Transformer for Gene Expression Modeling (T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions
Abstract
:Simple Summary
Abstract
1. Introduction
- T-GEM can accurately predict phenotypes based on gene expression;
- T-GEM captures the biological function and potential marker genes.
2. Materials and Methods
2.1. Data Collection and Preprocessing
2.1.1. TCGA RNA-Seq Data
2.1.2. PBMC scRNA-Seq Data
2.2. T-GEM Model
2.3. T-GEM Interpretation Methods
2.3.1. Entropy of the Attention Weights of a Head
2.3.2. Attribution Scores of Attention Weights of a Head and a Layer
2.3.3. Visualization of the Regulatory Networks of the Top Layer
2.4. Training Procedure
2.5. Performance Evaluation Metrics
3. Results and Discussion
3.1. T-GEM’s Performance for Cancer Type Classification Using TCGA Data
3.1.1. Investigation of T-GEM’s Learning Mechanism
3.1.2. T-GEM Makes Decisions by Focusing on Important Cancer Pathways
3.1.3. T-GEM Defines a Regulatory Network That Reveals Marker Genes for Different Cancer Types
3.2. T-GEM’ Performance for PBMC Single Cell Cell-Type Prediction and Interpretation Result
3.2.1. T-GEM Learns the Biological Functions That Define Each Cell Types in PBMC
3.2.2. The T-GEM’s Regulatory Networks for NK Cell and B Cell
4. Conclusions
- T-GEM can provide accurate gene expression-based prediction. We investigated T-GEM for cancer type classification using TCGA data and immune cell type classification using PBMC scRNA-seq. T-GEM has the best performance on both datasets compared with CNN and several classical classifiers.
- T-GEM learns associated cancer functions. We showed that T-GEM had broad attention in the first layer and paid attention to specific cancer-related genes in layers 2 and 3 for cancer type classification. We also revealed that T-GEM learned cancer-associated pathways at every layer and could concentrate on specific pathways important for predicted phenotypes in layer 3.
- We extracted the regulatory network of layer 3 and showed that the network hub genes were likely cancer marker genes. We also demonstrated the generalization of these results for immune cell type classification using PBMC scRNA-seq data.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiu, Y.C.; Chen, H.H.; Gorthi, A.; Mostavi, M.; Zheng, S.; Huang, Y.; Chen, Y. Deep learning of pharmacogenomics resources: Moving towards precision oncology. Brief. Bioinform. 2020, 21, 2066–2083. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Xiao, C.; Glass, L.M.; Critchlow, C.W.; Gibson, G.; Sun, J. Machine Learning Applications for Therapeutic Tasks with Genomics Data. arXiv 2021, arXiv:2105.01171. [Google Scholar] [CrossRef] [PubMed]
- Mostavi, M.; Chiu, Y.-C.; Huang, Y.; Chen, Y. Convolutional neural network models for cancer type prediction based on gene expression. BMC Med. Genom. 2020, 13, 44. [Google Scholar] [CrossRef]
- Yoo, S.; Gujrathi, I.; Haider, M.A.; Khalvati, F. Prostate cancer detection using deep convolutional neural networks. Sci. Rep. 2019, 9, 19518. [Google Scholar] [CrossRef] [PubMed]
