Predictors of Mortality in Patients with Advanced Cancer—A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rietjens, J.A.C.; Sudore, R.L.; Connolly, M.; van Delden, J.J.; Drickamer, M.A.; Droger, M.; van der Heide, A.; Heyland, D.K.; Houttekier, D.; Janssen, D.J.A.; et al. Definition and recommendations for advance care planning: An international consensus supported by the European Association for Palliative Care. Lancet Oncol. 2017, 18, e543–e551. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.S.; Kendall, M.; Boyd, K.; Sheikh, A. Illness trajectories and palliative care. BMJ 2005, 330, 1007–1011. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Health and Care Excellence. End of Life Care for Adults. Available online: https://www.nice.org.uk/guidance/qs13 (accessed on 6 January 2022).
- NSW Health. End of Life and Palliative Care Framework 2019–2024. Available online: https://www.health.nsw.gov.au/palliativecare/Publications/eol-pc-framework.pdf (accessed on 6 January 2022).
- IKNL. Netherlands Quality Framework for Palliative Care. Available online: https://pznlsawebprod.blob.core.windows.net/mediacontainer/pznl/media/themabestanden/kwaliteitskader%20palliatieve%20zorg%20nederland/netherlands-quality-framework-for-palliative-care.pdf (accessed on 6 January 2022).
- Pattison, M.; Romer, A.L. Improving Care Through the End of Life: Launching a Primary Care Clinic-Based Program. J. Palliat. Med. 2001, 4, 249–254. [Google Scholar] [CrossRef] [Green Version]
- White, N.; Kupeli, N.; Vickerstaff, V.; Stone, P. How accurate is the ‘Surprise Question’ at identifying patients at the end of life? A systematic review and meta-analysis. BMC Med. 2017, 15, 139. [Google Scholar] [CrossRef]
- Simmons, C.P.; McMillan, D.; McWilliams, K.; Sande, T.A.; Fearon, K.C.; Tuck, S.; Fallon, M.; Laird, B.J. Prognostic Tools in Patients with Advanced Cancer: A Systematic Review. J. Pain Symptom Manag. 2017, 53, 962–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bramer, W.; Milic, J.; Mast, F. Reviewing retrieved references for inclusion in systematic reviews using EndNote. J. Med. Libr. Assoc. 2017, 105, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Moons, K.G.M.; de Groot, J.A.H.; Bouwmeester, W.; Vergouwe, Y.; Mallett, S.; Altman, D.G.; Reitsma, J.B.; Collins, G.S. Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies: The CHARMS Checklist. PLoS Med. 2014, 11, e1001744. [Google Scholar] [CrossRef] [PubMed]
- Hayden, J.A.; Côté, P.; Bombardier, C. Evaluation of the Quality of Prognosis Studies in Systematic Reviews. Ann. Intern. Med. 2006, 144, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- OncologyPRO. 2020. Available online: https://oncologypro.esmo.org/oncology-in-practice/practice-tools/performance-scales (accessed on 6 January 2022).
- Grunkemeier, G.L.; Jin, R. Receiver operating characteristic curve analysis of clinical risk models. Ann. Thorac. Surg. 2001, 72, 323–326. [Google Scholar] [CrossRef]
- Steyerberg, E.W.; Vergouwe, Y. Towards better clinical prediction models: Seven steps for development and an ABCD for validation. Eur. Heart J. 2014, 35, 1925–1931. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Bartels, R.H.M.A.; Feuth, T.; van der Maazen, R.; Verbeek, A.L.M.; Kappelle, A.C.; Grotenhuis, J.A.; Leer, J.W. Development of a model with which to predict the life expectancy of patients with spinal epidural metastasis. Cancer 2007, 110, 2042–2049. [Google Scholar] [CrossRef]
- Braun, D.P.; Gupta, D.; Staren, E.D. Quality of life assessment as a predictor of survival in non-small cell lung cancer. BMC Cancer 2011, 11, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunello, A.; Fontana, A.; Zafferri, V.; Panza, F.; Fiduccia, P.; Basso, U.; Copetti, M.; Lonardi, S.; Roma, A.; Falci, C.; et al. Development of an oncological-multidimensional prognostic index (Onco-MPI) for mortality prediction in older cancer patients. J. Cancer Res. Clin. Oncol. 2016, 142, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Cesari, M.; Cerullo, F.; Zamboni, V.; di Palma, R.; Scambia, G.; Balducci, L.; Incalzi, R.A.; Vellas, B.; Gambassi, G. Functional Status and Mortality in Older Women with Gynecological Cancer. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 1129–1133. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Feng, C.; Yu, C.; Peng, C.; Lai, H.; Cheng, K.; Lin, Y.; Huang, W.; Kao, J. Prognostic factors associated with the survival of patients with gastric adenocarcinoma: A retrospective study. Adv. Dig. Med. 2019, 7, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Chow, E.; Abdolell, M.; Panzarella, T.; Harris, K.; Bezjak, A.; Warde, P.; Tannock, I. Predictive Model for Survival in Patients with Advanced Cancer. J. Clin. Oncol. 2008, 26, 5863–5869. [Google Scholar] [CrossRef] [PubMed]
