A Model to Predict Upstaging to Invasive Carcinoma in Patients Preoperatively Diagnosed with Low-Grade Ductal Carcinoma In Situ of the Breast
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kerlikowske, K. Epidemiology of ductal carcinoma in situ. J. Natl. Cancer Inst. Monogr. 2010, 2010, 139–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvatorelli, L.; Puzzo, L.; Vecchio, G.M.; Caltabiano, R.; Virzì, V.; Magro, G. Ductal Carcinoma In Situ of the Breast: An Update with Emphasis on Radiological and Morphological Features as Predictive Prognostic Factors. Cancers 2020, 12, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, U.; Chhor, C.M.; Mercado, C.L. Ductal Carcinoma In Situ: The Whole Truth. Am. J. Roentgenol. 2018, 210, 246–255. [Google Scholar] [CrossRef]
- D’Orsi, C.J. Imaging for the diagnosis and management of ductal carcinoma in situ. J. Natl. Cancer Inst. Monogr. 2010, 2010, 214–217. [Google Scholar] [CrossRef] [Green Version]
- Wehner, P.; Lagios, M.D.; Silverstein, M.J. DCIS treated with excision alone using the National Comprehensive Cancer Network (NCCN) guidelines. Ann. Surg. Oncol. 2013, 20, 3175–3179. [Google Scholar] [CrossRef]
- Sagara, Y.; Mallory, M.A.; Wong, S.; Aydogan, F.; DeSantis, S.; Barry, W.T.; Golshan, M. Survival Benefit of Breast Surgery for Low-Grade Ductal Carcinoma In Situ: A Population-Based Cohort Study. JAMA Surg. 2015, 150, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Brennan, M.E.; Turner, R.M.; Ciatto, S.; Marinovich, M.L.; French, J.R.; Macaskill, P.; Houssami, N. Ductal carcinoma in situ at core-needle biopsy: Meta-analysis of underestimation and predictors of invasive breast cancer. Radiology 2011, 260, 119–128. [Google Scholar] [CrossRef]
- Veronesi, U.; Viale, G.; Rotmensz, N.; Goldhirsch, A. Rethinking TNM: Breast cancer TNM classification for treatment decision-making and research. Breast 2006, 15, 3–8. [Google Scholar] [CrossRef]
- Kanbayashi, C.; Thompson, A.M.; Hwang, E.S.; Partridge, A.H.; Rea, D.W.; Wesseling, J.; Shien, T.; Mizutani, T.; Shibata, T.; Iwata, H. The international collaboration of active surveillance trials for low-risk DCIS (LORIS, LORD, COMET, LORETTA). J. Clin. Oncol. 2019, 37 (Suppl. 15), TPS603. [Google Scholar] [CrossRef]
- Francis, A.; Thomas, J.; Fallowfield, L.; Wallis, M.; Bartlett, J.M.; Brookes, C.; Roberts, T.; Pirrie, S.; Gaunt, C.; Young, J.; et al. Addressing overtreatment of screen detected DCIS; the LORIS trial. Eur. J. Cancer 2015, 51, 2296–2303. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.S.; Hyslop, T.; Lynch, T.; Frank, E.; Pinto, D.; Basila, D.; Collyar, D.; Bennett, A.; Kaplan, C.; Rosenberg, S.; et al. The COMET (Comparison of Operative versus Monitoring and Endocrine Therapy) trial: A phase III randomised controlled clinical trial for low-risk ductal carcinoma in situ (DCIS). BMJ Open 2019, 9, e026797. [Google Scholar] [CrossRef] [Green Version]
- Elshof, L.E.; Tryfonidis, K.; Slaets, L.; van Leeuwen-Stok, A.E.; Skinner, V.P.; Dif, N.; Pijnappel, R.M.; Bijker, N.; Rutgers, E.J.; Wesseling, J. Feasibility of a prospective, randomised, open-label, international multicentre, phase III, non-inferiority trial to assess the safety of active surveillance for low risk ductal carcinoma in situ—The LORD study. Eur. J. Cancer 2015, 51, 1497–1510. [Google Scholar] [CrossRef] [Green Version]
- Kanbayashi, C.; Iwata, H. Current approach and future perspective for ductal carcinoma in situ of the breast. Jpn. J. Clin. Oncol. 2017, 47, 671–677. [Google Scholar] [CrossRef] [Green Version]
- American College of Radiology. ACR BI-RADS Atlas: Breast Imaging Reporting and Data System, 5th ed.; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- American College of Radiology. ACR BI-RADS 5th Edition Changes. Available online: http://www.acr.org/∼/media/acr/documents/pdf/qualitysafety/resources/birads/birads_v5_changes (accessed on 21 December 2021).
