E.H.; Hunt, K.N.; Ehman, E.C.; O’Connor, M.K. Molecular Breast Imaging in Clinical Practice. AJR Am. J. Roentgenol. 2020, 215, 277–284. [Google Scholar] [CrossRef]
- Gunasekera, R.D.; Notghi, A.; Mostafa, A.B.; Harding, L.K. Adsorption of radiopharmaceuticals to syringes leads to lower administered activity than intended. Nucl. Med. Commun. 2001, 22, 493–497. [Google Scholar] [CrossRef]
- Hendrick, R.E.; Tredennick, T. Benefit to Radiation Risk of Breast-specific Gamma Imaging Compared with Mammography in Screening Asymptomatic Women with Dense Breasts. Radiology 2016, 281, 583–588. [Google Scholar] [CrossRef]
- Horne, T.; Pappo, I.; Cohen-Pour, M.; Baumer, M.; Orda, R. 99Tc(m)-tetrofosmin scintimammography for detecting breast cancer: A comparative study with 99Tc(m)-MIBI. Nucl. Med. Commun. 2001, 22, 807–811. [Google Scholar] [CrossRef]
- Chen, Q.; An, X.Y.; Liang, H. Clinical value of (99m)Tc-tetrofosmin imaging and ultrasonography in diagnosis of breast cancer: A comparative study. J. South. Med. Univ. 2008, 28, 140–141. [Google Scholar] [CrossRef]
- O’Connor, M.K.; Morrow, M.M.B.; Hunt, K.N.; Boughey, J.C.; Wahner-Roedler, D.L.; Conners, A.L.; Rhodes, D.J.; Hruska, C.B. Comparison of Tc-99m maraciclatide and Tc-99m sestamibi molecular breast imaging in patients with suspected breast cancer. EJNMMI Res. 2017, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Goffin, V.; Bogorad, R.L.; Touraine, P. Identification of gain-of-function variants of the human prolactin receptor. Methods Enzym. 2010, 484, 329–355. [Google Scholar] [CrossRef]
- Ahmadpour, S.; Noaparast, Z.; Abedi, S.M.; Hosseinimehr, S.J. (99m)Tc-HYNIC-(tricine/EDDA)-FROP peptide for MCF-7 breast tumor targeting and imaging. J. Biomed. Sci. 2018, 25, 17. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhan, H.; Zhang, Y.; He, G.; Wang, H.; Zhang, Q.; Zheng, L. Comparison of BSGI and MRI as Approaches to Evaluating Residual Tumor Status after Neoadjuvant Chemotherapy in Chinese Women with Breast Cancer. Diagnostics 2021, 11, 1846. [Google Scholar] [CrossRef] [PubMed]
- Keto, J.L.; Kirstein, L.; Sanchez, D.P.; Fulop, T.; McPartland, L.; Cohen, I.; Boolbol, S.K. MRI versus breast-specific gamma imaging (BSGI) in newly diagnosed ductal cell carcinoma-in-situ: A prospective head-to-head trial. Ann. Surg. Oncol. 2012, 19, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Brem, R.F.; Fishman, M.; Rapelyea, J.A. Detection of ductal carcinoma in situ with mammography, breast specific gamma imaging, and magnetic resonance imaging: A comparative study. Acad. Radiol. 2007, 14, 945–950. [Google Scholar] [CrossRef]
- Meissnitzer, T.; Seymer, A.; Keinrath, P.; Holzmannhofer, J.; Pirich, C.; Hergan, K.; Meissnitzer, M.W. Added value of semi-quantitative breast-specific gamma imaging in the work-up of suspicious breast lesions compared to mammography, ultrasound and 3-T MRI. Br. J. Radiol. 2015, 88, 20150147. [Google Scholar] [CrossRef]