- Ragab, D.A.; Sharkas, M.; Marshall, S.; Ren, J. Breast cancer detection using deep convolutional neural networks and support vector machines. PeerJ 2019, 7, e6201. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, R.; Chiu, Y.C.; Zhang, S.Y.; Ramirez, J.; Chen, Y.D.; Huang, Y.F.; Jin, Y.F. Prediction and interpretation of cancer survival using graph convolution neural networks. Methods 2021, 192, 120–130. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Chen, H.-I.H.; Zhang, T.; Zhang, S.; Gorthi, A.; Wang, L.-J.; Huang, Y.; Chen, Y. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med. Genom. 2019, 12, 18. [Google Scholar]
- Sharifi-Noghabi, H.; Zolotareva, O.; Collins, C.C.; Ester, M. MOLI: Multi-omics late integration with deep neural networks for drug response prediction. Bioinformatics 2019, 35, i501–i509. [Google Scholar] [CrossRef]
- Chiu, Y.-C.; Zheng, S.; Wang, L.-J.; Iskra, B.S.; Rao, M.K.; Houghton, P.J.; Huang, Y.; Chen, Y. DeepDEP: Deep learning of a cancer dependency map using cancer genomics. Nat. Commun. 2020; under review. [Google Scholar]
- Banegas-Luna, A.J.; Peña-García, J.; Iftene, A.; Guadagni, F.; Ferroni, P.; Scarpato, N.; Zanzotto, F.M.; Bueno-Crespo, A.; Pérez-Sánchez, H. Towards the Interpretability of Machine Learning Predictions for Medical Applications Targeting Personalised Therapies: A Cancer Case Survey. Int. J. Mol. Sci. 2021, 22, 4394. [Google Scholar] [CrossRef]
- Bazgir, O.; Zhang, R.; Dhruba, S.R.; Rahman, R.; Ghosh, S.; Pal, R. Representation of features as images with neighborhood dependencies for compatibility with convolutional neural networks. Nat. Commun. 2020, 11, 4391. [Google Scholar] [CrossRef]
- Fatima, N.; Rueda, L. iSOM-GSN: An integrative approach for transforming multi-omic data into gene similarity networks via self-organizing maps. Bioinformatics 2020, 36, 4248–4254. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Vans, E.; Shigemizu, D.; Boroevich, K.A.; Tsunoda, T. DeepInsight: A methodology to transform a non-image data to an image for convolution neural network architecture. Sci. Rep. 2019, 9, 11399. [Google Scholar] [CrossRef] [PubMed]
- Michael, K.Y.; Ma, J.; Fisher, J.; Kreisberg, J.F.; Raphael, B.J.; Ideker, T. Visible machine learning for biomedicine. Cell 2018, 173, 1562–1565. [Google Scholar]
- Elmarakeby, H.A.; Hwang, J.; Arafeh, R.; Crowdis, J.; Gang, S.; Liu, D.; AlDubayan, S.H.; Salari, K.; Kregel, S.; Richter, C.; et al. Biologically informed deep neural network for prostate cancer discovery. Nature 2021, 598, 348–352. [Google Scholar] [CrossRef]
- Ma, J.Z.; Yu, M.K.; Fong, S.; Ono, K.; Sage, E.; Demchak, B.; Sharan, R.; Ideker, T. Using deep learning to model the hierarchical structure and function of a cell. Nat. Methods 2018, 15, 290–298. [Google Scholar] [CrossRef]
- Kuenzi, B.M.; Park, J.; Fong, S.H.; Sanchez, K.S.; Lee, J.; Kreisberg, J.F.; Ma, J.Z.; Ideker, T. Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells. Cancer Cell 2020, 38, 672–684.e6. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc. (NeurIPS): La Jolla, CA, USA, 2017; pp. 5998–6008. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Tenney, I.; Das, D.; Pavlick, E. BERT rediscovers the classical NLP pipeline. arXiv 2019, arXiv:1905.05950. [Google Scholar]
- Jawahar, G.; Sagot, B.; Seddah, D. What does BERT learn about the structure of language? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; Association for Computational Linguistics: Florence, Italy, 2019. [Google Scholar]
- Jo, J.-Y.; Myaeng, S.-H. Roles and Utilization of Attention Heads in Transformer-based Neural Language Models. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; pp. 3404–3417. [Google Scholar]
