Predicting Recurrence of Non-Muscle-Invasive Bladder Cancer: Current Techniques and Future Trends
Abstract
:Simple Summary
Abstract
1. Introduction
AI in BC Management
2. Radiomics Markers
3. Histopathological Markers
4. Clinical Markers
5. Genomics Markers
6. Combined Markers
6.1. Limitations and Strengths
6.2. Conclusion and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Prim. 2017, 3, 17022. [Google Scholar] [CrossRef] [Green Version]
- DeGeorge, K.C.; Holt, H.R.; Hodges, S.C. Bladder Cancer: Diagnosis and Treatment. Am. Fam. Physician 2017, 96, 507–514. [Google Scholar] [PubMed]
- Saginala, K.; Barsouk, A.; Aluru, J.S.; Rawla, P.; Padala, S.A.; Barsouk, A. Epidemiology of Bladder Cancer. Med. Sci. 2020, 8, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botteman, M.F.; Pashos, C.L.; Redaelli, A.; Laskin, B.; Hauser, R. The health economics of bladder cancer. Pharmacoeconomic 2003, 21, 1315–1330. [Google Scholar] [CrossRef]
- Skolarus, T.A.; Ye, Z.; Zhang, S.; Hollenbeck, B.K. Regional Differences in Early Stage Bladder Cancer Care and Outcomes. Urology 2010, 76, 391–396. [Google Scholar] [CrossRef]
- Tan, W.S.; Rodney, S.; Lamb, B.; Feneley, M.; Kelly, J. Management of non-muscle invasive bladder cancer: A comprehensive analysis of guidelines from the United States, Europe and Asia. Cancer Treat. Rev. 2016, 47, 22–31. [Google Scholar] [CrossRef]
- Packiam, V.T.; Werntz, R.P.; Steinberg, G.D. Current Clinical Trials in Non-muscle-Invasive Bladder Cancer: Heightened Need in an Era of Chronic BCG Shortage. Curr. Urol. Rep. 2019, 20, 84. [Google Scholar] [CrossRef]
- Richters, A.; Aben, K.K.H.; Kiemeney, L.A.L.M. The global burden of urinary bladder cancer: An update. World J. Urol. 2019, 38, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Palou, J.; Hernández, C.; Solsona, E.; Abascal, R.; Burgués, J.P.; Rioja, C.; Cabrera, J.A.; Gutiérrez, C.; Rodríguez, O.; Iborra, I.; et al. Effectiveness of hexaminolevulinate fluorescence cystoscopy for the diagnosis of non-muscle- invasive bladder cancer in daily clinical practice: A Spanish multicentre observational study. BJU Int. 2015, 116, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oktem, G.C.; Kocaaslan, R.; Karadag, M.A.; Bagcioglu, M.; Demir, A.; Cecen, K.; Unluer, E. The role of transcavitary ultrasonography in diagnosis and staging of nonmuscle-invasive bladder cancer: A prospective non-randomized clinical study. Springerplus 2014, 3, 519. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Jiang, H.; Tao, T.; Kang, X.; Zhang, X.; Kang, D.; Li, S.; Li, C.; Wang, H.; Yang, Z.; et al. Hope and challenge: Precision medicine in bladder cancer. Cancer Med. 2019, 8, 1806–1816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E.M.; Dominguez Escrig, J.L.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A.H.; et al. European association of urology guidelines on non–muscle-invasive bladder cancer (ta, T1, and carcinoma in situ). Eur. Urol. 2021, 81, 75–94. [Google Scholar] [CrossRef]