- Spak, D.A.; Plaxco, J.S.; Santiago, L.; Dryden, M.J.; Dogan, B.E. BI-RADS® fifth edition: A summary of changes. Diagn. Interv. Imaging 2017, 98, 179–190. [Google Scholar] [CrossRef]
- Spayne, M.C.; Gard, C.C.; Skelly, J.; Miglioretti, D.L.; Vacek, P.M.; Geller, B.M. Reproducibility of BI-RADS breast density measures among community radiologists: A prospective cohort study. Breast J. 2012, 18, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Lazzeroni, M.; Guerrieri-Gonzaga, A.; Botteri, E.; Leonardi, M.C.; Rotmensz, N.; Serrano, D.; Varricchio, C.; Disalvatore, D.; Del Castillo, A.; Bassi, F.; et al. Tailoring treatment for ductal intraepithelial neoplasia of the breast according to Ki-67 and molecular phenotype. Br. J. Cancer 2013, 108, 1593–1601. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lin, J.; Lai, J.; Tan, C.; Yang, Y.; Gu, R.; Jiang, X.; Liu, F.; Hu, Y.; Su, F. Imaging features that distinguish pure ductal carcinoma in situ (DCIS) from DCIS with microinvasion. Mol. Clin. Oncol. 2019, 11, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Molinié, F.; Vanier, A.; Woronoff, A.S.; Guizard, A.V.; Delafosse, P.; Velten, M.; Daubisse-Marliac, L.; Arveux, P.; Tretarre, B. Trends in breast cancer incidence and mortality in France 1990–2008. Breast Cancer Res. Treat. 2014, 147, 167–175. [Google Scholar] [CrossRef]
- Narod, S.A.; Iqbal, J.; Giannakeas, V.; Sopik, V.; Sun, P. Breast Cancer Mortality after a Diagnosis of Ductal Carcinoma In Situ. JAMA Oncol. 2015, 1, 888–896. [Google Scholar] [CrossRef]
- Lazzeroni, M.; DeCensi, A. De-Escalating Treatment of Low-Risk Breast Ductal Carcinoma In Situ. J. Clin. Oncol. 2020, 38, 1252–1254. [Google Scholar] [CrossRef]
- Fallowfield, L.; Francis, A. Overtreatment of Low-Grade Ductal Carcinoma In Situ. JAMA Oncol. 2016, 2, 382–383. [Google Scholar] [CrossRef]
- Nicosia, L.; di Giulio, G.; Bozzini, A.C.; Fanizza, M.; Ballati, F.; Rotili, A.; Lazzeroni, M.; Latronico, A.; Abbate, F.; Renne, G.; et al. Complete Removal of the Lesion as a Guidance in the Management of Patients with Breast Ductal Carcinoma In Situ. Cancers 2021, 13, 868. [Google Scholar] [CrossRef]
- Cheung, Y.C.; Chen, S.C.; Ueng, S.H.; Yu, C.C. Ductal Carcinoma In Situ Underestimation of Microcalcifications Only by Stereotactic Vacuum-Assisted Breast Biopsy: A New Predictor of Specimens without Microcalcifications. J. Clin. Med. 2020, 9, 2999. [Google Scholar] [CrossRef]
- Nicosia, L.; Latronico, A.; Addante, F.; De Santis, R.; Bozzini, A.C.; Montesano, M.; Frassoni, S.; Bagnardi, V.; Mazzarol, G.; Pala, O.; et al. Atypical Ductal Hyperplasia after Vacuum-Assisted Breast Biopsy: Can We Reduce the Upgrade to Breast Cancer to an Acceptable Rate? Diagnostics 2021, 11, 1120. [Google Scholar] [CrossRef]
