Risk of Presenting with Poor-Prognosis Metastatic Cancer in Adolescents and Young Adults: A Population-Based Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Variable Definitions
2.2. Statistical Analyses
3. Results
3.1. Stage Distribution
3.2. Risk of Metastatic Disease for Sociodemographic Subgroups
3.2.1. Age
3.2.2. Sex
3.2.3. Race/Ethnicity
3.2.4. Socioeconomic Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moke, D.J.; Tsai, K.; Hamilton, A.S.; Hwang, A.; Liu, L.; Freyer, D.R.; Deapen, D. Emerging Cancer Survival Trends, Disparities, and Priorities in Adolescents and Young Adults: A California Cancer Registry-Based Study. JNCI Cancer Spectr. 2019, 3, pkz031. [Google Scholar] [CrossRef]
- Miller, K.D.; Fidler-Benaoudia, M.; Keegan, T.H.; Hipp, H.S.; Jemal, A.; Siegel, R.L. Cancer statistics for adolescents and young adults, 2020. CA A Cancer J. Clin. 2020, 70, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.C.; Lupo, P.J.; Roth, M.E.; Winick, N.J.; Pruitt, S.L. Disparities in cancer survival among adolescents and young adults: A population-based study of 88,000 patients. JNCI J. Natl. Cancer Inst. 2021, 113, 1074–1083. [Google Scholar] [CrossRef]
- Ellis, L.; Canchola, A.J.; Spiegel, D.; Ladabaum, U.; Haile, R.; Gomez, S.L. Racial and Ethnic Disparities in Cancer Survival: The Contribution of Tumor, Sociodemographic, Institutional, and Neighborhood Characteristics. J. Clin. Oncol. 2018, 36, 25–33. [Google Scholar] [CrossRef]
- Liu, L.H.A.; Moke, D.; Tsai, K.Y.; Wojcik, K.Y.; Cockburn, M.; Deapen, D. (Eds.) Cancer in Los Angeles County: Survival among Adolescents and Young Adults 1988–2014; Los Angeles Cancer Surveillance Program; University of Southern California: Los Angeles, CA, USA, 2017. [Google Scholar]
- Keegan, T.H.; Ries, L.A.; Barr, R.D.; Geiger, A.M.; Dahlke, D.V.; Pollock, B.H.; Bleyer, W.A.; for the National Cancer Institute Next Steps for Adolescent and Young Adult Oncology Epidemiology Working Group. Comparison of cancer survival trends in the United States of adolescents and young adults with those in children and older adults. Cancer 2016, 122, 1009–1016. [Google Scholar] [CrossRef] [Green Version]
- Tricoli, J.V.; Bleyer, A. Adolescent and Young Adult Cancer Biology. Cancer J. 2018, 24, 267–274. [Google Scholar] [CrossRef]
- Tricoli, J.V.; Seibel, N.L.; Blair, D.G.; Albritton, K.; Hayes-Lattin, B. Unique Characteristics of Adolescent and Young Adult Acute Lymphoblastic Leukemia, Breast Cancer, and Colon Cancer. JNCI J. Natl. Cancer Inst. 2011, 103, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleyer, A.; on behalf of the Biology and Clinical Trials Subgroups of the US National Cancer Institute Progress Review Group in Adolescent and Young Adult Oncology; Barr, R.; Hayes-Lattin, B.; Thomas, D.; Ellis, C.; Anderson, B. The distinctive biology of cancer in adolescents and young adults. Nat. Rev. Cancer 2008, 8, 288–298. [Google Scholar] [CrossRef]
- Martin, S.; Ulrich, C.; Munsell, M.; Taylor, S.; Lange, G.; Bleyer, A. Delays in Cancer Diagnosis in Underinsured Young Adults and Older Adolescents. Oncologist 2007, 12, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Fardell, J.E.; Patterson, P.; Wakefield, C.E.; Signorelli, C.; Cohn, R.; Anazodo, A.; Zebrack, B.; Sansom-Daly, U. A Narrative Review of Models of Care for Adolescents and Young Adults with Cancer: Barriers and Recommendations. J. Adolesc. Young Adult Oncol. 2018, 7, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Leiner, J.; Le Loarer, F. The current landscape of rhabdomyosarcomas: An update. Virchows Arch. 2020, 476, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.A.; Jenkins, B.; Chen, Y.; Oppong, J.K.; Adjei, E.; Jibril, A.S.; Hoda, S.; Cheng, E.; Chitale, D.; Bensenhaver, J.M.; et al. Hereditary Susceptibility for Triple-Negative Breast Cancer Associated with Western Sub-Saharan African Ancestry. Ann. Surg. 2019, 270, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Martini, R.; Newman, L.; Davis, M. Breast cancer disparities in outcomes; unmasking biological determinants associated with racial and genetic diversity. Clin. Exp. Metastasis 2021, 39, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Gyasi, S.; Tarver, W.; Carlos, R.C.; Andersen, B.L. Allostatic load: A framework to understand breast cancer outcomes in Black women. NPJ Breast Cancer 2021, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Hendifar, A.; Yang, D.; Lenz, F.; Lurje, G.; Pohl, A.; Lenz, C.; Ning, Y.; Zhang, W.; Lenz, H.-J. Gender Disparities in Metastatic Colorectal Cancer Survival. Clin. Cancer Res. 2009, 15, 6391–6397. [Google Scholar] [CrossRef] [Green Version]