- Alongi, P.; Caobelli, F.; Gentile, R.; Stefano, A.; Russo, G.; Albano, D.; Baldari, S.; Gilardi, M.C.; Midiri, M. Recurrent bladder carcinoma: Clinical and prognostic role of 18 F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imag. 2016, 44, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Golijanin, J.; Amin, A.; Moshnikova, A.; Brito, J.M.; Tran, T.Y.; Adochite, R.-C.; Andreev, G.O.; Crawford, T.; Engelman, D.M.; Andreev, O.A.; et al. Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo. Proc. Natl. Acad. Sci. USA 2016, 113, 11829–11834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, B.S.; Duran, C.; Williams, S.B. Vesical imaging reporting and data system (VI-RADS) and impact on identifying depth of invasion with subsequent management in bladder cancer patients: Ready for prime time? Transl. Androl. Urol. 2020, 9, 2467. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Panebianco, V.; Narumi, Y.; Del Giudice, F.; Muglia, V.F.; Takeuchi, M.; Ghafoor, S.; Bochner, B.H.; Goh, A.C.; Hricak, H.; et al. Diagnostic performance of vesical imaging reporting and data system for the prediction of muscle-invasive bladder cancer: A systematic review and meta-analysis. Eur. Urol. Oncol. 2020, 3, 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamboni, S.; Moschini, M.; Simeone, C.; Antonelli, A.; Mattei, A.; Baumeister, P.; Xylinas, E.; Hakenberg, O.W.; Aziz, A. Prediction tools in non-muscle invasive bladder cancer. Transl. Androl. Urol. 2019, 8, 39–45. [Google Scholar] [CrossRef]
- Youssef, R.F.; Lotan, Y. Predictors of Outcome of Non–Muscle-Invasive and Muscle-Invasive Bladder Cancer. Sci. World J. 2011, 11, 369–381. [Google Scholar] [CrossRef]
- Chang, S.S.; Boorjian, S.A.; Chou, R.; Clark, P.E.; Daneshmand, S.; Konety, B.R.; Pruthi, R.; Quale, D.Z.; Ritch, C.R.; Seigne, J.D.; et al. Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline. J. Urol. 2016, 196, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Orsola, A.; Maldonado, X.; Kataja, V. Bladder cancer: ESMO Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25, iii40–iii48. [Google Scholar] [CrossRef] [PubMed]
- Matulay, J.T.; Kamat, A.M. Advances in risk stratification of bladder cancer to guide personalized medicine. F1000Research 2018, 7, 1137. [Google Scholar] [CrossRef] [Green Version]
- Xylinas, E.; Kent, M.; Kluth, L.; Pycha, A.; Comploj, E.; Svatek, R.S.; Lotan, Y.; Trinh, Q.-D.; Karakiewicz, P.I.; Holmang, S.; et al. Accuracy of the EORTC risk tables and of the CUETO scoring model to predict outcomes in nonmuscle-invasive urothelial carcinoma of the bladder. Br. J. Cancer 2014, 109, 1460–1466. [Google Scholar] [CrossRef]
- Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med. 2001, 23, 89–109. [Google Scholar] [CrossRef] [Green Version]
- El Naqa, I.; Murphy, M.J. What Are Machine and Deep Learning? In Machine and Deep Learning in Oncology, Medical Physics and Radiology; Murphy, M.J., Ed.; Springer: Cham, Switzerland, 2022; pp. 3–15. [Google Scholar] [CrossRef]
- Borhani, S.; Borhani, R.; Kajdacsy-Balla, A. Artificial intelligence: A promising frontier in bladder cancer diagnosis and outcome prediction. Crit. Rev. Oncol. 2022, 171, 103601. [Google Scholar] [CrossRef]
- Gandi, C.; Vaccarella, L.; Bientinesi, R.; Racioppi, M.; Pierconti, F.; Sacco, E. Bladder cancer in the time of machine learning: Intelligent tools for diagnosis and management. Urol. J. 2021, 88, 94–102. [Google Scholar] [CrossRef]
- Shkolyar, E.; Jia, X.; Chang, T.C.; Trivedi, D.; Mach, K.E.; Meng, M.Q.-H.; Xing, L.; Liao, J.C. Augmented Bladder Tumor Detection Using Deep Learning. Eur. Urol. 2019, 76, 714–718. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, L.; Zheng, X.; Shao, J.; Wang, T.; Zhang, E.; Gao, F.; Wang, X.; Zheng, J. Clinical use of machine learning-based pathomics signature for diagnosis and survival prediction of bladder cancer. Cancer Sci. 2021, 112, 2905–2914. [Google Scholar] [CrossRef]