- Solin, L.J.; Gray, R.; Baehner, F.L.; Butler, S.M.; Hughes, L.L.; Yoshizawa, C.; Cherbavaz, D.B.; Shak, S.; Page, D.L.; Sledge, G.W., Jr.; et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J. Natl. Cancer Inst. 2013, 105, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Song, Y.; Xu, S.; Wang, J.; Huang, H.; Ma, W.; Jiang, X.; Wu, Y.; Cai, H.; Li, L. Predicting underestimation of ductal carcinoma in situ: A comparison between radiomics and conventional approaches. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 709–721. [Google Scholar] [CrossRef]
- Cheung, Y.C.; Chen, K.; Yu, C.C.; Ueng, S.H.; Li, C.W.; Chen, S.C. Contrast-Enhanced Mammographic Features of In Situ and Invasive Ductal Carcinoma Manifesting Microcalcifications Only: Help to Predict Underestimation? Cancers 2021, 13, 4371. [Google Scholar] [CrossRef]
Study | LORIS [11] | COMET [12] | LORD [13] | LORETTA [14] |
---|---|---|---|---|
Country | UK | USA | EU | JAPAN |
Year of activation | 2014 | 2017 | 2017 | 2017 |
Accrual target (number of patients) | 932 | 1200 | 1240 | 340 |
Size of the lesion | Any | Any | Any | <2.5 cm |
Type of guide for biopsy | Stereotactic (vacuum assisted) | Stereotactic (vacuum assisted) | Stereotactic (vacuum assisted) | Stereotactic and ultrasound (vacuum assisted) |
Hormone receptor status | Any | Hr*-positive only | Any | Hr*-positive only |
Endocrine therapy | Optional | Optional | Not allowed | Mandatory |
Minimum age at diagnosis | 48 | 40 | 45 | 40 |
Comedonecrosis | Excluded | Allowed | Excluded | Excluded |
Variable | Level | Overall (N = 295) |
---|---|---|
Year of Mammotome biopsy, N (%) | 1999–2004 | 66 (22.4) |
2005–2009 | 65 (22.0) | |
2010–2014 | 97 (32.9) | |
2015–2018 | 67 (22.7) | |
Days between mammography and Mammotome biopsy, median (min–max) | 33 (0–313) | |
Missing | 16 | |
Age at Mammotome biopsy, median (min–max) | 51 (34–79) | |
Biopsy needle, N (%) | 8G + 7G | 45 (15.5) |
11G + 10G | 245 (84.5) | |
Missing | 5 | |
Post biopsy residual disease, N (%) | No | 128 (43.4) |
Yes | 167 (56.6) | |
Post biopsy residual lesion size (mm), median (min–max)BIRADS, N (%) | 15 (4–100) | |
3 | 3 (1.0) | |
4a | 124 (42.0) | |
4b | 95 (32.2) | |
4c | 61 (20.7) | |
5 | 12 (4.1) | |
Number of cores, median (min–max) | 13 (0–30) | |
Disease only in cores with microcalcifications, N (%) | No | 132 (48.9) |
Yes | 138 (51.1) | |
Missing | 25 | |
Days between Mammotome biopsy and surgery, median (min–max) | 51 (5–247) | |
Missing | 3 | |
Outcomes of the study | ||
Upstage (invasive at surgery), N (%) | No | 263 (89.2) |
Yes | 32 (10.8) | |
Upstage at surgery (implying change of therapy), N (%) | No | 242 (82.0) |