- Collette, L.; van Andel, G.; Bottomley, A.; Oosterhof, G.O.; Albrecht, W.; de Reijke, T.M.; Fossà, S.D. Is Baseline Quality of Life Useful for Predicting Survival with Hormone-Refractory Prostate Cancer? A Pooled Analysis of Three Studies of the European Organisation for Research and Treatment of Cancer Genitourinary Group. J. Clin. Oncol. 2004, 22, 3877–3885. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.; Sundararajan, V.; Brand, C.A.; Moore, G.; Lethborg, C.; Gold, M.; Murphy, M.A.; Bohensky, M.A.; Philip, J. Clinical presentation and patterns of care for short-term survivors of malignant glioma. J. Neuro-Oncol. 2014, 119, 333–341. [Google Scholar] [CrossRef]
- Contreras-Bolívar, V.; Sánchez-Torralvo, F.J.; Ruiz-Vico, M.; González-Almendros, I.; Barrios, M.; Padín, S.; Alba, E.; Olveira, G. GLIM Criteria Using Hand Grip Strength Adequately Predict Six-Month Mortality in Cancer Inpatients. Nutrients 2019, 11, 2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deans, D.A.C.; Wigmore, S.J.; de Beaux, A.C.; Paterson-Brown, S.; Garden, O.J.; Fearon, K.C.H. Clinical prognostic scoring system to aid decision-making in gastro-oesophageal cancer. BJS 2007, 94, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Dharma-Wardene, M.; Au, H.-J.; Hanson, J.; Dupere, D.; Hewitt, J.; Feeny, D. Baseline FACT-G score is a predictor of survival for advanced lung cancer. Qual. Life Res. 2004, 13, 1209–1216. [Google Scholar] [CrossRef]
- Efficace, F.; Bottomley, A.; Smit, E.F.; Lianes, P.; Legrand, C.; Debruyne, C.; Schramel, F.; Smit, H.J.; Gaafar, R.; Biesma, B.; et al. Is a patient’s self-reported health-related quality of life a prognostic factor for survival in non-small-cell lung cancer patients? A multivariate analysis of prognostic factors of EORTC study 08975. Ann. Oncol. 2006, 17, 1698–1704. [Google Scholar] [CrossRef]
- Ferrigno, D.; Buccheri, G.; Ricca, I. Prognostic significance of blood coagulation tests in lung cancer. Eur. Respir. J. 2001, 17, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Fielding, R.; Wong, W.S. Quality of life as a predictor of cancer survival among Chinese liver and lung cancer patients. Eur. J. Cancer 2007, 43, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Filippini, G.; Falcone, C.; Boiardi, A.; Broggi, G.; Bruzzone, M.G.; Caldiroli, D.; Farina, R.; Farinotti, M.; Fariselli, L.; Finocchiaro, G.; et al. Prognostic factors for survival in 676 consecutive patients with newly diagnosed primary glioblastoma. Neuro-Oncology 2008, 10, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, B.; Agulnik, J.S.; Gioulbasanis, I.; Kasymjanova, G.; Morris, D.; Macdonald, N. Montreal prognostic score: Estimating survival of patients with non-small cell lung cancer using clinical biomarkers. Br. J. Cancer 2013, 109, 2066–2071. [Google Scholar] [CrossRef] [Green Version]
- Geraci, J.M.; Tsang, W.; Valdres, R.V.; Escalante, C.P. Progressive disease in patients with cancer presenting to an emergency room with acute symptoms predicts short-term mortality. Support. Care Cancer 2006, 14, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Giantin, V.; Valentini, E.; Iasevoli, M.; Falci, C.; Siviero, P.; de Luca, E.; Maggi, S.; Martella, B.; Orrù, G.; Crepaldi, G.; et al. Does the Multidimensional Prognostic Index (MPI), based on a Comprehensive Geriatric Assessment (CGA), predict mortality in cancer patients? Results of a prospective observational trial. J. Geriatr. Oncol. 2013, 4, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Griguolo, G.; Jacot, W.; Kantelhardt, E.; Dieci, M.V.; Bourgier, C.; Thomssen, C.; Bailleux, C.; Miglietta, F.; Braccini, A.-L.; Conte, P.; et al. External validation of Modified Breast Graded Prognostic Assessment for breast cancer patients with brain metastases: A multicentric European experience. Breast 2018, 37, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Gripp, S.; Moeller, S.; Bölke, E.; Schmitt, G.; Matuschek, C.; Asgari, S.; Asgharzadeh, F.; Roth, S.; Budach, W.; Franz, M.; et al. Survival Prediction in Terminally Ill Cancer Patients by Clinical Estimates, Laboratory Tests, and Self-Rated Anxiety and Depression. J. Clin. Oncol. 2007, 25, 3313–3320. [Google Scholar] [CrossRef]
- Gupta, D.; Lis, C.G.; Dahlk, S.L.; Vashi, P.G.; Grutsch, J.F.; Lammersfeld, C.A. Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer. Br. J. Nutr. 2004, 92, 957–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, D.; Lammersfeld, C.A.; Vashi, P.G.; King, J.; Dahlk, S.L.; Grutsch, J.F.; Lis, C.G. Bioelectrical impedance phase angle in clinical practice: Implications for prognosis in stage IIIB and IV non-small cell lung cancer. BMC Cancer 2009, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, T.; Xu, R.; Schiller, J.H.; Bonomi, P.; Johnson, D.H. Clinical Model to Predict Survival in Chemonaive Patients with Advanced Non–Small-Cell Lung Cancer Treated With Third-Generation Chemotherapy Regimens Based on Eastern Cooperative Oncology Group Data. J. Clin. Oncol. 2005, 23, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.-F.; Chen, Z.-H.; Ma, X.-K.; Li, X.; Wu, D.-H.; Chen, J.; Dong, M.; Wei, L.; Wang, T.-T.; Ruan, D.-Y.; et al. Comparison of five models for end-stage liver disease in predicting the survival rate of patients with advanced hepatocellular carcinoma. Tumor Biol. 2015, 37, 5265–5273. [Google Scholar] [CrossRef]