- Tsai, I.-J.; Shen, W.-C.; Lee, C.-L.; Wang, H.-D.; Lin, C.-Y. Machine Learning in Prediction of Bladder Cancer on Clinical Laboratory Data. Diagnostics 2022, 12, 203. [Google Scholar] [CrossRef]
- Dolz, J.; Xu, X.; Rony, J.; Yuan, J.; Liu, Y.; Granger, E.; Desrosiers, C.; Zhang, X.; Ben Ayed, I.; Lu, H. Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks. Med. Phys. 2018, 45, 5482–5493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, P.-N.; KC, K.; Wei, S.; Yu, Q.; Li, R.; Haake, A.R.; Miyamoto, H.; Cui, F. Histopathological distinction of non-invasive and invasive bladder cancers using machine learning approaches. BMC Med. Inform. Decis. Mak. 2020, 20, 162. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zou, X.; Wang, Y.; Ma, X. Application of deep learning as a noninvasive tool to differentiate muscle-invasive bladder cancer and non–muscle-invasive bladder cancer with CT. Eur. J. Radiol. 2021, 139, 109666. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Wen, R.; Wen, D.; Huang, J.; Qin, H.; Li, X.; Wang, X.; He, Y.; Yang, H. Radiomics Analysis Based on Ultrasound Images to Distinguish the Tumor Stage and Pathological Grade of Bladder Cancer. J. Ultrasound Med. 2021, 40, 2685–2697. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xu, L.; Zhao, L.; Mao, L.; Li, X.; Jin, Z.; Sun, H. CT-based radiomics to predict the pathological grade of bladder cancer. Eur. Radiol. 2020, 30, 6749–6756. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hu, D.; Yao, H.; Chen, M.; Li, S.; Chen, H.; Luo, J.; Feng, Y.; Guo, Y. Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Eur. Radiol. 2019, 29, 6182–6190. [Google Scholar] [CrossRef]
- Liu, D.; Wang, S.; Wang, J. The effect of CT high-resolution imaging diagnosis based on deep residual network on the pathology of bladder cancer classification and staging. Comput. Methods Programs Biomed. 2022, 215, 106635. [Google Scholar] [CrossRef]
- Bhambhvani, H.P.; Zamora, A.; Shkolyar, E.; Prado, K.; Greenberg, D.R.; Kasman, A.M.; Liao, J.; Shah, S.; Srinivas, S.; Skinner, E.C.; et al. Development of robust artificial neural networks for prediction of 5-year survival in bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 193.e7–193.e12. [Google Scholar] [CrossRef]
- Wu, E.; Hadjiiski, L.M.; Samala, R.K.; Chan, H.-P.; Cha, K.H.; Richter, C.; Cohan, R.H.; Caoili, E.M.; Paramagul, C.; Alva, A.; et al. Deep Learning Approach for Assessment of Bladder Cancer Treatment Response. Tomography 2019, 5, 201–208. [Google Scholar] [CrossRef]
- Cha, K.H.; Hadjiiski, L.; Chan, H.-P.; Weizer, A.Z.; Alva, A.; Cohan, R.H.; Caoili, E.M.; Paramagul, C.; Samala, R.K. Bladder Cancer Treatment Response Assessment in CT using Radiomics with Deep-Learning. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Cha, K.H.; Hadjiiski, L.M.; Samala, R.K.; Chan, H.-P.; Cohan, R.H.; Caoili, E.M.; Paramagul, C.; Alva, A.; Weizer, A.Z. Bladder Cancer Segmentation in CT for Treatment Response Assessment: Application of Deep-Learning Convolution Neural Network—A Pilot Study. Tomography 2016, 2, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, K.N.; Naguib, R.N.G.; Hamdy, F.C.; Neal, D.E.; Mellon, J.K. Neural network analysis of clinicopathological and molecular markers in bladder cancer. J. Urol. 2000, 163, 630–633. [Google Scholar] [CrossRef]