- White, A.; Ironmonger, L.; Steele, R.J.C.; Ormiston-Smith, N.; Crawford, C.; Seims, A. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer 2018, 18, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, J.D.; van der Hel, O.L.; McMillan, G.P.; Boffetta, P.; Brennan, P. Renal cell carcinoma in relation to cigarette smoking: Meta-analysis of 24 studies. Int. J. Cancer 2005, 114, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Brennan, P.; Van Der Hel, O.; Moore, L.E.; Zaridze, D.; Matveev, V.; Holcatova, I.; Janout, V.; Kollarova, H.; Foretova, L.; Szeszenia-Dabrowska, N.; et al. Tobacco smoking, body mass index, hypertension, and kidney cancer risk in central and eastern Europe. Br. J. Cancer 2008, 99, 1912–1915. [Google Scholar] [CrossRef] [Green Version]
- Viñal, D.; Martínez, D.; Higuera, O.; De Castro, J. Genomic profiling in non-small-cell lung cancer in young patients. A Syst. Rev. ESMO Open 2021, 6, 100045. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer, M.; Kreienbrock, L.; Gerken, M.; Heinrich, J.; Bruske-Hohlfeld, I.; Muller, K.-M.; Wichmann, H.E. Risk Factors for Lung Cancer in Young Adults. Am. J. Epidemiol. 1998, 147, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Jensen, B.W.; Sørensen, T.I.; Cook, M.B.; Baker, J.L. Overweight Patterns Between Childhood and Early Adulthood and Esophageal and Gastric Cardia Adenocarcinoma Risk. Obesity 2019, 27, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Garrett, B.E.; Martell, B.N.; Caraballo, R.S.; King, B.A. Socioeconomic Differences in Cigarette Smoking Among Sociodemographic Groups. Prev. Chronic Dis. 2019, 16, E74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavela, G.; Lewis, D.W.; Locher, J.; Allison, D.B. Socioeconomic Status, Risk of Obesity, and the Importance of Albert J. Stunkard. Curr. Obes. Rep. 2016, 5, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaty, H.M.; Graham, D.Y. Importance of childhood socioeconomic status on the current prevalence of Helicobacter pylori infection. Gut 1994, 35, 742–745. [Google Scholar] [CrossRef] [Green Version]
- Clifford, J.S.; Lu, J.; Blondino, C.T.; Do, E.K.; Prom-Wormley, E.C. The Association Between Health Literacy and Tobacco Use: Results from a Nationally Representative Survey. J. Community Health 2022, 47, 63–70. [Google Scholar] [CrossRef]
- Lachowycz, K.; Jones, A.P. Greenspace and obesity: A systematic review of the evidence. Obes. Rev. 2011, 12, e183–e189. [Google Scholar] [CrossRef] [PubMed]
- Cooksey-Stowers, K.; Schwartz, M.; Brownell, K. Food Swamps Predict Obesity Rates Better Than Food Deserts in the United States. Int. J. Environ. Res. Public Health 2017, 14, 1366. [Google Scholar] [CrossRef] [Green Version]
- Mou, J.; Bolieu, E.L.; Pflugeisen, B.M.; Amoroso, P.J.; Devine, B.; Baldwin, L.M.; Frank, L.L.; Johnson, R.H. Delay in Treatment After Cancer Diagnosis in Adolescents and Young Adults: Does Facility Transfer Matter? J. Adolesc. Young Adult Oncol. 2019, 8, 243–253. [Google Scholar] [CrossRef]
- Keegan, T.H.; Parsons, H.M.; Chen, Y.; Maguire, F.B.; Morris, C.R.; Parikh-Patel, A.; Kizer, K.W.; Wun, T. Impact of Health Insurance on Stage at Cancer Diagnosis Among Adolescents and Young Adults. JNCI J. Natl. Cancer Inst. 2019, 111, 1152–1160. [Google Scholar] [CrossRef]
- Herbert, A.; Lyratzopoulos, G.; Whelan, J.; Taylor, R.M.; Barber, J.; Gibson, F.; Fern, L.A. Diagnostic timeliness in adolescents and young adults with cancer: A cross-sectional analysis of the BRIGHTLIGHT cohort. Lancet Child Adolesc. Health 2018, 2, 180–190. [Google Scholar] [CrossRef]
- McDaniel, C.C.; Hallam, H.H.; Cadwallader, T.; Lee, H.Y.; Chou, C. Persistent racial disparities in cervical cancer screening with Pap test. Prev. Med. Rep. 2021, 24, 101652. [Google Scholar] [CrossRef] [PubMed]
- USPSTF. Skin Cancer Screening Guidelines. 2022. Available online: https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/skin-cancer-screening#:~:text=The%20USPSTF%20recommends%20that%20children (accessed on 22 September 2022).