Yes | 53 (18.0) | |
Absence of disease at the surgery, N (%) | No | 234 (79.3) |
Yes | 61 (20.7) |
Variable | Level | Upstage/Tot (%) | Univariate Analysis | Multivariate Analysis 1 | ||||
---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |||
Overall | - | 32/295 (10.8) | - | - | - | - | - | - |
Age at Mammotome biopsy | +1 year | 0.94 | 0.90–0.99 | 0.018 | 0.95 | 0.90–1.00 | 0.068 | |
Biopsy needle | 8G + 7G | 7/45 (15.6) | Ref. | - | - | Ref. | - | - |
11G + 10G | 25/245 (10.2) | 0.62 | 0.25–1.53 | 0.30 | 0.77 | 0.29–2.06 | 0.60 | |
Missing | 0/5 | |||||||
Post biopsy residual disease | No | 3/128 (2.3) | Ref. | - | - | Ref. | - | - |
Yes | 29/167 (17.4) | 8.76 | 2.60–29.4 | <0.001 | 7.14 | 1.58–32.2 | 0.011 | |
Post biopsy residual lesion size | +1 × log2 (mm) | 1.76 | 1.26–2.46 | <0.001 | 0.96 | 0.58–1.58 | 0.87 | |
Number of cores | +1 | 0.98 | 0.91–1.05 | 0.53 | 0.98 | 0.90–1.05 | 0.53 | |
Disease only in cores with microcalcifications | No | 24/132 (18.2) | Ref. | - | - | Ref. | - | - |
Yes | 7/138 (5.1) | 0.24 | 0.10-0.58 | 0.002 | 0.33 | 0.13-0.83 | 0.018 | |
Missing | 1/25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicosia, L.; Bozzini, A.C.; Penco, S.; Trentin, C.; Pizzamiglio, M.; Lazzeroni, M.; Lissidini, G.; Veronesi, P.; Farante, G.; Frassoni, S.; et al. A Model to Predict Upstaging to Invasive Carcinoma in Patients Preoperatively Diagnosed with Low-Grade Ductal Carcinoma In Situ of the Breast. Cancers 2022, 14, 370. https://doi.org/10.3390/cancers14020370
Nicosia L, Bozzini AC, Penco S, Trentin C, Pizzamiglio M, Lazzeroni M, Lissidini G, Veronesi P, Farante G, Frassoni S, et al. A Model to Predict Upstaging to Invasive Carcinoma in Patients Preoperatively Diagnosed with Low-Grade Ductal Carcinoma In Situ of the Breast. Cancers. 2022; 14(2):370. https://doi.org/10.3390/cancers14020370
Chicago/Turabian StyleNicosia, Luca, Anna Carla Bozzini, Silvia Penco, Chiara Trentin, Maria Pizzamiglio, Matteo Lazzeroni, Germana Lissidini, Paolo Veronesi, Gabriel Farante, Samuele Frassoni, and et al. 2022. "A Model to Predict Upstaging to Invasive Carcinoma in Patients Preoperatively Diagnosed with Low-Grade Ductal Carcinoma In Situ of the Breast" Cancers 14, no. 2: 370. https://doi.org/10.3390/cancers14020370
APA StyleNicosia, L., Bozzini, A. C., Penco, S., Trentin, C., Pizzamiglio, M., Lazzeroni, M., Lissidini, G., Veronesi, P., Farante, G., Frassoni, S., Bagnardi, V., Fodor, C., Fusco, N., Sajjadi, E., Cassano, E., & Pesapane, F. (2022). A Model to Predict Upstaging to Invasive Carcinoma in Patients Preoperatively Diagnosed with Low-Grade Ductal Carcinoma In Situ of the Breast. Cancers, 14(2), 370. https://doi.org/10.3390/cancers14020370