- Yu, X.; Hu, G.; Zhang, Z.; Qiu, F.; Shao, X.; Wang, X.; Zhan, H.; Chen, Y.; Deng, Y.; Huang, J. Retrospective and comparative analysis of (99m)Tc-Sestamibi breast specific gamma imaging versus mammography, ultrasound, and magnetic resonance imaging for the detection of breast cancer in Chinese women. BMC Cancer 2016, 16, 450. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, S.M.; Cha, E.S. The diagnostic sensitivity of dynamic contrast-enhanced magnetic resonance imaging and breast-specific gamma imaging in women with calcified and non-calcified DCIS. Acta Radiol. 2014, 55, 668–675. [Google Scholar] [CrossRef]
- Kim, B.S. Usefulness of breast-specific gamma imaging as an adjunct modality in breast cancer patients with dense breast: A comparative study with MRI. Ann. Nucl. Med. 2012, 26, 131–137. [Google Scholar] [CrossRef]
- Kim, S.; Plemmons, J.; Hoang, K.; Chaudhuri, D.; Kelley, A.; Cunningham, T.; Hoefer, R. Breast-Specific Gamma Imaging Versus MRI: Comparing the Diagnostic Performance in Assessing Treatment Response After Neoadjuvant Chemotherapy in Patients with Breast Cancer. AJR Am. J. Roentgenol. 2019, 212, 696–705. [Google Scholar] [CrossRef]
- Brem, R.F.; Floerke, A.C.; Rapelyea, J.A.; Teal, C.; Kelly, T.; Mathur, V. Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology 2008, 247, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Chang, J.; Lim, W.; Kim, B.S.; Lee, J.E.; Cha, E.S.; Moon, B.I. Effectiveness of breast-specific gamma imaging (BSGI) for breast cancer in Korea: A comparative study. Breast J. 2012, 18, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhan, H.; Sun, D. Comparison of (99m)Tc-MIBI scintigraphy, ultrasound, and mammography for the diagnosis of BI-RADS 4 category lesions. BMC Cancer 2020, 20, 463. [Google Scholar] [CrossRef]
- Cho, M.J.; Yang, J.H.; Yu, Y.B.; Park, K.S.; Chung, H.W.; So, Y.; Choi, N.; Kim, M.Y. Validity of breast-specific gamma imaging for Breast Imaging Reporting and Data System 4 lesions on mammography and/or ultrasound. Ann. Surg. Treat. Res. 2016, 90, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Zhang, H.; Yang, W.; Fu, Y.; Gu, Y.; Du, M.; Cheng, D.; Shi, H. Breast-specific gamma imaging with Tc-99m-sestamibi in the diagnosis of breast cancer and its semiquantitative index correlation with tumor biologic markers, subtypes, and clinicopathologic characteristics. Nucl. Med. Commun. 2016, 37, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Brem, R.F.; Ruda, R.C.; Yang, J.L.; Coffey, C.M.; Rapelyea, J.A. Breast-Specific γ-Imaging for the Detection of Mammographically Occult Breast Cancer in Women at Increased Risk. J. Nucl. Med. 2016, 57, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Lee, A.Y.; Jung, K.P.; Choi, S.J.; Lee, S.M.; Kyun Bae, S. Diagnostic Performance of Breast-Specific Gamma Imaging (BSGI) for Breast Cancer: Usefulness of Dual-Phase Imaging with (99m)Tc-sestamibi. Nucl. Med. Mol. Imaging 2013, 47, 18–26. [Google Scholar] [CrossRef]
- Park, J.Y.; Yi, S.Y.; Park, H.J.; Kim, M.S.; Kwon, H.J.; Park, N.H.; Moon, S.Y. Breast-specific gamma imaging: Correlations with mammographic and clinicopathologic characteristics of breast cancer. AJR Am. J. Roentgenol. 2014, 203, 223–228. [Google Scholar] [CrossRef]