- Tao, L.; Gomez, S.L.; Keegan, T.H.; Kurian, A.W.; Clarke, C.A. Breast Cancer Mortality in African-American and Non-Hispanic White Women by Molecular Subtype and Stage at Diagnosis: A Population-Based Study. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1039–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sineshaw, H.M.; Gaudet, M.; Ward, E.M.; Flanders, W.D.; Desantis, C.; Lin, C.C.; Jemal, A. Association of race/ethnicity, socioeconomic status, and breast cancer subtypes in the National Cancer Data Base (2010–2011). Breast Cancer Res. Treat. 2014, 145, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Keegan, T.H.M.; Press, D.J.; Tao, L.; DeRouen, M.C.; Kurian, A.W.; Clarke, C.A.; Gomez, S.L. Impact of breast cancer subtypes on 3-year survival among adolescent and young adult women. Breast Cancer Res. 2013, 15, R95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Press, D.J.; Miller, M.E.; Liederbach, E.; Yao, K.; Huo, D. De novo metastasis in breast cancer: Occurrence and overall survival stratified by molecular subtype. Clin. Exp. Metastasis 2017, 34, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.C.; Wallace, K.; Sandler, R.S.; Baron, J.A. Racial Disparities in Incidence of Young-Onset Colorectal Cancer and Patient Survival. Gastroenterology 2019, 156, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Stewart, S.L.; Wike, J.M.; Kato, I.; Lewis, D.R.; Michaud, F. A population-based study of colorectal cancer histology in the United States, 1998–2001. Cancer 2006, 107, 1128–1141. [Google Scholar] [CrossRef] [PubMed]
- Holowatyj, A.N.; Lewis, M.A.; Pannier, S.T.; Kirchhoff, A.C.; Hardikar, S.; Figueiredo, J.C.; Huang, L.C.; Shibata, D.; Schmit, S.L.; Ulrich, C.M. Clinicopathologic and Racial/Ethnic Differences of Colorectal Cancer Among Adolescents and Young Adults. Clin. Transl. Gastroenterol. 2019, 10, e00059. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, M.J.; Ping, J. Clinicopathological Features and Survival Outcomes of Colorectal Cancer in Young Versus Elderly: A Population-Based Cohort Study of SEER 9 Registries Data (1988–2011). Medicine 2015, 94, e1402. [Google Scholar] [CrossRef]
- O’Connell, J.B.; Maggard, M.A.; Livingston, E.H.; Yo, C.K. Colorectal cancer in the young. Am. J. Surg. 2004, 187, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Au, J.S.-K.; Thongprasert, S.; Srinivasan, S.; Tsai, C.-M.; Khoa, M.T.; Heeroma, K.; Itoh, Y.; Cornelio, G.; Yang, P.-C. A Prospective, Molecular Epidemiology Study of EGFR Mutations in Asian Patients with Advanced Non–Small-Cell Lung Cancer of Adenocarcinoma Histology (PIONEER). J. Thorac. Oncol. 2014, 9, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, F.; Zhou, C. Lung cancer in never smokers—The East Asian experience. Transl. Lung Cancer Res. 2018, 7, 450–463. [Google Scholar] [CrossRef]
- Bhutada, J.S.; Hwang, A.; Liu, L.; Deapen, D.; Freyer, D.R. Poor-Prognosis Metastatic Cancers in Adolescents and Young Adults: Incidence Patterns, Trends, and Disparities. JNCI Cancer Spectr. 2021, 5, pkab039. [Google Scholar] [CrossRef] [PubMed]
- SEER Summary Staging Definition. Available online: https://training.seer.cancer.gov/staging/systems/summary/distant.html#:~:text=Definition%3A,%2C%20disseminated%2C%20diffuse%2C%20metastatic (accessed on 22 September 2022).
- Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Primers 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Shiels, M.S.; Cole, S.R.; Wegner, S.; Armenian, H.; Chmiel, J.S.; Ganesan, A.; Marconi, V.C.; Martinez-Maza, O.; Martinson, J.; Weintrob, A.; et al. Effect of HAART on Incident Cancer and Noncancer AIDS Events Among Male HIV Seroconverters. J. Acquir. Immune Defic. Syndr. 2008, 48, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Deapen, D.; Bernstein, L. Socioeconomic status and cancers of the female breast and reproductive organs: A comparison across racial/ethnic populations in Los Angeles County, California (United States). Cancer Causes Control 1998, 9, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Yost, K.; Perkins, C.; Cohen, R.; Morris, C.; Wright, W. Socioeconomic status and breast cancer incidence in California for different race/ethnic groups. Cancer Causes Control 2001, 12, 703–711. [Google Scholar] [CrossRef]
- SEER*Stat. Surveillance Research Program, National Cancer Institute SEER*Stat Software, Version <8.3>. Available online: https://seer.cancer.gov/seerstat (accessed on 22 September 2022).