- The Cancer Genome Atlas Research Network; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef]
- Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016, 44, e71. [Google Scholar] [CrossRef]
- Yuan, H.; Yan, M.; Zhang, G.; Liu, W.; Deng, C.; Liao, G.; Xu, L.; Luo, T.; Yan, H.; Long, Z.; et al. CancerSEA: A cancer single-cell state atlas. Nucleic Acids Res. 2019, 47, D900–D908. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.X.Y.; Terry, J.M.; Belgrader, P.; Ryvkin, P.; Bent, Z.W.; Wilson, R.; Ziraldo, S.B.; Wheeler, T.D.; McDermott, G.P.; Zhu, J.; et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017, 8, 14049. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Bai, J.; Nabavi, S. Single-cell classification using graph convolutional networks. BMC Bioinform. 2021, 22, 364. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Dong, L.; Wei, F.; Xu, K. Self-attention attribution: Interpreting information interactions inside transformer. arXiv 2020, arXiv:2004.11207. [Google Scholar] [CrossRef]
- Kokhlikyan, N.; Miglani, V.; Martin, M.; Wang, E.; Alsallakh, B.; Reynolds, J.; Melnikov, A.; Kliushkina, N.; Araya, C.; Yan, S. Captum: A unified and generic model interpretability library for pytorch. arXiv 2020, arXiv:2009.07896. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Jin, H.; Song, Q.; Hu, X. Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1946–1956. [Google Scholar]
- Qiu, H.; Yan, Q.; Luo, X.; Zhang, H.; Bao, W.; Wan, X. EMX2 is downregulated in endometrial cancer and correlated with tumor progression. Int. J. Gynecol. Pathol. 2013, 32, 193–198. [Google Scholar] [CrossRef]
- Imrich, S.; Hachmeister, M.; Gires, O. EpCAM and its potential role in tumor-initiating cells. Cell Adhes. Migr. 2012, 6, 30–38. [Google Scholar] [CrossRef]
- He, D.; Zhang, X.; Tu, J. Diagnostic significance and carcinogenic mechanism of pan-cancer gene POU5F1 in liver hepatocellular carcinoma. Cancer Med. 2020, 9, 8782–8800. [Google Scholar] [CrossRef]
- Teng, Y.-W.; Mehedint, M.G.; Garrow, T.A.; Zeisel, S.H. Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J. Biol. Chem. 2011, 286, 36258–36267. [Google Scholar] [CrossRef] [PubMed]
- van Bodegraven, E.J.; van Asperen, J.V.; Robe, P.A.J.; Hol, E.M. Importance of GFAP isoform-specific analyses in astrocytoma. Glia 2019, 67, 1417–1433. [Google Scholar] [CrossRef] [PubMed]
- Samaeekia, R.; Adorno-Cruz, V.; Bockhorn, J.; Chang, Y.F.; Huang, S.; Prat, A.; Ha, N.; Kibria, G.; Huo, D.; Zheng, H.; et al. miR-206 Inhibits Stemness and Metastasis of Breast Cancer by Targeting MKL1/IL11 Pathway. Clin. Cancer Res. 2017, 23, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Aponte, P.M.; Caicedo, A. Stemness in Cancer: Stem Cells, Cancer Stem Cells, and Their Microenvironment. Stem Cells Int. 2017, 2017, 5619472. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Semba, T.; Phi, L.T.H.; Chainitikun, S.; Iwase, T.; Lim, B.; Ueno, N.T. Targeting Signaling Pathways in Inflammatory Breast Cancer. Cancers 2020, 12, 2479. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cao, Q.; Liao, R.; Wu, X.; Xun, S.; Huang, J.; Dong, C. Loss of ABAT-Mediated GABAergic System Promotes Basal-Like Breast Cancer Progression by Activating Ca(2+)-NFAT1 Axis. Theranostics 2019, 9, 34–47. [Google Scholar] [CrossRef]