- Hosono, N.; Ueda, T.; Tamura, D.; Aoki, Y.; Yoshikawa, H. Prognostic Relevance of Clinical Symptoms in Patients with Spinal Metastases. Clin. Orthop. Relat. Res. 2005, 436, 196–201. [Google Scholar] [CrossRef]
- Hui, D.; Bansal, S.; Morgado, M.; Dev, R.; Chisholm, G.; Bruera, E. Phase angle for prognostication of survival in patients with advanced cancer: Preliminary findings. Cancer 2014, 120, 2207–2214. [Google Scholar] [CrossRef] [Green Version]
- Hui, D.; Park, M.; Liu, D.; Paiva, C.E.; Suh, S.-Y.; Morita, T.; Bruera, E. Clinician prediction of survival versus the Palliative Prognostic Score: Which approach is more accurate? Eur. J. Cancer 2016, 64, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iversen, L.H.; Nørgaard, M.; Jacobsen, J.; Laurberg, S.; Sørensen, H.T. The Impact of Comorbidity on Survival of Danish Colorectal Cancer Patients from 1995 to 2006—A Population-Based Cohort Study. Dis. Colon Rectum 2009, 52, 71–78. [Google Scholar] [CrossRef]
- Jang, R.W.; Caraiscos, V.B.; Swami, N.; Banerjee, S.; Mak, E.; Kaya, E.; Rodin, G.; Bryson, J.; Ridley, J.Z.; Le, L.W.; et al. Simple Prognostic Model for Patients with Advanced Cancer Based on Performance Status. J. Oncol. Pr. 2014, 10, e335–e341. [Google Scholar] [CrossRef] [PubMed]
- Jonna, S.; Chiang, L.; Liu, J.; Carroll, M.B.; Flood, K.; Wildes, T.M. Geriatric assessment factors are associated with mortality after hospitalization in older adults with cancer. Support. Care Cancer 2016, 24, 4807–4813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katagiri, H.; Takahashi, M.; Wakai, K.; Sugiura, H.; Kataoka, T.; Nakanishi, K. Prognostic factors and a scoring system for patients with skeletal metastasis. J. Bone Jt. Surgery. Br. Vol. 2005, 87, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Kilgour, R.D.; Vigano, A.; Trutschnigg, B.; Lucar, E.; Borod, M.; Morais, J.A. Handgrip strength predicts survival and is associated with markers of clinical and functional outcomes in advanced cancer patients. Support. Care Cancer 2013, 21, 3261–3270. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.H.; Choi, J.H.; Kim, C.H.; Jung, Y.K.; Yim, H.J.; Yeon, J.E.; Park, J.-J.; Kim, J.S.; Bak, Y.-T.; et al. Value of the model for end-stage liver disease for predicting survival in hepatocellular carcinoma patients treated with transarterial chemoembolization. Scand. J. Gastroenterol. 2009, 44, 346–357. [Google Scholar] [CrossRef]
- Kinoshita, A.; Onoda, H.; Takano, K.; Imai, N.; Saeki, C.; Fushiya, N.; Miyakawa, Y.; Nishino, H.; Tajiri, H. Pretreatment serum C-reactive protein level predicts poor prognosis in patients with hepatocellular carcinoma. Med. Oncol. 2012, 29, 2800–2808. [Google Scholar] [CrossRef]
- Langendijk, H.; Aaronson, N.K.; de Jong, J.M.; Velde, G.P.T.; Muller, M.J.; Wouters, M. The prognostic impact of quality of life assessed with the EORTC QLQ-C30 in inoperable non-small cell lung carcinoma treated with radiotherapy. Radiother. Oncol. 2000, 55, 19–25. [Google Scholar] [CrossRef]
- Liljehult, M.M.; Buus, L.; Liljehult, J.M.; Rasmussen, B.K. Walking ability in patients with glioblastoma: Prognostic value of the Berg Balance Scale and the 10 meter walk test. J. Neuro-Oncol. 2017, 135, 335–342. [Google Scholar] [CrossRef]
- Limquiaco, J.L.; Wong, G.L.; Wong, V.W.; Lai, P.B.; Chan, H.L. Evaluation of Model for End Stage Liver Disease (MELD)-based systems as prognostic index for hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2009, 24, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Lund, L.; Jacobsen, J.; Nørgaard, M.; McLaughlin, J.K.; Blot, W.J.; Borre, M.; Sørensen, H.T. The Prognostic Impact of Comorbidities on Renal Cancer, 1995 to 2006: A Danish Population Based Study. J. Urol. 2009, 182, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Maione, P.; Perrone, F.; Gallo, C.; Manzione, L.; Piantedosi, F.; Barbera, S.; Cigolari, S.; Rosetti, F.; Piazza, E.; Robbiati, S.F.; et al. Pretreatment Quality of Life and Functional Status Assessment Significantly Predict Survival of Elderly Patients with Advanced Non—Small-Cell Lung Cancer Receiving Chemotherapy: A Prognostic Analysis of the Multicenter Italian Lung Cancer in the Elderly Study. J. Clin. Oncol. 2005, 23, 6865–6872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrero, J.A.; Fontana, R.J.; Barrat, A.; Askari, F.K.; Conjeevaram, H.S.; Su, G.; Lok, A.S.-F. Prognosis of hepatocellular carcinoma: Comparison of 7 staging systems in an American cohort. Hepatology 2005, 41, 707–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, L.; Watanabe, S.; Fainsinger, R.; Lau, F.; Ghosh, S.; Quan, H.; Atkins, M.; Fassbender, K.; Downing, G.M.; Baracos, V. Prognostic Factors in Patients with Advanced Cancer: Use of the Patient-Generated Subjective Global Assessment in Survival Prediction. J. Clin. Oncol. 2010, 28, 4376–4383. [Google Scholar] [CrossRef]
- Moroni, M.; Zocchi, D.; Bolognesi, D.; Abernethy, A.; Rondelli, R.; Savorani, G.; Salera, M.; Dall’Olio, F.G.; Galli, G.; Biasco, G.; et al. The ‘surprise’ question in advanced cancer patients: A prospective study among general practitioners. Palliat. Med. 2014, 28, 959–964. [Google Scholar] [CrossRef]