- Zheng, Y.J.; Ho, C.; Lazar, A.; Ortiz-Urda, S. Poor melanoma outcomes and survival in Asian American and Pacific Islander patients. J. Am. Acad. Dermatol. 2021, 84, 1725–1727. [Google Scholar] [CrossRef] [PubMed]
- Duru, O.K.; Harawa, N.T.; Kermah, D.; Norris, K.C. Allostatic Load Burden and Racial Disparities in Mortality. J. Natl. Med. Assoc. 2012, 104, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Passarelli, A.; Mannavola, F.; Stucci, L.S.; Tucci, M.; Silvestris, F. Immune system and melanoma biology: A balance between immunosurveillance and immune escape. Oncotarget 2017, 8, 106132–106142. [Google Scholar] [CrossRef]
- Díaz-Montero, C.M.; Rini, B.I.; Finke, J.H. The immunology of renal cell carcinoma. Nat. Rev. Nephrol. 2020, 16, 721–735. [Google Scholar] [CrossRef]
- Zell, J.A.; Cinar, P.; Mobasher, M.; Ziogas, A.; Meyskens, F.L., Jr.; Anton-Culver, H. Survival for Patients with Invasive Cutaneous Melanoma Among Ethnic Groups: The Effects of Socioeconomic Status and Treatment. J. Clin. Oncol. 2008, 26, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Saini, G.; Ogden, A.; McCullough, L.E.; Torres, M.; Rida, P.; Aneja, R. Disadvantaged neighborhoods and racial disparity in breast cancer outcomes: The biological link. Cancer Causes Control 2019, 30, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Freemantle, N.; Nazareth, I.; Hunt, K. Gender Differences in Survival and the Use of Primary Care Prior to Diagnosis of Three Cancers: An Analysis of Routinely Collected UK General Practice Data. PLoS ONE 2014, 9, e101562. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.P.; Disteche, C.M. Sexual Inequality in the Cancer Cell. Cancer Res. 2018, 78, 5504–5505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunford, A.; Weinstock, D.M.; Savova, V.; Schumacher, S.E.; Cleary, J.P.; Yoda, A.; Sullivan, T.J.; Hess, J.M.; Gimelbrant, A.A.; Beroukhim, R.; et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. Nat. Genet. 2017, 49, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- SEER QI Process. Available online: https://seer.cancer.gov/qi/process.html (accessed on 22 September 2022).
- Pollock, B.H. What’s Missing in the Assessment of Adolescent and Young Adult (AYA) Cancer Outcomes? J. Natl. Cancer Inst. 2020, 112, 975–976. [Google Scholar] [CrossRef]
Cancer Site | Sociodemographic Variable | Subgroup | Locoregional (N, %) | Metastatic (N, %) | Chi-Square p-Value |
---|---|---|---|---|---|
All Cancer Sites Combined | Age * | 15–29 years | 28,755 (87) | 4324 (13) | 0.001 |
30–39 years | 91,072 (88) | 12,869 (12) | |||
Sex * | Male | 28,114 (81) | 6618 (19) | 0.000 | |
Female | 91,713 (90) | 10,575 (10) | |||
Race/Ethnicity * | NHW | 74,297 (90) | 8471 (10) | 0.000 | |
NHB | 12,152 (82) | 2743 (18) | |||
Hispanic | 20,969 (84) | 4018 (16) | |||
NHAPI | 8965 (83) | 1807 (17) | |||
SES * | High | 41,996 (90) | 4765 (10) | 0.000 | |
Middle | 38,133 (88) | 5307 (12) | |||
Low | 31,669 (84) | 5951 (16) | |||
All Cancer Sites Combined: Exclude Female Only Sites | Age * | 15–29 years | 20,804 (86) | 3416 (14) | 0.000 |
30–39 years | 40,872 (83) | 8539 (17) | |||
Sex * | Male | 28,114 (81) | 6618 (19) | 0.000 | |