- Park, J.Y.; Chun, K.A.; Shin, H.J.; Yi, S.Y.; Kwon, H.J.; Park, H.J. Breast-specific gamma imaging of invasive breast cancer: Clinicopathologic factors affecting detectability and correlation with mammographic findings. Clin. Imaging 2018, 51, 168–173. [Google Scholar] [CrossRef]
- Wang, P.L.; Zheng, F.Y.; Lu, Q.; Xia, H.S.; Huang, B.J.; Liu, L.M.; Wang, W.P. Imaging features of pure mucinous breast carcinoma: Correlation with extracellular mucus content. Clin. Radiol. 2019, 74, 569.e569–569.e517. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Wang, X.; Yu, X.; Zhu, Y.; Zhan, H.; Chen, Z.; Li, B.; Huang, J. Breast-specific gamma imaging or ultrasonography as adjunct imaging diagnostics in women with mammographically dense breasts. Eur. Radiol. 2020, 30, 6062–6071. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.W.; So, Y.; Yang, J.H.; Park, K.S.; Yoo, Y.B.; Choi, N.; Kim, M.Y.; Kim, J.; Lee, E.J. Adjunctive Breast-Specific Gamma Imaging for Detecting Cancer in Women with Calcifications at Mammography. Ann. Surg. Oncol. 2017, 24, 3541–3548. [Google Scholar] [CrossRef] [PubMed]
- Rechtman, L.R.; Lenihan, M.J.; Lieberman, J.H.; Teal, C.B.; Torrente, J.; Rapelyea, J.A.; Brem, R.F. Breast-specific gamma imaging for the detection of breast cancer in dense versus nondense breasts. AJR Am. J. Roentgenol. 2014, 202, 293–298. [Google Scholar] [CrossRef]
- Kim, M.Y.; Choi, N.; Ko, S.M.; Chung, H.W. Background uptake of breast-specific gamma imaging: Correlation with mammographic breast density and background enhancement of breast MRI. Clin. Imaging 2014, 38, 255–258. [Google Scholar] [CrossRef]
- Johnson, N.; Sorenson, L.; Bennetts, L.; Winter, K.; Bryn, S.; Johnson, W.; Glissmeyer, M.; Garreau, J.; Blanchard, D. Breast-specific gamma imaging is a cost effective and efficacious imaging modality when compared with MRI. Am. J. Surg. 2014, 207, 698–701; discussion 701. [Google Scholar] [CrossRef] [PubMed]
- Valhiots, A.; Griffin, B.; Stavros, A.T.; Magrolis, J. Analysis of utilization patterns and associated costs of the breast imaging and diagnostic procedures after screening mammography. Clin. Outcomes Res. 2018, 26, 157–167. [Google Scholar] [CrossRef]
- Keshavarz, K.; Jafari, M.; Lotfi, F.; Bastani, P.; Salesi, M.; Gheisari, F.; Hemami, M.R. Positron Emission Mammography (PEM) in the diagnosis of breast cancer: A systematic review and economic evaluation. Med. J. Islam Repub. Iran 2020, 34, 100. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Tasaki, Y.; Kuwada, Y.; Ozawa, Y.; Inoue, T. A preliminary report of breast cancer screening by positron emission mammography. Ann. Nucl. Med. 2016, 30, 130–137. [Google Scholar] [CrossRef]
- Schilling, K.; Narayanan, D.; Kalinyak, J.E.; The, J.; Velasquez, M.V.; Kahn, S.; Saady, M.; Mahal, R.; Chrystal, L. Positron emission mammography in breast cancer presurgical planning: Comparisons with magnetic resonance imaging. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 23–36. [Google Scholar] [CrossRef]