- Tokuyama, N.; Saito, A.; Muraoka, R.; Matsubara, S.; Hashimoto, T.; Satake, N.; Matsubayashi, J.; Nagao, T.; Mirza, A.H.; Graf, H.-P.; et al. Prediction of non-muscle invasive bladder cancer recurrence using machine learning of quantitative nuclear features. Mod. Pathol. 2022, 35, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Liem, E.I.M.L.; Baard, J.; Cauberg, E.C.C.; Bus, M.T.J.; de Bruin, D.M.; Laguna Pes, M.P.; de la Rosette, J.J.M.C.H.; de Reijke, T.M. Fluorescence in situ hybridization as prognostic predictor of tumor recurrence during treatment with Bacillus Calmette–Guérin therapy for intermediate- and high-risk non-muscle-invasive bladder cancer. Med. Oncol. 2017, 34, 172. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pui, M.H.; Guo, Y.; Yang, D.; Pan, B.; Zhou, X. Diffusion-weighted MRI in bladder carcinoma: The differentiation between tumor recurrence and benign changes after resection. Abdom. Imag. 2013, 39, 135–141. [Google Scholar] [CrossRef]
- El-Assmy, A.; Abou-El-Ghar, M.E.; Refaie, H.F.; Mosbah, A.; El-Diasty, T. Diffusion-weighted magnetic resonance imaging in follow-up of superficial urinary bladder carcinoma after transurethral resection: Initial experience. BJU Int. 2012, 110, E622–E627. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Cheng, J.; Pan, L.; Hu, S.; Xu, J.; Zhang, Y.; Wang, M.; Zhang, J.; Ye, D.; Zhang, Y. Is whole-body fluorine-18 fluorodeoxyglucose PET/CT plus additional pelvic images (oral hydration–voiding–refilling) useful for detecting recurrent bladder cancer? Ann. Nucl. Med. 2012, 26, 571–577. [Google Scholar] [CrossRef]
- Chen, J.-X.; Deng, N.; Chen, X.; Chen, L.-W.; Qiu, S.-P.; Li, X.-F.; Li, J.-P. A Novel Molecular Grading Model: Combination of Ki67 and VEGF in Predicting Tumor Recurrence and Progression in Non-invasive Urothelial Bladder Cancer. Asian Pac. J. Cancer Prev. 2012, 13, 2229–2234. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Hu, J.; Niu, Y. Squamous differentiation in pT1 bladder urothelial carcinoma predicts poor response for intravesical chemotherapy. Oncotarget 2017, 9, 217–223. [Google Scholar] [CrossRef]
- Xu, H.; Xie, L.; Liu, X.; Zhang, Y.; Shen, Z.; Chen, T.; Qiu, X.; Sha, N.; Xing, C.; Wu, Z.; et al. Impact of squamous and/or glandular differentiation on recurrence and progression following transurethral resection for non-muscle invasive urothelial carcinoma of bladder. Oncol. Lett. 2017, 14, 3522–3528. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Wang, C.; Tang, Y.; Liu, X.; Liu, Z.; Li, G.; Mei, Y. Glandular differentiation in pT1 urothelial carcinoma of bladder predicts poor prognosis. Sci. Rep. 2019, 9, 5323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamie, K.; Litwin, M.S.; Bassett, J.C.; Daskivich, T.J.; Lai, J.; Hanley, J.M.; Konety, B.R.; Saigal, C.S. Recurrence of high-risk bladder cancer: A population-based analysis. Cancer 2013, 119, 3219–3227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urdal, J.; Engan, K.; Kvikstad, V.; Janssen, E.A.M. Prognostic prediction of histopathological images by local binary patterns and RUSBoost. In Proceedings of the 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017. [Google Scholar] [CrossRef] [Green Version]