- Moss, A.H.; Lunney, J.R.; Culp, S.; Auber, M.; Kurian, S.; Rogers, J.; Dower, J.; Abraham, J. Prognostic significance of the “surprise” question in cancer patients. J. Palliat. Med. 2010, 13, 837–840. [Google Scholar] [CrossRef]
- Motzer, R.J.; Bacik, J.; Schwartz, L.H.; Reuter, V.; Russo, P.; Marion, S.; Mazumdar, M. Prognostic Factors for Survival in Previously Treated Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2004, 22, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Stobäus, N.; Zocher, D.; Bosy-Westphal, A.; Szramek, A.; Scheufele, R.; Smoliner, C.; Pirlich, M. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am. J. Clin. Nutr. 2010, 92, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Ørskov, M.; Iachina, M.; Guldberg, R.; Mogensen, O.; Nørgård, B.M. Predictors of mortality within 1 year after primary ovarian cancer surgery: A nationwide cohort study. BMJ Open 2016, 6, e010123. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Lee, H.S.; Park, J.S.; Park, J.S.; Lee, D.K.; Lee, S.-J.; Yoon, D.S.; Lee, M.G.; Jeung, H.-C. Prognostic Scoring Index for Patients with Metastatic Pancreatic Adenocarcinoma. Cancer Res. Treat. 2016, 48, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
- Penel, N.; Hollebecque, A.; Maynou, C.; Dewaele, J.; Jasserand, M.; Beuscart, R.; Vieillard, M.-H. Development of a score that predicts survival among patients with bone metastasis revealing solid tumor. Support. Care Cancer 2008, 16, 1089–1093. [Google Scholar] [CrossRef]
- Penel, N.; Vanseymortier, M.; Bonneterre, M.-E.; Clisant, S.; Dansin, E.; Vendel, Y.; Beuscart, R.; Bonneterre, J. Prognostic factors among cancer patients with good performance status screened for phase I trials. Investig. New Drugs 2008, 26, 53–58. [Google Scholar] [CrossRef]
- Pinato, D.J.; Karamanakos, G.; Ishizuka, M.; Smirne, C.; Pirisi, M.; Kubota, K.; Sharma, R. The Kings Score refines prognostic prediction in hepatocellular carcinoma: A novel application. Liver Int. 2015, 35, 2458–2465. [Google Scholar] [CrossRef] [PubMed]
- Pointillart, V.; Vital, J.-M.; Salmi, R.; Diallo, A.; Quan, G.M. Survival prognostic factors and clinical outcomes in patients with spinal metastases. J. Cancer Res. Clin. Oncol. 2010, 137, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Roychowdhury, D.; Hayden, A.; Liepa, A. Health-Related Quality-of-Life Parameters as Independent Prognostic Factors in Advanced or Metastatic Bladder Cancer. J. Clin. Oncol. 2003, 21, 673–678. [Google Scholar] [CrossRef]
- Rydzek, J.; Gąsior, Z.T.; Dąbek, J.; Wojnar, J.; Skrzypek, M. Assessment of risk factors for mortality in patients with cardiovascular disease and a history of treatment for malignancy. Kardiol. Polska 2015, 73, 730–739. [Google Scholar] [CrossRef]
- Schoenfeld, A.J.; Ferrone, M.L.; Passias, P.G.; Blucher, J.A.; Barton, L.B.; Shin, J.; Harris, M.B.; Schwab, J.H. Laboratory markers as useful prognostic measures for survival in patients with spinal metastases. Spine J. 2020, 20, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Scott, H.R.; McMillan, D.C.; Forrest, L.M.; Brown, D.J.F.; McArdle, C.S.; Milroy, R. The systemic inflammatory response, weight loss, performance status and survival in patients with inoperable non-small cell lung cancer. Br. J. Cancer 2002, 87, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Seow, H.; Barbera, L.; Dudgeon, D.; Howell, D.; Husain, A.; Atzema, C.; Sussman, J.; Liu, Y.; Earle, C.; Sutradhar, R. The Association of the Palliative Performance Scale and Hazard of Death in an Ambulatory Cancer Population. J. Palliat. Med. 2013, 16, 156–162. [Google Scholar] [CrossRef]
- Shen, H.; Agarwal, D.; Qi, R.; Chalasani, N.; Liangpunsakul, S.; Lumeng, L.; Yoo, H.; Kwo, P. Predictors of outcome in patients with unresectable hepatocellular carcinoma receiving transcatheter arterial chemoembolization. Aliment. Pharmacol. Ther. 2007, 26, 393–400. [Google Scholar] [CrossRef]
- Soubeyran, P.; Fonck, M.; Blanc-Bisson, C.; Blanc, J.-F.; Ceccaldi, J.; Mertens, C.; Imbert, Y.; Cany, L.; Vogt, L.; Dauba, J.; et al. Predictors of Early Death Risk in Older Patients Treated with First-Line Chemotherapy for Cancer. J. Clin. Oncol. 2012, 30, 1829–1834. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, R.; Atzema, C.; Seow, H.; Earle, C.; Porter, J.; Barbera, L. Repeated Assessments of Symptom Severity Improve Predictions for Risk of Death Among Patients with Cancer. J. Pain Symptom Manag. 2014, 48, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Ito, M.; Takemura, K.; Nakanishi, Y.; Kataoka, M.; Sakamoto, K.; Tobisu, K.-I.; Koga, F. Prognostic significance of the controlling nutritional status (CONUT) score in advanced urothelial carcinoma patients. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 76.e11–76.e17. [Google Scholar] [CrossRef]
- Tsai, H.-J.; Hsieh, M.-Y.; Tsai, Y.-C.; Liu, Z.-Y.; Hsieh, H.-Y.; Lee, C.-M.; Chien, C.-H.; Chiu, Y.-W.; Chuang, H.-Y.; Huang, C.-T. Liver function tests may be useful tools for advanced cancer patient care: A preliminary single-center result. Kaohsiung J. Med. Sci. 2014, 30, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Tripodoro, V.A.; Llanos, V.; de Lellis, S.; Salazar Güemes, C.; de Simone, G.G.; Gómez-Batiste, X. Prognostic factors in cancer patients with palliative needs identified by the necpal CCOMS-ICO© tool. Medicina 2019, 79, 95–103. [Google Scholar] [PubMed]