- Berg, W.A.; Madsen, K.S.; Schilling, K.; Tartar, M.; Pisano, E.D.; Larsen, L.H.; Narayanan, D.; Ozonoff, A.; Miller, J.P.; Kalinyak, J.E. Breast cancer: Comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology 2011, 258, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, D.; Madsen, K.S.; Kalinyak, J.E.; Berg, W.A. Interpretation of positron emission mammography and MRI by experienced breast imaging radiologists: Performance and observer reproducibility. AJR. Am. J. Roentgenol. 2011, 196, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.A.; Weinberg, I.N.; Narayanan, D.; Lobrano, M.E.; Ross, E.; Amodei, L.; Tafra, L.; Adler, L.P.; Uddo, J.; Stein 3rd, W.; Levine, E.A. High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J. 2006, 12, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Eo, J.S.; Chun, I.K.; Paeng, J.C.; Kang, K.W.; Lee, S.M.; Han, W.; Noh, D.Y.; Chung, J.K.; Lee, D.S. Imaging sensitivity of dedicated positron emission mammography in relation to tumor size. Breast 2012, 21, 66–71. [Google Scholar] [CrossRef] [PubMed]
BSGI vs. MRI | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|
Liu et al., 2020 [1] | 91.7 vs. 92.5 | 80.7 vs. 69.7 | 87.1 vs. 86.5 | 87.2 vs. 81.5 |
Liu et al., 2021 [2] | 76.9 vs. 83.9 | 70.6 vs. 58.8 | Not esplicited | Not esplicited |
Keto et al., 2011 [3] | 89 vs. 94 | Not esplicited | Not esplicited | Not esplicited |
Brem et al., 2007 [4] | 91 vs. 88 | Not esplicited | Not esplicited | Not esplicited |
Meissnitzer et al., 2015 [5] | 90 vs. 88 | 56 vs. 40 | 85 vs. 80 | 67 vs. 56 |
Yu et al., 2016 [6] | 80.35 vs. 94.06 | 83.19 vs. 67.69 | 87.1 vs. 81.9 | 75 vs. 88 |
Kim et al., 2014 [7] | 68.6 vs. 91.4 | Not esplicited | Not esplicited | Not esplicited |
Kim et al., 2012 [8] | 88.8 vs. 90.1 | 90.1 vs. 39.4 | 76.6 vs. 35.8 | 95.5 vs. 93.3 |
Kim et al., 2019 [9] | 70.2 vs. 83.3 | 90 vs. 60 | 94.6 vs. 84.2 | 51.9 vs. 56.3 |
Brem et al., 2008 [10] | 89 vs. 100 | 71 vs. 25 | 53 vs. 33 | 94 vs. 100 |
BSGI vs. Mammography | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|
Liu et al., 2020 [1] | 91.7 vs. 77.3 | 80.7 vs. 74.5 | 87.1 vs. 81.2 | 87.2 vs. 69.8 |
Lee et al., 2012 [11] | 95.45 vs. 93.64 | 90.93 vs. 90.66 | 76.09 vs. 75.18 | 98.51 vs. 97.92 |
Liu et al., 2020 [12] | 94.9 vs. 91.5 | 78.3 vs. 48.3 | 89.5 vs. 77.5 | 88.7 vs. 74.4 |
Cho et al., 2016 [13] | 90.9 vs. 74.2 | 78.1 vs. 56.3 | 74.1 vs. 53.9 | 92.6 vs. 76.1 |
Brem et al., 2007 [4] | 91 vs. 82 | Not esplicited | Not esplicited | Not esplicited |
Meissnitzer 2015 [5] | 90 vs. 85 | 56 vs. 28 | 85 vs. 76 | 67 vs. 41 |
Yu et al., 2016 [6] | 80.35 vs. 75.6 | 83.19 vs. 66.39 | 87.10 vs. 76.05 | 75 vs. 65.83 |
Kim et al., 2012 [8] | 92.2 vs. 53.6 | 89.3 vs. 94.7 | 94.6 vs. 95.3 | 84.8 vs. 50 |
Tan et al., 2016 [14] | 94.1 vs. 84.5 | Not esplicited | Not esplicited | Not esplicited |
BSGI vs. Ultrasound | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|
Liu et al., 2020 [1] | 91.7 vs. 82.1 | 80.7 vs. 70.8 | 87.1 vs. 80 | 87.2 vs. 73.5 |