Female | 33,562 (86) | 5337 (14) | |||
Race/Ethnicity * | NHW | 42,956 (88) | 5942 (12) | 0.000 | |
NHB | 4618 (73) | 1732 (27) | |||
Hispanic | 8586 (75) | 2847 (25) | |||
NHAPI | 2911 (69) | 1327 (31) | |||
SES * | High | 22,916 (87) | 3350 (13) | 0.000 | |
Middle | 19,706 (84) | 3678 (16) | |||
Low | 14,711 (78) | 4057 (22) | |||
Bone | Age * | 15–29 years | 2282 (76) | 719 (24) | 0.000 |
30–39 years | 987 (83) | 200 (17) | |||
Sex * | Male | 1893 (76) | 607 (24) | 0.000 | |
Female | 1376 (82) | 312 (18) | |||
Race/Ethnicity | NHW | 1819 (79) | 484 (21) | 0.081 | |
NHB | 361 (79) | 97 (21) | |||
Hispanic | 780 (75) | 259 (25) | |||
NHAPI | 258 (79) | 70 (21) | |||
SES * | High | 1053 (81) | 248 (19) | 0.003 | |
Middle | 1057 (78) | 305 (22) | |||
Low | 938 (75) | 306 (25) | |||
Breast | Age * | 15–29 years | 3784 (91) | 369 (9) | 0.000 |
30–39 years | 34,150 (94) | 2303 (6) | |||
Race/Ethnicity * | NHW | 20,786 (94) | 1224 (6) | 0.000 | |
NHB | 5453 (89) | 648 (11) | |||
Hispanic | 7014 (93) | 522 (7) | |||
NHAPI | 4256 (94) | 253 (6) | |||
SES * | High | 14,216 (95) | 770 (5) | 0.000 | |
Middle | 11,902 (93) | 840 (7) | |||
Low | 9603 (91) | 926 (9) | |||
Cervix | Age * | 15–29 years | 2816 (94) | 172 (6) | 0.013 |
30–39 years | 10,138 (93) | 769 (7) | |||
Race/Ethnicity * | NHW | 6999 (94) | 471 (6) | 0.000 | |
NHB | 1421 (90) | 158 (10) | |||
Hispanic | 3472 (94) | 240 (6) | |||
NHAPI | 809 (93) | 61 (7) | |||
SES * | High | 4774 (92) | 427 (8) | 0.000 | |
Middle | 4057 (94) | 266 (6) | |||
Low | 3141 (95) | 181 (5) | |||
Colorectum | Age * | 15–29 years | 2743 (78) | 770 (22) | 0.000 |
30–39 years | 8997 (74) | 3147 (26) | |||
Sex | Male | 6108 (75) | 2002 (25) | 0.320 | |
Female | 5632 (75) | 1915 (25) | |||
Race/Ethnicity * | NHW | 6666 (76) | 2098 (24) | 0.000 | |
NHB | 1523 (73) | 555 (27) | |||
Hispanic | 2243 (73) | 825 (27) | |||
NHAPI | 1059 (72) | 402 (28) | |||
SES | High | 3672 (75) | 1197 (25) | 0.081 | |
Middle | 3749 (76) | 1215 (24) | |||
Low | 3510 (74) | 1249 (26) | |||
Kidney | Age * | 15–29 years | 1102 (87) | 161 (13) | 0.000 |
30–39 years | 5461 (93) | 441 (7) | |||
Sex * | Male | 3754 (91) | 390 (9) | 0.000 | |
Female | 2809 (93) | 212 (7) | |||
Race/Ethnicity * | NHW | 3752 (94) | 241 (6) | 0.000 | |
NHB | 790 (81) | 185 (19) | |||
Hispanic | 1486 (92) | 124 (8) | |||
NHAPI | 387 (90) | 45 (10) | |||
SES * | High | 1893 (93) | 153 (7) | 0.001 | |
Middle | 2155 (93) | 171 (7) | |||
Low | 2057 (90) | 228 (10) | |||
Lung | Age * | 15–29 years | 528 (61) | 332 (39) | 0.000 |
30–39 years | 1357 (37) | 2313 (63) | |||
Sex * | Male | 839 (38) | 1379 (62) | 0.000 | |
Female | 1046 (45) | 1266 (55) | |||
Race/Ethnicity * | NHW | 1215 (46) | 1429 (54) | 0.000 | |
NHB | 234 (38) | 375 (62) | |||
Hispanic | 290 (41) | 415 (59) | |||
NHAPI | 126 (24) | 408 (76) | |||
SES * | High | 578 (44) | 734 (56) | 0.001 | |
Middle | 604 (43) | 796 (57) | |||
Low | 546 (37) | 912 (63) | |||
Melanoma | Age * | 15–29 years | 10,259 (98) | 229 (2) | 0.040 |
30–39 years | 18,625 (97) | 491 (3) | |||
Sex * | Male | 10,866 (96) | 467 (4) | 0.000 | |
Female | 18,018 (99) | 253 (1) | |||
Race/Ethnicity * | NHW | 25,098 (98) | 598 (2) | 0.000 | |