- Ueno, H.; Okada, S.; Okusaka, T.; Ikeda, M. Prognostic Factors in Patients with Metastatic Pancreatic Adenocarcinoma Receiving Systemic Chemotherapy. Oncology 2000, 59, 296–301. [Google Scholar] [CrossRef]
- Van der Linden, Y.M.; Dijkstra, S.P.; Vonk, E.J.; Marijnen, C.A.; Leer, J.W.; Dutch Bone Metastasis Study Group. Prediction of survival in patients with metastases in the spinal column: Results based on a randomized trial of radiotherapy. Cancer 2005, 103, 320–328. [Google Scholar] [CrossRef]
- Viganó, A.; Bruera, E.; Jhangri, G.S.; Newman, S.C.; Fields, A.L.; Suarez-Almazor, M.E. Clinical Survival Predictors in Patients with Advanced Cancer. Arch. Intern. Med. 2000, 160, 861–868. [Google Scholar] [CrossRef]
- Villà, S.; Weber, D.C.; Moretones, C.; Mañes, A.; Combescure, C.; Jové, J.; Puyalto, P.; Cuadras, P.; Bruna, J.; Verger, E.; et al. Validation of the new graded prognostic assessment scale for brain metastases: A multicenter prospective study. Radiat. Oncol. 2011, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Tang, D.; Nie, Y.; Chen, J.; Peng, L. Clinical characteristics and prognosis of nonsurgically treated patients with pneumonic-type adenocarcinoma. Medicine 2019, 98, e15420. [Google Scholar] [CrossRef]
- Yamashita, T.; Siemionow, K.; Mroz, T.; Podichetty, V.; Lieberman, I.H. P89. A Prospective Analysis of Prognostic Factors in the Patients with Spinal Metastases Use of the Revised Tokuhashi Score. Spine J. 2008, 8, 143S–144S. [Google Scholar] [CrossRef]
- Stone, P.; Lund, S. Predicting prognosis in patients with advanced cancer. Ann. Oncol. 2007, 18, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Blanchon, F.; Grivaux, M.; Asselain, B.; Lebas, F.-X.; Orlando, J.-P.; Piquet, J.; Zureik, M. 4-year mortality in patients with non-small-cell lung cancer: Development and validation of a prognostic index. Lancet Oncol. 2006, 7, 829–836. [Google Scholar] [CrossRef]
- Bollen, L.; van der Linden, Y.M.; Pondaag, W.; Fiocco, M.; Pattynama, B.P.M.; Marijnen, C.; Nelissen, R.; Peul, W.C.; Dijkstra, P.S. Prognostic factors associated with survival in patients with symptomatic spinal bone metastases: A retrospective cohort study of 1 043 patients. Neuro-Oncology 2014, 16, 991–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westhoff, P.G.; de Graeff, A.; Monninkhof, E.M.; Bollen, L.; Dijkstra, S.P.; van der Steen-Banasik, E.M.; van Vulpen, M.; Leer, J.W.H.; Marijnen, C.A.; van der Linden, Y.M. An Easy Tool to Predict Survival in Patients Receiving Radiation Therapy for Painful Bone Metastases. Int. J. Radiat. Oncol. 2014, 90, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Hui, D.; Paiva, C.E.; Del Fabbro, E.G.; Steer, C.; Naberhuis, J.; van de Wetering, M.; Fernandez-Ortega, P.; Morita, T.; Suh, S.Y.; Bruera, E.; et al. Prognostication in advanced cancer: Update and directions for future research. Support. Care Cancer 2019, 27, 1973–1984. [Google Scholar] [CrossRef]
- Maas, E.A.T.; Murray, S.A.; Engels, Y.; Campbell, C. What tools are available to identify patients with palliative care needs in primary care: A systematic literature review and survey of European practice. BMJ Support. Palliat. Care 2013, 3, 444–451. [Google Scholar] [CrossRef]
- Romo, R.; Lynn, J. The utility and value of the “surprise question” for patients with serious illness. Can. Med. Assoc. J. 2017, 189, E1072–E1073. [Google Scholar] [CrossRef] [Green Version]
- Walsh, R.I.; Mitchell, G.; Francis, L.; van Driel, M.L. What Diagnostic Tools Exist for the Early Identification of Palliative Care Patients in General Practice? A systematic Review. J. Palliat. Care 2015, 31, 118–123. [Google Scholar] [CrossRef]
Study (First Author, Publication Year) | Study Design | N Patients | Study Population | Age (Years) | Men (%) | Follow-Up (Months) | Mortality Rate (%) | Survival (Months) | Inclusion in Meta-Analysis | Inclusion of a Model | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Bartels, 2007 [19] | Cohort | 219 | Spinal epidural metastases; various cancer types | 62.7 ± 12.5 | 58.4 | 10 | n/a | 3.0 (0.0–74.4) | + | + |
2 | Braun, 2011 [20] | Cohort | 1194 | Stage I–IV NSCLC | 58.5 (21.6–86.4) | 50.3 | n/a | 65.2 | 8.8 (8.0–9.5) | + | - |
3 | Brunello, 2016 [21] | Cohort | 658 | Stage I–IV; various cancer types | 77.2 ± 5.1 | 34.2 | 12 | 17.4 | n/a | + | + |
4 | Cesari, 2013 [22] | Cohort | 200 | Stage I–IV ovarian or uterine cancer | 73.5 ± 6.2 | 0.0 | 12 | 11.5 | n/a | + | + |
5 | Chen, 2019 [23] | Cohort | 121 | Gastric adenocarcinoma; stage I–IV | 64.0 ± 14.9 | 60.3 | 12 | 32.2 | n/a | - | - |
6 | Chow, 2008 [24] | Cohort | 395 | Metastatic disease, referred for palliative radiotherapy; various cancer types | 68.0 (31.0–93.0) | 50.0 | 12 | n/a | 4.4 (3.9–6.4) | + | + |
7 | Collette, 2004 [25] | RCT | 391 | Metastatic hormone-refractory prostate cancer | 70.8 (34.3–89.3) | 100.0 | 12 | 42.7 | 10.4 (9.2–11.5) | + | + |