Lee et al., 2012 [11] | 95.45 vs. 98.18 | 90.93 vs. 87.09 | 76.09 vs. 69.68 | 98.51 vs. 99.37 |
Liu et al., 2020 [12] | 94.9 vs. 93.2 | 78.3 vs. 53.3 | 89.5 vs. 79.6 | 88.7 vs. 80 |
Cho et al., 2016 [13] | 90.9 vs. 87.9 | 78.1 vs. 19.8 | 74.1 vs. 43 | 92.6 vs. 70.4 |
Meissnitzer 2015 [5] | 90 vs. 99 | 56 vs. 20 | 85 vs. 77 | 67 vs. 83 |
Yu et al., 2016 [6] | 80.35 vs. 82.14 | 83.19 vs. 77.31 | 87.10 vs. 83.64 | 75 vs. 75.41 |
Kim et al., 2012 [8] | 92.2 vs. 91.5 | 89.3 vs. 53.3 | 94.6 vs. 80 | 84.8 vs. 75.5 |
Tan et al., 2016 [14] | 94.1 vs. 84.5 | Not esplicited | Not esplicited | Not esplicited |
Risk of Bias Assessment | Applicability Concerns Assessment | ||||||
---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | |
Liu et al., 2020 [12] | Low | Low | Low | Low | Low | Low | Low |
Liu et al., 2021 [24] | Low | Low | Low | Low | Low | Low | Low |
Keto el al. 2011 [25] | Low | Low | Low | Low | Low | Low | Low |
Brem et al., 2007 [26] | Low | Unclear | Low | Low | Low | Low | Low |
Meissnitzer et al., 2015 [27] | Low | Low | Low | Low | Low | Low | Low |
Yu et al., 2016 [28] | Low | Low | Low | Low | Low | Low | Low |
Kim et al., 2014 [29] | Low | Low | Low | Low | Low | Low | Low |
Kim et al., 2012 [30] | Low | Low | Low | Low | Low | Low | Low |
Kim et al., 2019 [31] | Low | Low | Low | Low | Low | Low | Low |
Brem et al., 2008 [32] | Low | Low | Low | Low | Low | Low | Low |
Lee et al., 2012 [33] | Low | Unclear | Low | Low | Low | Low | Low |
Lee et al., 2020 [34] | Low | Low | Low | Low | Low | Low | Low |
Cho et al., 2016 [35] | Low | Low | Low | Low | Low | Low | Low |
Tan et al., 2016 [36] | Low | Low | Low | Low | Low | Low | Low |
Brem et al., 2016 [37] | High | High | Low | Low | High | High | Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Feo, M.S.; Sidrak, M.M.A.; Conte, M.; Frantellizzi, V.; Marongiu, A.; De Cristofaro, F.; Nuvoli, S.; Spanu, A.; De Vincentis, G. Breast-Specific Gamma Imaging: An Added Value in the Diagnosis of Breast Cancer, a Systematic Review. Cancers 2022, 14, 4619. https://doi.org/10.3390/cancers14194619
De Feo MS, Sidrak MMA, Conte M, Frantellizzi V, Marongiu A, De Cristofaro F, Nuvoli S, Spanu A, De Vincentis G. Breast-Specific Gamma Imaging: An Added Value in the Diagnosis of Breast Cancer, a Systematic Review. Cancers. 2022; 14(19):4619. https://doi.org/10.3390/cancers14194619
Chicago/Turabian StyleDe Feo, Maria Silvia, Marko Magdi Abdou Sidrak, Miriam Conte, Viviana Frantellizzi, Andrea Marongiu, Flaminia De Cristofaro, Susanna Nuvoli, Angela Spanu, and Giuseppe De Vincentis. 2022. "Breast-Specific Gamma Imaging: An Added Value in the Diagnosis of Breast Cancer, a Systematic Review" Cancers 14, no. 19: 4619. https://doi.org/10.3390/cancers14194619
APA StyleDe Feo, M. S., Sidrak, M. M. A., Conte, M., Frantellizzi, V., Marongiu, A., De Cristofaro, F., Nuvoli, S., Spanu, A., & De Vincentis, G. (2022). Breast-Specific Gamma Imaging: An Added Value in the Diagnosis of Breast Cancer, a Systematic Review. Cancers, 14(19), 4619. https://doi.org/10.3390/cancers14194619