NHB | 143 (89) | 17 (11) | |||
Hispanic | 1490 (95) | 86 (5) | |||
NHAPI | 248 (94) | 16 (6) | |||
SES * | High | 12,942 (98) | 221 (2) | 0.000 | |
Middle | 9207 (98) | 235 (2) | |||
Low | 4701 (96) | 205 (4) | |||
Ovary | Age * | 15–29 years | 686 (67) | 334 (33) | 0.000 |
30–39 years | 1527 (59) | 1075 (41) | |||
Race/Ethnicity * | NHW | 1237 (63) | 742 (37) | 0.000 | |
NHB | 158 (48) | 173 (52) | |||
Hispanic | 466 (57) | 353 (43) | |||
NHAPI | 328 (71) | 132 (29) | |||
SES * | High | 734 (65) | 403 (35) | 0.001 | |
Middle | 751 (62) | 468 (38) | |||
Low | 599 (57) | 453 (43) | |||
RMS | Age | 15–29 years | 300 (55) | 247 (45) | 0.827 |
30–39 years | 81 (56) | 64 (44) | |||
Sex * | Male | 206 (50) | 206 (50) | 0.001 | |
Female | 175 (63) | 105 (38) | |||
Race/Ethnicity | NHW | 193 (55) | 155 (45) | 0.357 | |
NHB | 71 (59) | 50 (41) | |||
Hispanic | 90 (54) | 77 (46) | |||
NHAPI | 20 (43) | 26 (57) | |||
SES | High | 117 (52) | 106 (48) | 0.583 | |
Middle | 120 (57) | 89 (43) | |||
Low | 112 (54) | 94 (46) | |||
Soft Tissue Sarcomas | Age * | 15–29 years | 3388 (85) | 596 (15) | 0.000 |
30–39 years | 4338 (88) | 598 (12) | |||
Sex * | Male | 3808 (84) | 699 (16) | 0.000 | |
Female | 3918 (89) | 495 (11) | |||
Race/Ethnicity * | NHW | 3833 (88) | 511 (12) | 0.000 | |
NHB | 1323 (84) | 251 (16) | |||
Hispanic | 1738 (84) | 322 (16) | |||
NHAPI | 625 (86) | 100 (14) | |||
SES * | High | 2315 (88) | 306 (12) | 0.000 | |
Middle | 2461 (87) | 369 (13) | |||
Low | 2408 (85) | 433 (15) | |||
Stomach | Age * | 15–29 years | 202 (36) | 362 (64) | 0.000 |
30–39 years | 1026 (44) | 1285 (56) | |||
Sex | Male | 640 (42) | 868 (58) | 0.756 | |
Female | 588 (43) | 779 (57) | |||
Race/Ethnicity * | NHW | 380 (47) | 426 (53) | 0.001 | |
NHB | 173 (46) | 202 (54) | |||
Hispanic | 469 (39) | 739 (61) | |||
NHAPI | 188 (42) | 260 (58) | |||
SES * | High | 346 (47) | 385 (53) | 0.018 | |
Middle | 353 (41) | 498 (59) | |||
Low | 439 (41) | 630 (59) | |||
Uterus | Age | 15–29 years | 665 (95) | 33 (5) | 0.371 |
30–39 years | 4385 (96) | 183 (4) | |||
Race/Ethnicity | NHW | 2319 (96) | 92 (4) | 0.082 | |
NHB | 502 (94) | 32 (6) | |||
Hispanic | 1431 (96) | 56 (4) | |||
NHAPI | 661 (95) | 34 (5) | |||
SES * | High | 989 (94) | 61 (6) | 0.002 | |
Middle | 1717 (97) | 55 (3) | |||
Low | 1982 (96) | 88 (4) |
Cancer Site | Sociodemographic Category | Subgroup | Crude Odds Ratio (95% CI) | Adjusted Odds Ratio (95% CI) |
---|---|---|---|---|
All sites combined | Age | 30–39 years | -- | -- |
15–29 years | 1.07 (1.03–1.11) | 1.00 (0.96–1.04) | ||
Sex | Female | -- | -- | |
Male | 2.05 (1.98–2.12) | 2.18 (2.11–2.26) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 1.95 (1.86–2.04) | 1.86 (1.77–1.96) | ||
Hispanic | 1.66 (1.59–1.72) | 1.61 (1.54–1.68) | ||
NHAPI | 1.75 (1.66–1.85) | 1.93 (1.82–2.04) | ||
SES | High | -- | -- | |
Middle | 1.22 (1.17–1.27) | 1.16 (1.11–1.21) | ||
Low | 1.63 (1.57–1.70) | 1.42 (1.36–1.48) | ||
Bone | Age | 30–39 years | -- | -- |
15–29 years | 1.55 (1.31–1.85) | 1.51 (1.26–1.82) | ||
Sex | Female | -- | -- | |
Male | 1.41 (1.21–1.65) | 1.34 (1.14–1.57) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 1.01 (0.79–1.29) | 0.91 (0.70–1.19) | ||