8 | Collins, 2014 [26] | Cohort | 1160 | Malignant glioma | n/a | 58.4 | 4 | 23.0 | n/a | - | - |
9 | Contreras-Bolívar, 2019 [27] | Cohort | 282 | Various cancer types | 60.4 ± 12.6 | 55.7 | 6 | 47.9 | n/a | - | - |
10 | Deans, 2007 [28] | Cohort | 220 | Stage I–IV gastric or esophageal cancer | 71.0 (62.0–78.0) | 65.9 | 24 | 61.8 | 13.0 (n/a) | + | + |
11 | Dharma-Wardene, 2004 [29] | Cohort | 42 | Stage IIIA/B or IV NSCLC or SCLC | 59.4 (39.0–78.0) | 45.2 | 24 | 16.7 | 9.9 (n/a) | + | - |
12 | Efficace, 2006 [30] | RCT | 391 | Stage IIIB–IV NSCLC | 57.0 (28.1–75.9) | 65.2 | n/a | 77.2 | (6.7–8.9) | + | - |
13 | Ferrigno, 2001 [31] | Cohort | 343 | Stage 0–IV bronchogenic carcinoma | 68.0 (39.0–86.0) | 88.6 | 8.5 (3.6–17.4) | 79.0 | n/a | - | - |
14 | Fielding, 2007 [32] | Cohort | 358 | Lung (analysis, stage I–IV) | n/a, subgroups of different ages available | 75.7 | 3.2 (2.0–7.0) | 78.5 | n/a | + | + |
15 | Filippini, 2008 [33] | Cohort | 676 | Newly-diagnosed glioblastoma | 58.0 (16.0–81.0) | 61.8 | 24 | 84.0 | 13.6 (12.9–14.3) | + | - |
16 | Gagnon, 2013 [34] | Cohort | 258 | Inoperable stage III–IV NSCLC | n/a | 50.0 | 12 | n/a | (2.5–18.2) | - | + |
17 | Geraci, 2006 [35] | Cohort | 372 | Acutely symptomatic cancer patients; various cancer types | 56.0 (15.0–96.0) | 49.0 | 6 | 30.0 | n/a | - | - |
18 | Giantin, 2013 [36] | Cohort | 160 | Inoperable, locally advanced or metastatic cancer; various cancer types | 79.4 ± 5.7 | 45.5 | 12 | 46.9 | n/a | + | + |
19 | Griguolo, 2018 [37] | Cohort | 668 | Invasive breast cancer, brain metastases | 56.0 (24.0–85.0) | 0.1 | n/a | 94.6 | 8.1 (6.9–9.4) | + | - |
20 | Gripp, 2007 [38] | Cohort | 216 | Patients examined for palliative radiation; various cancer types | 64.0 (21.0–96.0) | 51.0 | 6 | 51.4 | n/a | - | - |
21 | Gupta, 2004 [39] | Cohort | 58 | Stage IV pancreatic cancer | 56.2 ± 10.7 | 60.3 | n/a | 72.4 | (4.9–10.2) | - | - |
22 | Gupta, 2009 [40] | Cohort | 165 | Stage IIIB or IV NSCLC | 56.0 (30.0–78.0) | 56.4 | n/a | 67.3 | (6.8–16.8) | - | - |
23 | Hoang, 2005 [41] | RCT | 1436 | Stage IIIB or IV NSCLC | n/a | 63.0 | 24 | 89.0 | 8.2 (n/a) | + | + |
24 | Hong, 2016 [42] | Cohort | 183 | Advanced HCC | Mean 55.8 | 86.3 | 6 | 74.9 | n/a | - | + |
25 | Hosono, 2005 [43] | Cohort | 165 | Spinal metastases; various cancer types | n/a | n/a | 23.4 (0.3–140.0) | n/a | n/a | - | - |
26 | Hui, 2014 [44] | Cohort | 222 | Advanced cancer, seen by palliative care mobile team; various cancer types | 55.0 (22.0–79.0) | 41.0 | 3.9 (0.9–7.9) | 64.0 | 3.6 (2.3–4.2) | + | - |
27 | Hui, 2016 [45] | Cohort | 216 | Advanced cancer, seen by the palliative care mobile team; various cancer types | 54.9 (22.0–79.0) | 42.0 | 7.9 (6.9–8.6) | 63.0 | 3.6 (2.3–4.4) | - | + |
28 | Iversen, 2009 [46] | Cohort | 13,190 | Stage I–IV colorectal cancer | n/a | 47.0 | 12 | n/a | n/a | + | - |
29 | Jang, 2014 [47] | Cohort | 1655 | Advanced cancer; various cancer types | 65.0 (21.0–97.0) | 49.0 | n/a | 91.0 | 4.4 (4.0–4.7) | - | + |
30 | Jonna, 2016 [48] | Cohort | 803 | Stage I–IV; various cancer types | 72.5 (n/a) | 51.8 | 12 | 77.3 | 4.9 (n/a) | + | + |
31 | Katagiri, 2005 [49] | Cohort | 350 | Bone metastases; various cancer types | 59.0 (14.0–88.0) | 56.9 | 24 | 67.0 | n/a | + | - |
32 | Kilgour, 2013 [50] | Cohort | 203 | Locally, advanced and metastatic cancer; various cancer types | 64.3 ± 12.8 | 57.1 | n/a | 76.6 | 7.3 (5.3–9.3) | - | - |
33 | Kim, 2009 [51] | Cohort | 325 | UICC stage I–IV newly-diagnosed HCC | 58.8 ± 9.5 | 80.9 | 24 | 46.4 | 14.7 (2.0–88.0) | - | + |
34 | Kinoshita, 2012 [52] | Cohort | 133 | Stage I–IV HCC | 71.0 (43.0–87.0) | 70.7 | 22.0 (1.0–69.0) | 13.0–91.4 | n/a | + | - |
35 | Langendijk, 2000 [53] | Cohort | 198 | Stage I–IIIB NSCLC | n/a | 85.0 | n/a | n/a | (2.8–13.8) | - | - |
36 | Liljehult, 2017 [54] | Cohort | 109 | Glioblastoma | 65.0 ± 9.9 | 56.9 | 12 | 55.0 | n/a | - | - |
37 | Limquiaco, 2009 [55] | Cohort | 471 | Stage I–IV HCC | 58.8 ± 12.2 | 85.1 | 6 | 45.0 | 10.1 ± 10.3 | - | + |
38 | Lund, 2009 [56] | Cohort | 2315 | Renal cancer | Men: 68.0 (15.0–96.0); women: 70.0 (18.0–97.0) | 58.7 | 12 | 36.9 | n/a | + | - |
39 | Maione, 2005 [57] | RCT | 566 | Stage IIIB–IV NSCLC | 74.0 (70.0–84.0) | 82.0 | 12 | 68 | 6.9 (6.4–7.8) | + | - |
40 | Marrero, 2005 [58] | Cohort | 244 | Stage I–IV HCC | 57.0 ± 10.0 | 73.0 | 12 | 42.0 | 16.4 (12.9–19.8) | + | - |
41 | Martin, 2010 [59] | Cohort | 1164 | Metastatic cancer; various cancer types | 66.8 ± 13.0 | 49.0 | 3.1 (0.0–38.6) | 86.4 | n/a | + | + |
42 | Moroni, 2014 [60] | Cohort | 231 | Advanced cancer; various cancer types | 70.2 ± 0.9 | 50.6 | 12 | 45.0 | n/a | + | + |
43 | Moss, 2010 [61] | Cohort | 826 | Stage I–IV breast, lung, and colon cancer | 60.0 ± 13.0 | 14.8 | 12 | 8.3 | n/a | + | + |
44 | Motzer, 2004 [62] | Cohort | 251 | Stage IV renal cell carcinoma | 57.0 (23.0–77.0) | 67.0 | 24 | 76.0 | 10.2 (8.0–12.0) | + | - |
45 | Norman, 2010 [63] | Cohort | 399 | Stage I–IV; various cancer types | 63.0 ± 11.8 | 52.1 | 6 | 25.1 | n/a | + | - |