- Mano, R.; Baniel, J.; Shoshany, O.; Margel, D.; Bar-On, T.; Nativ, O.; Rubinstein, J.; Halachmi, S. Neutrophil-to-lymphocyte ratio predicts progression and recurrence of non–muscle-invasive bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 67.e1–67.e7. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, J.; Bar-On, T.; Bahouth, Z.; Mano, R.; Shoshany, O.; Baniel, J.; Nativ, O.; Halachmi, S. A mathematical model for predicting tumor recurrence within 24 months following surgery in patients with T1 high-grade bladder cancer treated with BCG immunotherapy. Bladder 2015, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Albayrak, S.; Zengin, K.; Tanik, S.; Atar, M.; Unal, S.H.; Imamoglu, M.A.; Gurdal, M. Can the neutrophil-to-lymphocyte ratio be used to predict recurrence and progression of non-muscle-invasive bladder cancer? Kaohsiung J. Med. Sci. 2016, 32, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Ferro, M.; Tătaru, O.S.; Musi, G.; Lucarelli, G.; Abu Farhan, A.R.; Cantiello, F.; Damiano, R.; Hurle, R.; Contieri, R.; Busetto, G.M.; et al. Modified Glasgow Prognostic Score as a Predictor of Recurrence in Patients with High Grade Non-Muscle Invasive Bladder Cancer Undergoing Intravesical Bacillus Calmette–Guerin Immunotherapy. Diagnostics 2022, 12, 586. [Google Scholar] [CrossRef]
- Srougi, V.; Reis, S.T.; Viana, N.; Gallucci, F.P.; Leite, K.R.; Srougi, M.; Nahas, W.C. Prospective evaluation of a urinary biomarker panel to detect and predict recurrence of non-muscle-invasive bladder cancer. World J. Urol. 2020, 39, 453–459. [Google Scholar] [CrossRef]
- Rosser, C.J.; Chang, M.; Dai, Y.; Ross, S.; Mengual, L.; Alcaraz, A.; Goodison, S. Urinary Protein Biomarker Panel for the Detection of Recurrent Bladder Cancer. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 1340–1345. [Google Scholar] [CrossRef]
- Chevalier, M.F.; Trabanelli, S.; Racle, J.; Salomé, B.; Cesson, V.; Gharbi, D.; Bohner, P.; Domingos-Pereira, S.; Dartiguenave, F.; Fritschi, A.-S.; et al. ILC2-modulated T cell–to-MDSC balance is associated with bladder cancer recurrence. J. Clin. Investig. 2017, 127, 2916–2929. [Google Scholar] [CrossRef] [Green Version]
- Alberice, J.V.; Amaral, A.F.S.; Armitage, E.G.; Lorente, J.A.; Algaba, F.; Carrilho, E.; Márquez, M.; García, A.; Malats, N.; Barbas, C. Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography–mass spectrometry and capillary electrophoresis–mass spectrometry metabolomics approach. J. Chromatogr. 2013, 1318, 163–170. [Google Scholar] [CrossRef]
- Naselli, A.; Introini, C.; Timossi, L.; Spina, B.; Fontana, V.; Pezzi, R.; Germinale, F.; Bertolotto, F.; Puppo, P. A Randomized Prospective Trial to Assess the Impact of Transurethral Resection in Narrow Band Imaging Modality on Non–Muscle-Invasive Bladder Cancer Recurrence. Eur. Urol. 2012, 61, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Sfakianos, J.P.; Kim, P.H.; Hakimi, A.A.; Herr, H.W. The Effect of Restaging Transurethral Resection on Recurrence and Progression Rates in Patients with Nonmuscle Invasive Bladder Cancer Treated with Intravesical Bacillus Calmette-Guérin. J. Urol. 2014, 191, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Culpan, M.; Keser, F.; Acar, H.C.; Otunctemur, A.; Kucuk, E.V.; Erdem, S.; Ozer, M.; Sen, U.T.; Degirmenci, E.; Ergul, R.; et al. Impact of delay in cystoscopic surveillance on recurrence and progression rates in patients with non-muscle-invasive bladder cancer during the COVID-19 pandemic. Int. J. Clin. Pract. 2021, 75, e14490. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xia, Q.; Lu, Y.; Liu, Z.; Zhou, P.; Hu, H.; Wang, S. Efficacy of intravesical therapies on the prevention of recurrence and progression of non-muscle-invasive bladder cancer: A systematic review and network meta-analysis. Cancer Med. 2020, 9, 7800–7809. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, A.; Strauss, A.; Seif Amir Hosseini, A.; Lotz, J.; Trojan, L.; Schmid, M.; Uhlig, J. Gender-specific Differences in Recurrence of Non-muscle-invasive Bladder Cancer: A Systematic Review and Meta-analysis. Eur. Urol. Focus 2018, 4, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Van Osch, F.H.M.; Jochems, S.H.J.; Reulen, R.C.; Pirrie, S.J.; Nekeman, D.; Wesselius, A.; James, N.D.; Wallace, D.M.A.; Cheng, K.K.; van Schooten, F.J.; et al. The association between smoking cessation before and after diagnosis and non-muscle-invasive bladder cancer recurrence: A prospective cohort study. Cancer Causes Control 2018, 29, 675–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinde, I.; Munari, E.; Faraj, S.F.; Hruban, R.H.; Schoenberg, M.; Bivalacqua, T.; Allaf, M.; Springer, S.; Wang, Y.; Diaz, L.A.; et al. TERT Promoter Mutations Occur Early in Urothelial Neoplasia and Are Biomarkers of Early Disease and Disease Recurrence in Urine. Cancer Res. 2013, 73, 7162–7167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachakonda, P.S.; Hosen, I.; de Verdier, P.J.; Fallah, M.; Heidenreich, B.; Ryk, C.; Wiklund, N.P.; Steineck, G.; Schadendorf, D.; Hemminki, K.; et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc. Natl. Acad. Sci. USA 2013, 110, 17426–17431. [Google Scholar] [CrossRef] [PubMed]
- Beukers, W.; van der Keur, K.A.; Kandimalla, R.; Vergouwe, Y.; Steyerberg, E.W.; Boormans, J.L.; Jensen, J.B.; Lorente, J.A.; Real, F.X.; Segersten, U.; et al. FGFR3, TERT and OTX1 as a Urinary Biomarker Combination for Surveillance of Patients with Bladder Cancer in a Large Prospective Multicenter Study. J. Urol. 2017, 197, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; Masius, R.; Beukers, W.; Bangma, C.H.; Orntoft, T.F.; Dyrskjot, L.; van Leeuwen, N.; Lingsma, H.; van Tilborg, A.A.G.; Zwarthoff, E.C. A 3-Plex Methylation Assay Combined with the FGFR3 Mutation Assay Sensitively Detects Recurrent Bladder Cancer in Voided Urine. Clin. Cancer Res. 2013, 19, 4760–4769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, R.; Vinagre, J.; Prazeres, H.; Sampaio, C.; Peralta, P.; Conição, P.; Sismeiro, A.; Leao, R.; Gomes, A.; Furriel, F.; et al. Validation of a Novel, Sensitive, and Specific Urine-Based Test for Recurrence Surveillance of Patients With Non-Muscle-Invasive Bladder Cancer in a Comprehensive Multicenter Study. Front. Genet. 2019, 10, 1237. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Song, C.; Shin, E.; Hong, J.H.; Kim, C.-S.; Ahn, H. Do molecular biomarkers have prognostic value in primary T1G3 bladder cancer treated with bacillus Calmette-Guerin intravesical therapy? Urol. Oncol. Semin. Orig. Investig. 2013, 31, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Kavalieris, L.; O’Sullivan, P.; Frampton, C.; Guilford, P.; Darling, D.; Jacobson, E.; Suttie, J.; Raman, J.; Shariat, S.; Lotan, Y. Performance Characteristics of a Multigene Urine Biomarker Test for Monitoring for Recurrent Urothelial Carcinoma in a Multicenter Study. J. Urol. 2017, 196, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- van Valenberg, F.J.P.; Hiar, A.M.; Wallace, E.; Bridge, J.A.; Mayne, D.J.; Beqaj, S.; Sexton, W.J.; Lotan, Y.; Weizer, A.Z.; Jansz, G.K.; et al. Prospective Validation of an mRNA-based Urine Test for Surveillance of Patients with Bladder Cancer. Eur. Urol. 2019, 75, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Elsawy, A.A.; Awadalla, A.; Elsayed, A.; Abdullateef, M.; Abol-Enein, H. Prospective Validation of Clinical Usefulness of a Novel mRNA-based Urine Test (Xpert® Bladder Cancer Monitor) for surveillance in Non Muscle Invasive Bladder Cancer. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 77.e9–77.e16. [Google Scholar] [CrossRef]