- Bredel, M.; Kim, H.; Thudi, N.K.; Scholtens, D.M.; Bonner, J.A.; Sikic, B.I. NFKBIA deletion in triple-negative breast cancer. J. Clin. Oncol. 2013, 31, 1012. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, X.; Cui, N.; Liang, Y. Cadherins Associate with Distinct Stem Cell-Related Transcription Factors to Coordinate the Maintenance of Stemness in Triple-Negative Breast Cancer. Stem Cells Int. 2017, 2017, 5091541. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Xu, S.; Zhang, X.; Wang, P.; Wu, H.; Xia, B.; Zhang, G.; Lei, B.; Wan, L.; et al. Hypoxia-Induced TPM2 Methylation is Associated with Chemoresistance and Poor Prognosis in Breast Cancer. Cell. Physiol. Biochem. 2018, 45, 692–705. [Google Scholar] [CrossRef]
- Mehra, R.; Varambally, S.; Ding, L.; Shen, R.; Sabel, M.S.; Ghosh, D.; Chinnaiyan, A.M.; Kleer, C.G. Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res. 2005, 65, 11259–11264. [Google Scholar] [CrossRef]
- Nakshatri, H.; Badve, S. FOXA1 as a therapeutic target for breast cancer. Expert Opin. Ther. Targets 2007, 11, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Cheng, H.; Chen, X.; Li, T.; Zhang, J.; Jin, G.; Cai, D.; Huang, Z. FOXA1 is Prognostic of Triple Negative Breast Cancers by Transcriptionally Suppressing SOD2 and IL6. Int. J. Biol. Sci. 2019, 15, 1030–1041. [Google Scholar] [CrossRef] [PubMed]
- Papadakos, K.S.; Hagerling, C.; Rydén, L.; Larsson, A.M.; Blom, A.M. High Levels of Expression of Cartilage Oligomeric Matrix Protein in Lymph Node Metastases in Breast Cancer Are Associated with Reduced Survival. Cancers 2021, 13, 5876. [Google Scholar] [CrossRef] [PubMed]
- Pickard, A.; McCance, D.J. IGF-Binding Protein 2—Oncogene or Tumor Suppressor? Front. Endocrinol. 2015, 6, 25. [Google Scholar] [CrossRef]
- Hou, J.; Wang, Z.; Xu, H.; Yang, L.; Yu, X.; Yang, Z.; Deng, Y.; Meng, J.; Feng, Y.; Guo, X. Stanniocalicin 2 suppresses breast cancer cell migration and invasion via the PKC/claudin-1-mediated signaling. PLoS ONE 2015, 10, e0122179. [Google Scholar] [CrossRef]
- Haam, S.; Han, J.-H.; Lee, H.W.; Koh, Y.W. Tumor Nonimmune-Microenvironment-Related Gene Expression Signature Predicts Brain Metastasis in Lung Adenocarcinoma Patients after Surgery: A Machine Learning Approach Using Gene Expression Profiling. Cancers 2021, 13, 4468. [Google Scholar] [CrossRef]
- Amoedo, N.D.; Sarlak, S.; Obre, E.; Esteves, P.; Bégueret, H.; Kieffer, Y.; Rousseau, B.; Dupis, A.; Izotte, J.; Bellance, N.; et al. Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef]
- Guo, C.; Lu, H.; Gao, W.; Wang, L.; Lu, K.; Wu, S.; Pataer, A.; Huang, M.; El-Zein, R.; Lin, T.; et al. Insulin-like growth factor binding protein-2 level is increased in blood of lung cancer patients and associated with poor survival. PLoS ONE 2013, 8, e74973. [Google Scholar] [CrossRef]
- Yang, L.; Lin, M.; Ruan, W.J.; Dong, L.L.; Chen, E.G.; Wu, X.H.; Ying, K.J. Nkx2-1: A novel tumor biomarker of lung cancer. J. Zhejiang Univ. Sci. B 2012, 13, 855–866. [Google Scholar] [CrossRef]
- Chang, J.; Liu, S.; Li, B.; Huo, Z.; Wang, X.; Zhang, H. MiR-338-3p improved lung adenocarcinoma by AKAP12 suppression. Arch. Med. Sci. AMS 2021, 17, 462. [Google Scholar] [CrossRef]