46 | Orskov, 2016 [64] | Cohort | 2654 | Stage I–IV ovary cancer | n/a | 0.0 | 12 | 16.0 | n/a | - | - |
47 | Park, 2016 [65] | Cohort | 403 | Metastatic or recurrent pancreatic ductal adenocarcinoma | 66.0 (29.0–96.0) | 49.1 | 7.9 (0.1–70.5) | n/a | 8.2 (7.3–9.1) | + | + |
48 | Penel, 2008 [66] | Cohort | 119 | Bone metastases; various cancer types | 57.0 (29.0–84.0) | 64.7 | 3 | 34.0 | 3.9 (0.0–94.5) | + | + |
49 | Penel, 2008 [67] | Cohort | 148 | Patients screened for phase 1 trial; various cancer types | 54.0 (23.0–79.0) | n/a | 3 | 73.0 | 5.7 (0.0–79.6) | + | - |
50 | Pinato, 2015 [68] | Cohort | 97 | Intermediate-advanced HCC | 64.0 (22.0–82.0) | 80.0 | n/a | 71.0 | 5.7 (1.0–88.0) | - | + |
51 | Pointillart, 2011 [69] | Cohort | 142 | Vertebral metastases; various cancer types | 61.8 (28.0–89.0) | 57.0 | 12 | 50.7 | 5.0 (n/a) | + | - |
52 | Roychowdhury, 2003 [70] | Cohort | 364 | Locally advanced or metastatic urothelial transitional-cell carcinoma | 63.5 (n/a) | 79.1 | n/a | n/a | 14.2 (13.1–16.8) | - | - |
53 | Rydzek, 2015 [71] | Cohort | 326 | Breast cancer, SCLC or NSCLC; patients with established cardiovascular disease | 67.8 ± 10.0 | 54.0 | 12 | n/a | (4.8–96.0) | + | - |
54 | Schoenfeld, 2020 [72] | Cohort | 1216 | Various cancer types, spinal metastases | 58.0 ± 9.7 | 50.0 | 12 | 47.0 | 8.4 (3.1–21.1) | - | - |
55 | Scott, 2002 [73] | Cohort | 106 | Stage III–IV NSCLC | 69.0 (43.0–87.0) | 58.5 | n/a | n/a | 5.2 (0.3–38.5) | + | - |
56 | Seow, 2013 [74] | Cohort | 11,342 | Various cancer types, patients with PPS assessment | 64.0 ± n/a | 45.6 | 6 | 25 | n/a | + | - |
57 | Shen, 2007 [75] | Cohort | 49 | HCC, patients underwent TACE | 57.0 ± 1.0 | 81.6 | n/a | 49.0 | 12.0 (1.0–72.0) | - | - |
58 | Soubeyran, 2012 [76] | Cohort | 348 | Various cancer types; 65% advanced stage | 77.5 (70.0–99.4) | 59.5 | 6 | 16.1 | n/a | + | - |
59 | Sutradhar, 2014 [77] | Cohort | 66,112 | Various cancer types | n/a | 43.8 | 19.3 (n/a) | 26.3 | n/a | - | + |
60 | Suzuki, 2020 [78] | Cohort | 185 | Advanced urothelial cancer | 70.0 (64.0–76.0) | 68.0 | 12 | 71.9 | 14.9 (n/a) | - | - |
61 | Tsai, 2014 [79] | Cohort | 522 | Advanced cancer; various cancer types | 60.6 ± 13.2 | 61.7 | 6 | 91.8 | n/a | - | - |
62 | Tripodoro, 2019 [80] | Cohort | 317 | Various cancer types, stage III or IV | 77.0 (21.0–99.0) | 33.4 | 24 | 74.8 | 4.0 (n/a) | - | - |
63 | Ueno, 2000 [81] | Cohort | 103 | Metastatic pancreatic cancer | 62.0 (42.0–75.0) | 68.0 | 12 | 94.4 | 3.2 (n/a) | + | - |
64 | van der Linden, 2005 [82] | RCT | 342 | Spinal metastases; various cancer types | 66.0 (34.0–90.0) | 53.0 | 24 | 75.0 | 11.0 (10.0–12.0) | - | - |
65 | Vigano, 2000 [83] | Cohort | 227 | Inoperable, recurrent, progressive or metastatic cancer; various cancer types | 62.0 (29.0–92.0) | 36.1 | 20 | 91.6 | 5.8 (n/a) | + | - |
66 | Villa, 2011 [84] | Cohort | 285 | Newly-diagnosed brain metastases; various cancer types | 62.0 (20.0–90.0) | n/a | 12 | 82.4 | n/a | + | + |
67 | Wei, 2019 [85] | Cohort | 71 | Pneumonic-type adenocarcinoma, 90% with stage IIIB or IV | 62.0 (25.0–91.0) | 45.1 | 6 | 84.5 | 7.5 (1.0–42.0) | + | - |
68 | Yamashita, 2011 [86] | Cohort | 85 | Spinal metastases; various cancer types | 60.3 ± 11.6 | 51.8 | 12 | 51.8 | n/a | - | - |
Study | Study Participation | Study Attrition | Predictors | Outcome | Statistical Analysis and Cofounding | Performance of Prediction Tool | Overall Bias |
---|---|---|---|---|---|---|---|
Bartels, 2007 [19] | L | H | M | L | L | M | M |
Braun, 2011 [20] | L | H | L | L | L | n/a | L |
Brunello, 2016 [21] | L | H | L | L | M | M | M |
Cesari, 2013 [22] | L | H | L | L | M | M | M |
Chen, 2019 [23] | L | M | L | L | H | n/a | M |
Chow, 2008 [24] | L | H | L | M | M | L | M |
Collette, 2004 [25] | M | H | L | L | L | M | M |
Collins, 2014 [26] | L | M | L | L | L | n/a | L |
Contreras-Bolívar, 2019 [27] | L | M | L | L | L | n/a | L |
Deans, 2007 [28] | L | M | L | L | L | M | L |
Dharma-Wardene, 2004 [29] | L | H | L | L | M | n/a | M |
Efficace, 2006 [30] | L | H | M | L | L | n/a | M |
Ferrigno, 2001 [31] | L | H | L | L | L | n/a | L |
Fielding, 2007 [32] | L | H | L | L | L | M | M |
Filippini, 2008 [33] | L | M | M | L | L | n/a | L |
Gagnon, 2013 [34] | L | H | L | M | L | L | M |
Geraci, 2006 [35] | L | H | L | L | L | n/a | L |
Giantin, 2013 [36] | L | H | L | L | L | M | M |
Griguolo, 2018 [37] | L | H | L | L | L | n/a | L |
Gripp, 2007 [38] | L | H | L | L | L | n/a | L |
Gupta, 2004 [39] | L | H | L | L | L | n/a | L |
Gupta, 2009 [40] | L | M | L | L | M | n/a | L |
Hoang, 2005 [41] | L | H | M | L | L | H | H |
Hong, 2016 [42] | L | H | L | L | M | M | M |
Hosono, 2005 [43] | M | H | M | L | M | n/a | H |
Hui, 2014 [44] | L | H | L | L | L | n/a | L |
Hui, 2016 [45] | L | H | L | L | H | M | H |
Iversen, 2009 [46] | L | H | L | L | M | n/a | M |
Jang, 2014 [47] | L | H | L | L | H | M | H |
Jonna, 2016 [48] | L | H | M | L | L | M | M |
Katagiri, 2005 [49] | L | H | M | L | M | n/a | M |
Kilgour, 2013 [50] | L | L | L | L | M | n/a | L |
Kim, 2009 [51] | L | H | M | L | M | M | H |
Kinoshita, 2012 [52] | L | H | L | L | M | n/a | M |