Hispanic | 1.25 (1.05–1.48) | 1.12 (0.93–1.35) | ||
NHAPI | 1.02 (0.77–1.35) | 1.08 (0.81–1.45) | ||
SES | High | -- | -- | |
Middle | 1.23 (1.02–1.48) | 1.24 (1.02–1.50) | ||
Low | 1.39 (1.15–1.67) | 1.37 (1.12–1.68) | ||
Breast | Age | 30–39 years | -- | -- |
15–29 years | 1.43 (1.28–1.61) | 1.36 (1.20–1.53) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 2.01 (1.82–2.22) | 1.72 (1.55–1.92) | ||
Hispanic | 1.26 (1.13–1.40) | 1.12 (1.00–1.25) | ||
NHAPI | 1.01 (0.88–1.16) | 1.04 (0.90–1.20) | ||
SES | High | -- | -- | |
Middle | 1.30 (1.17–1.43) | 1.22 (1.10–1.35) | ||
Low | 1.77 (1.60–1.95) | 1.51 (1.36–1.68) | ||
Cervix | Age | 30–39 years | -- | -- |
15–29 years | 0.79 (0.67–0.94) | 0.82 (0.68–0.98) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 1.62 (1.34–1.95) | 1.50 (1.22–1.83) | ||
Hispanic | 1.02 (0.87–1.20) | 1.02 (0.86–1.21) | ||
NHAPI | 1.14 (0.86–1.50) | 1.18 (0.89–1.57) | ||
SES | High | -- | -- | |
Middle | 1.13 (0.93–1.37) | 1.10 (0.90–1.34) | ||
Low | 1.53 (1.28–1.83) | 1.46 (1.20–1.76) | ||
Colorectum | Age | 30–39 years | -- | -- |
15–29 years | 0.80 (0.73–0.88) | 0.79 (0.72–0.87) | ||
Sex | Female | -- | -- | |
Male | 0.96 (0.90–1.03) | 0.97 (0.90–1.04) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 1.14 (1.02–1.27) | 1.16 (1.04–1.31) | ||
Hispanic | 1.16 (1.06–1.27) | 1.16 (1.05–1.28) | ||
NHAPI | 1.20 (1.06–1.36) | 1.22 (1.07–1.38) | ||
SES | High | -- | -- | |
Middle | 0.99 (0.90–1.09) | 0.98 (0.89–1.07) | ||
Low | 1.08 (0.98–1.18) | 1.05 (0.95–1.16) | ||
Kidney | Age | 30–39 years | -- | -- |
15–29 years | 1.78 (1.47–2.16) | 1.81 (1.47–2.22) | ||
Sex | Female | -- | -- | |
Male | 1.37 (1.15–1.63) | 1.45 (1.20–1.75) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 3.57 (2.91–4.39) | 3.61 (2.88–4.53) | ||
Hispanic | 1.29 (1.03–1.62) | 1.33 (1.05–1.69) | ||
NHAPI | 1.81 (1.29–2.52) | 2.02 (1.43–2.84) | ||
SES | High | -- | -- | |
Middle | 0.98 (0.78–1.23) | 0.93 (0.74–1.18) | ||
Low | 1.36 (1.10–1.69) | 1.07 (0.85–1.35) | ||
Lung | Age | 30–39 years | -- | -- |
15–29 years | 0.37 (0.32–0.43) | 0.36 (0.31–0.43) | ||
Sex | Female | -- | -- | |
Male | 1.36 (1.21–1.53) | 1.35 (1.19–1.53) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 1.36 (1.14–1.63) | 1.29 (1.06–1.58) | ||
Hispanic | 1.22 (1.03–1.44) | 1.32 (1.10–1.59) | ||
NHAPI | 2.75 (2.22–3.41) | 2.97 (2.36–3.73) | ||
SES | High | -- | -- | |
Middle | 1.04 (0.89–1.21) | 1.05 (0.89–1.23) | ||
Low | 1.32 (1.13–1.53) | 1.33 (1.13–1.57) | ||
Melanoma | Age | 30–39 years | -- | -- |
15–29 years | 0.85 (0.72–0.99) | 0.89 (0.75–1.05) | ||
Sex | Female | -- | -- | |
Male | 3.06 (2.62–3.57) | 3.11 (2.64–3.66) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 4.99 (3.00–8.30) | 4.04 (2.32–7.04) | ||
Hispanic | 2.42 (1.92–3.05) | 2.37 (1.85–3.04) | ||
NHAPI | 2.71 (1.62–4.52) | 2.99 (1.75–5.12) | ||
SES | High | -- | -- | |
Middle | 1.49 (1.24–1.80) | 1.45 (1.20–1.75) | ||
Low | 2.55 (2.11–3.10) | 2.30 (1.89–2.80) | ||
Ovary | Age | 30–39 years | -- | -- |
15–29 years | 0.70 (0.60–0.81) | 0.70 (0.60–0.83) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 1.71 (1.36–2.14) | 1.79 (1.40–2.30) | ||
Hispanic | 1.27 (1.08–1.50) | 1.28 (1.07–1.52) | ||