- Song, L.; Chen, Z.; Zhang, M.; Zhang, M.; Lu, X.; Li, C.; Miao, L. DDIT4 overexpression associates with poor prognosis in lung adenocarcinoma. J. Cancer 2021, 12, 6422–6428. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.H.; Ruan, X.L.; Huang, J.Y.; Liu, X.P.; Ma, H.L.; Chen, C.; Hu, W.D.; Li, S. Analysis of the Interaction Network of Hub miRNAs-Hub Genes, Being Involved in Idiopathic Pulmonary Fibers and Its Emerging Role in Non-small Cell Lung Cancer. Front. Genet. 2020, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Hong, F.; Wang, Z.; Hu, J.; Chen, N.; Lv, L.; Yi, Q. HSD17B6 downregulation predicts poor prognosis and drives tumor progression via activating Akt signaling pathway in lung adenocarcinoma. Cell Death Discov. 2021, 7, 341. [Google Scholar] [CrossRef]
- Beauchemin, N.; Arabzadeh, A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev. 2013, 32, 643–671. [Google Scholar] [CrossRef] [PubMed]
- Gutschner, T.; Hämmerle, M.; Eissmann, M.; Hsu, J.; Kim, Y.; Hung, G.; Revenko, A.; Arun, G.; Stentrup, M.; Gross, M.; et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013, 73, 1180–1189. [Google Scholar] [CrossRef]
- Takamochi, K.; Ohmiya, H.; Itoh, M.; Mogushi, K.; Saito, T.; Hara, K.; Mitani, K.; Kogo, Y.; Yamanaka, Y.; Kawai, J.; et al. Novel biomarkers that assist in accurate discrimination of squamous cell carcinoma from adenocarcinoma of the lung. BMC Cancer 2016, 16, 760. [Google Scholar] [CrossRef] [Green Version]
- Lakshmanan, I.; Chaudhary, S.; Vengoji, R.; Seshacharyulu, P.; Rachagani, S.; Carmicheal, J.; Jahan, R.; Atri, P.; Chirravuri-Venkata, R.; Gupta, R.; et al. ST6GalNAc-I promotes lung cancer metastasis by altering MUC5AC sialylation. Mol. Oncol. 2021, 15, 1866–1881. [Google Scholar] [CrossRef]
- Huang, C.; Liu, J.; Xiong, B.; Yonemura, Y.; Yang, X. Expression and prognosis analyses of forkhead box A (FOXA) family in human lung cancer. Gene 2019, 685, 202–210. [Google Scholar] [CrossRef]
- Song, J.; Liu, W.; Wang, J.; Hao, J.; Wang, Y.; You, X.; Du, X.; Zhou, Y.; Ben, J.; Zhang, X.; et al. GALNT6 promotes invasion and metastasis of human lung adenocarcinoma cells through O-glycosylating chaperone protein GRP78. Cell Death Dis. 2020, 11, 352. [Google Scholar] [CrossRef]
- Chen, C.; Guo, Q.; Tang, Y.; Qu, W.; Zuo, J.; Ke, X.; Song, Y. Screening and evaluation of the role of immune genes of brain metastasis in lung adenocarcinoma progression based on the TCGA and GEO databases. J. Thorac. Dis. 2021, 13, 5016–5034. [Google Scholar] [CrossRef]
- Cha, Y.J.; Kim, D.H.; Jung, W.H.; Koo, J.S. Expression of sarcosine metabolism-related proteins according to metastatic site in breast cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 7824–7833. [Google Scholar] [PubMed]
- Shao, X.; Liao, J.; Lu, X.; Xue, R.; Ai, N.; Fan, X. scCATCH: Automatic Annotation on Cell Types of Clusters from Single-Cell RNA Sequencing Data. iScience 2020, 23, 100882. [Google Scholar] [CrossRef] [PubMed]
- Bláha, J.; Kalousková, B.; Skořepa, O.; Pažický, S.; Novák, P.; Vaněk, O. High-level expression and purification of soluble form of human natural killer cell receptor NKR-P1 in HEK293S GnTI−cells. Protein Expr. Purif. 2017, 140, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Yuan, Y.; Chen, Z.; Gao, F.; Li, X.; Wang, H.; Wang, X.; Bai, G. Downregulation of the long non-coding RNA MALAT1 in tenofovir-treated pregnant women with hepatitis B virus infection promotes immune recovery of natural killer cells via the has-miR-155-5p/HIF-1α axis. Int. Immunopharmacol. 2022, 107, 108701. [Google Scholar] [CrossRef]