Langendijk, 2000 [53] | L | H | L | M | M | n/a | M |
Liljehult, 2017 [54] | M | H | L | L | M | n/a | M |
Limquiaco, 2009 [55] | L | H | L | L | L | M | M |
Lund, 2009 [56] | L | M | L | L | H | n/a | M |
Maione, 2005 [57] | L | H | L | L | M | n/a | M |
Marrero, 2005 [58] | L | M | M | L | M | n/a | M |
Martin, 2010 [59] | L | H | L | L | L | L | L |
Moroni, 2014 [60] | L | H | L | L | L | M | M |
Moss, 2010 [61] | L | H | L | L | L | M | M |
Motzer, 2004 [62] | L | H | L | L | L | n/a | L |
Norman, 2010 [63] | L | H | L | L | M | n/a | M |
Orskov, 2016 [64] | L | M | L | L | M | n/a | L |
Park, 2016 [65] | L | H | L | M | L | M | M |
Penel, 2008 [66] | L | H | M | L | M | M | H |
Penel, 2008 [67] | L | H | L | L | M | n/a | M |
Pinato, 2015 [68] | L | H | M | L | L | L | M |
Pointillart, 2011 [69] | L | H | L | L | M | n/a | M |
Roychowdhury, 2003 [70] | L | H | L | M | M | n/a | M |
Rydzek, 2015 [71] | L | H | L | M | M | n/a | M |
Schoenfeld, 2020 [72] | L | H | L | L | L | n/a | L |
Scott, 2002 [73] | L | L | L | L | L | n/a | L |
Seow, 2013 [74] | L | H | L | L | M | n/a | M |
Shen, 2007 [75] | L | H | L | L | L | n/a | L |
Soubeyran, 2012 [76] | L | H | L | L | H | n/a | M |
Sutradhar, 2014 [77] | L | H | M | L | L | M | M |
Suzuki, 2020 [78] | L | H | M | L | L | n/a | M |
Tripodoro, 2019 [80] | L | H | L | L | M | n/a | M |
Tsai, 2014 [79] | L | M | L | L | L | n/a | L |
Ueno, 2000 [81] | L | H | L | L | L | n/a | L |
van der Linden, 2005 [82] | L | M | L | L | M | n/a | L |
Vigano, 2000 [83] | L | M | L | L | L | n/a | L |
Villa, 2011 [84] | L | M | M | L | L | M | M |
Wei, 2019 [85] | L | M | M | M | M | n/a | M |
Yamashita, 2011 [86] | L | H | L | L | L | n/a | L |
Variables | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Study | FU | N | Name Model | Cancer Type | Performance Status | Cancer Treatment | Sex | Laboratory Results | Metastases | Disease Stage | Age | Cognitive Impairment | Dietary Intake | Weight Change | Body Mass Index | Surprise Question | Comorbidity | (Re)hospitalization | Other | Discriminative Ability | Calibration | External Validation |
Bartels, 2007 [19] | 10 | 219 | n/a | * | * | * | * | * | c-statistic 0.72 (95% CI 0.68–0.77) | n/a | n/a | |||||||||||
Brunello, 2016 [21] | 12 | 658 | Onco-MPI | * | * * | * | * | * | * | * | * * * | c-statistic 0.869 (95% CI 0.841–0.897) | Good | n/a | ||||||||
Cesari [22] | 12 | 200 | IADL | * | AUC 0.676 (95% CI 0.532–0.821) | n/a | n/a | |||||||||||||||
SPPB | * | AUC 0.638 (95% CI 0.483–0.792) | n/a | n/a | ||||||||||||||||||
UGS | * | AUC 0.686 (95% CI 0.560–0.812) | n/a | n/a | ||||||||||||||||||
Chow, 2008 [24] | 12 | 395 | n/a | * | * | * | c-statistic 0.66 | n/a | N = 467 c-statistic 0.63 | |||||||||||||
Deans, 2007 [28] | 24 | 220 | u/a | * | * | * | * | AUC 0.85 | n/a | n/a | ||||||||||||
Giantin, 2013 [36] | 12 | 160 | MPI | * | * | * | * * * | AUC 0.874 (95% CI 0.819–0.928) | n/a | n/a | ||||||||||||
Jang, 2014 [47] | n/a | 1655 | KPS | * | c-statistic 0.63 | n/a | n/a | |||||||||||||||
PPS | * | c-statistic 0.63 | n/a | n/a | ||||||||||||||||||
ECOG | * | c-statistic 0.64 | n/a | n/a | ||||||||||||||||||
Jonna, 2016 [48] | 12 | 803 | n/a | * | * | * | * | * | * * | * | c-statistic 0.66 (95% CI 0.58–0.72) | n/a | n/a | |||||||||
Martin, 2010 [59] | 3.1 | 1164 | PG-SGA | * | * | * | * | * | c-statistics 0.88 (95% CI 0.83–0.91) | n/a | N = 603 c-statistic 0.87 (95% CI 0.80–0.92) | |||||||||||
Moroni, 2014 [60] | 12 | 231 | Surprise question | * | Se 69.3 (95% CI 60.5–77.2)/ Sp 83.6 (95% CI 75.1–90.2)/ PPV = 83.8 (95% CI 75.3–90.3)/ NPV = 69.0 (95% CI 60.2–77.0) | n/a | n/a | |||||||||||||||
Moss, 2010 [61] | 12 | 826 | Surprise question | * | Se 75/Sp 90/PPV 41/NPV 97 | n/a | n/a | |||||||||||||||
Penel, 2008 [66] | 3 | 119 | * | * * * | * * * | Se 0.21–0.89/Sp 0.33–0.96/ Positive LR 0.40–0.78/ Negative LR 0.72–0.85/ | n/a | n/a | ||||||||||||||
Sutradhar, 2014 [77] | 19.3 | 66,112 | n/a | * | * | * | * | * | c-statistic 0.764–0.872 (95% CI 0.758–0.878) | n/a | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owusuaa, C.; Dijkland, S.A.; Nieboer, D.; van der Heide, A.; van der Rijt, C.C.D. Predictors of Mortality in Patients with Advanced Cancer—A Systematic Review and Meta-Analysis. Cancers 2022, 14, 328. https://doi.org/10.3390/cancers14020328
Owusuaa C, Dijkland SA, Nieboer D, van der Heide A, van der Rijt CCD. Predictors of Mortality in Patients with Advanced Cancer—A Systematic Review and Meta-Analysis. Cancers. 2022; 14(2):328. https://doi.org/10.3390/cancers14020328
Chicago/Turabian StyleOwusuaa, Catherine, Simone A. Dijkland, Daan Nieboer, Agnes van der Heide, and Carin C. D. van der Rijt. 2022. "Predictors of Mortality in Patients with Advanced Cancer—A Systematic Review and Meta-Analysis" Cancers 14, no. 2: 328. https://doi.org/10.3390/cancers14020328
APA StyleOwusuaa, C., Dijkland, S. A., Nieboer, D., van der Heide, A., & van der Rijt, C. C. D. (2022). Predictors of Mortality in Patients with Advanced Cancer—A Systematic Review and Meta-Analysis. Cancers, 14(2), 328. https://doi.org/10.3390/cancers14020328