NHAPI | 0.69 (0.56–0.86) | 0.66 (0.53–0.83) | ||
SES | High | -- | -- | |
Middle | 1.11 (0.94–1.30) | 1.10 (0.92–1.30) | ||
Low | 1.33 (1.12–1.58) | 1.17 (0.97–1.40) | ||
Rhabdomyosarcoma | Age | 30–39 years | -- | -- |
15–29 years | 1.04 (0.72–1.51) | 1.13 (0.77–1.68) | ||
Sex | Female | -- | -- | |
Male | 1.67 (1.22–2.27) | 1.75 (1.27–2.43) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 0.88 (0.58–1.33) | 0.81 (0.51–1.31) | ||
Hispanic | 1.07 (0.74–1.54) | 1.10 (0.74–1.65) | ||
NHAPI | 1.62 (0.87–3.01) | 1.70 (0.89–3.26) | ||
SES | High | -- | -- | |
Middle | 0.82 (0.56–1.20) | 0.87 (0.59–1.29) | ||
Low | 0.93 (0.63–1.35) | 1.05 (0.69–1.60) | ||
Soft Tissue Sarcomas | Age | 30–39 years | -- | -- |
15–29 years | 1.28 (1.13–1.44) | 1.26 (1.11–1.44) | ||
Sex | Female | -- | -- | |
Male | 1.45 (1.28–1.64) | 1.47 (1.29–1.67) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 1.42 (1.21–1.68) | 1.40 (1.17–1.67) | ||
Hispanic | 1.39 (1.20–1.62) | 1.35 (1.15–1.58) | ||
NHAPI | 1.20 (0.95–1.51) | 1.20 (0.95–1.53) | ||
SES | High | -- | -- | |
Middle | 1.13 (0.96–1.33) | 1.08 (0.91–1.27) | ||
Low | 1.36 (1.16–1.59) | 1.19 (1.01–1.41) | ||
Stomach | Age | 30–39 years | -- | -- |
15–29 years | 1.34 (1.12–1.60) | 1.43 (1.17–1.75) | ||
Sex | Female | -- | -- | |
Male | 1.02 (0.88–1.17) | 1.05 (0.90–1.23) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 1.10 (0.87–1.40) | 0.92 (0.71–1.19) | ||
Hispanic | 1.37 (1.15–1.63) | 1.28 (1.05–1.56) | ||
NHAPI | 1.27 (1.02–1.59) | 1.19 (0.93–1.52) | ||
SES | High | -- | -- | |
Middle | 1.25 (1.03–1.51) | 1.26 (1.02–1.54) | ||
Low | 1.25 (1.05–1.51) | 1.25 (1.02–1.53) | ||
Uterus | Age | 30–39 years | -- | -- |
15–29 years | 1.11 (0.76–1.62) | 1.27 (0.86–1.88) | ||
Race/Ethnicity | NHW | -- | -- | |
NHB | 1.58 (1.04–2.38) | 1.59 (1.03–2.46) | ||
Hispanic | 0.96 (0.69–1.35) | 0.98 (0.69–1.40) | ||
NHAPI | 1.28 (0.85–1.91) | 1.18 (0.78–1.79) | ||
SES | High | -- | -- | |
Middle | 0.52 (0.36–0.75) | 0.53 (0.36–0.77) | ||
Low | 0.72 (0.52–1.01) | 0.69 (0.49–0.98) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhutada, J.K.S.; Hwang, A.E.; Liu, L.; Tsai, K.-Y.; Deapen, D.; Freyer, D.R. Risk of Presenting with Poor-Prognosis Metastatic Cancer in Adolescents and Young Adults: A Population-Based Study. Cancers 2022, 14, 4932. https://doi.org/10.3390/cancers14194932
Bhutada JKS, Hwang AE, Liu L, Tsai K-Y, Deapen D, Freyer DR. Risk of Presenting with Poor-Prognosis Metastatic Cancer in Adolescents and Young Adults: A Population-Based Study. Cancers. 2022; 14(19):4932. https://doi.org/10.3390/cancers14194932
Chicago/Turabian StyleBhutada, Jessica K. Sheth, Amie E. Hwang, Lihua Liu, Kai-Ya Tsai, Dennis Deapen, and David R. Freyer. 2022. "Risk of Presenting with Poor-Prognosis Metastatic Cancer in Adolescents and Young Adults: A Population-Based Study" Cancers 14, no. 19: 4932. https://doi.org/10.3390/cancers14194932
APA StyleBhutada, J. K. S., Hwang, A. E., Liu, L., Tsai, K. -Y., Deapen, D., & Freyer, D. R. (2022). Risk of Presenting with Poor-Prognosis Metastatic Cancer in Adolescents and Young Adults: A Population-Based Study. Cancers, 14(19), 4932. https://doi.org/10.3390/cancers14194932