- Greenberg, Z.J.; Monlish, D.A.; Bartnett, R.L.; Yang, Y.; Shen, G.; Li, W.; Bednarski, J.J.; Schuettpelz, L.G. The Tetraspanin CD53 Regulates Early B Cell Development by Promoting IL-7R Signaling. J. Immunol. 2020, 204, 58–67. [Google Scholar] [CrossRef]
- Yang, H.; Liang, N.; Wang, M.; Fei, Y.; Sun, J.; Li, Z.; Xu, Y.; Guo, C.; Cao, Z.; Li, S.; et al. Long noncoding RNA MALAT-1 is a novel inflammatory regulator in human systemic lupus erythematosus. Oncotarget 2017, 8, 77400–77406. [Google Scholar] [CrossRef] [Green Version]
- Meurer, T.; Arrieta-Bolaños, E.; Metzing, M.; Langer, M.-M.; van Balen, P.; Falkenburg, J.H.F.; Beelen, D.W.; Horn, P.A.; Fleischhauer, K.; Crivello, P. Dissecting Genetic Control of HLA-DPB1 Expression and Its Relation to Structural Mismatch Models in Hematopoietic Stem Cell Transplantation. Front. Immunol. 2018, 9, 2236. [Google Scholar] [CrossRef] [Green Version]
Hyperparameter | Value of Hyperparameter |
---|---|
The number of layers: | 1, 2, 3, 4 |
the number of heads | 1, 2, 3, 4, 5 |
the activation function of the classification layer | No activation, ReLu, GeLu |
ACC | MCC | AUC | |
---|---|---|---|
CNN(AUTOKERAS) | 94.34% | 0.9411 | 0.9985 |
SVM | 93.21% | 0.9292 | 0.9972 |
RANDOM FOREST | 91.60% | 0.9123 | 0.9970 |
DECISION TREE | 81.80% | 0.8097 | 0.9062 |
T-GEM | 94.92% | 0.9469 | 0.9987 |
LAYER | HEAD 1 | HEAD 2 | HEAD 3 | HEAD 4 | HEAD 5 | |
---|---|---|---|---|---|---|
LAYER 1 | 57.48 | 87.19 | 94.92 | 95.10 | 94.92 | 94.83 |
LAYER 2 | 94.83 | 95.01 | 94.92 | 94.61 | 94.92 | 94.92 |
LAYER 3 | 94.92 | 94.97 | 94.92 | 94.92 | 94.92 | 94.97 |
LAYER | HEAD 1 | HEAD 2 | HEAD 3 | HEAD 4 | HEAD 5 | |
---|---|---|---|---|---|---|
LAYER 1 | 93.57% | 93.48% | 91.69% | 92.36% | 91.91% | 93.12% |
LAYER 2 | 93.12% | 90.65% | 90.88% | 93.80% | 90.43% | 93.57% |
LAYER 3 | 91.24% | 93.35% | 90.29% | 90.61% | 89.57% | 88.18% |
ACC | MCC | AUC | |
---|---|---|---|
CNN(AUTOKERAS) | 89.00% | 0.8779 | 0.9945 |
SVM | 90.70% | 0.8970 | 0.9913 |
RANDOM FOREST | 82.53% | 0.8062 | 0.9870 |
DECISION TREE | 74.00% | 0.7112 | 0.8556 |
T-GEM | 90.73% | 0.8971 | 0.9964 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.-H.; Hasib, M.M.; Chiu, Y.-C.; Han, Z.-F.; Jin, Y.-F.; Flores, M.; Chen, Y.; Huang, Y. Transformer for Gene Expression Modeling (T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions. Cancers 2022, 14, 4763. https://doi.org/10.3390/cancers14194763
Zhang T-H, Hasib MM, Chiu Y-C, Han Z-F, Jin Y-F, Flores M, Chen Y, Huang Y. Transformer for Gene Expression Modeling (T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions. Cancers. 2022; 14(19):4763. https://doi.org/10.3390/cancers14194763
Chicago/Turabian StyleZhang, Ting-He, Md Musaddaqul Hasib, Yu-Chiao Chiu, Zhi-Feng Han, Yu-Fang Jin, Mario Flores, Yidong Chen, and Yufei Huang. 2022. "Transformer for Gene Expression Modeling (T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions" Cancers 14, no. 19: 4763. https://doi.org/10.3390/cancers14194763
APA StyleZhang, T. -H., Hasib, M. M., Chiu, Y. -C., Han, Z. -F., Jin, Y. -F., Flores, M., Chen, Y., & Huang, Y. (2022). Transformer for Gene Expression Modeling (T-GEM): An Interpretable Deep Learning Model for Gene Expression-Based Phenotype Predictions. Cancers, 14(19), 4763. https://doi.org/10.3390/cancers14194763