- Bi, J.; Liu, H.; Dong, W.; Xie, W.; He, Q.; Cai, Z.; Huang, J.; Lin, T. Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence. Mol. Cancer 2019, 18, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, P.; Wang, Q.; Zhao, Y.; Chen, C.; Sun, X.; Li, H.; Deng, J.; Zhang, H.; Ji, Z.; Zhang, X.; et al. An eight-long non-coding RNA signature as a candidate prognostic biomarker for bladder cancer. Aging 2019, 11, 6930–6940. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Nishiyama, H.; Ozono, S.; Hinotsu, S.; Keino, N.; Yamaguchi, A.; Sakai, H.; Enomoto, Y.; Horie, S.; Fujimoto, K.; et al. Clinical evaluation of two consecutive UroVysion fluorescence in situ hybridization tests to detect intravesical recurrence of bladder cancer: A prospective blinded comparative study in Japan. Int. J. Clin. Oncol. 2018, 23, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Witjes, J.A.; Morote, J.; Cornel, E.B.; Gakis, G.; van Valenberg, F.J.P.; Lozano, F.; Sternberg, I.A.; Willemsen, E.; Hegemann, M.L.; Paitan, Y.; et al. Performance of the Bladder EpiCheck™ Methylation Test for Patients Under Surveillance for Non–muscle-invasive Bladder Cancer: Results of a Multicenter, Prospective, Blinded Clinical Trial. Eur. Urol. Oncol. 2018, 1, 307–313. [Google Scholar] [CrossRef]
- Roupret, M.; Gontero, P.; McCracken, S.R.C.; Dudderidge, T.; Stockley, J.; Kennedy, A.; Rodriguez, O.; Sieverink, C.; Vanié, F.; Allasia, M.; et al. Diagnostic Accuracy of MCM5 for the Detection of Recurrence in Nonmuscle Invasive Bladder Cancer Followup: A Blinded, Prospective Cohort, Multicenter European Study. J. Urol. 2020, 204, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Önal, B.; Han, Ü.; Yilmaz, S.; Köybasioglu, F.; Altuğ, U. The use of urinary nuclear matrix protein 22 (NMP22) as a diagnostic adjunct to urine cytology for monitoring of recurrent bladder cancer-institutional experience and review. Diagn. Cytopathol. 2014, 43, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Su, S.-F.; de Castro Abreu, A.L.; Chihara, Y.; Tsai, Y.; Andreu-Vieyra, C.; Daneshmand, S.; Skinner, E.C.; Jones, P.A.; Siegmund, K.D.; Liang, G. A Panel of Three Markers Hyper- and Hypomethylated in Urine Sediments Accurately Predicts Bladder Cancer Recurrence. Clin. Cancer Res. 2014, 20, 1978–1989. [Google Scholar] [CrossRef] [Green Version]
- Shindo, T.; Shimizu, T.; Nojima, M.; Niinuma, T.; Maruyama, R.; Kitajima, H.; Kai, M.; Itoh, N.; Suzuki, H.; Masumori, N. Evaluation of Urinary DNA Methylation as a Marker for Recurrent Bladder Cancer: A 2-Center Prospective Study. Urology 2018, 113, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Reinert, T.; Borre, M.; Christiansen, A.; Hermann, G.G.; Orntoft, T.F.; Dyrskjot, L. Diagnosis of Bladder Cancer Recurrence Based on Urinary Levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 Hypermethylation B. C. Christensen, ed. PLoS ONE 2012, 7, e46297. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, L.; Brait, M.; Michailidi, C.; Munari, E.; Driscoll, T.; Schultz, L.; Bivalacqua, T.; Schoenberg, M.; Sidransky, D.; Netto, G.J.; et al. An epigenetic marker panel for recurrence risk prediction of low grade papillary urothelial cell carcinoma (LGPUCC) and its potential use for surveillance after transurethral resection using urine. Oncotarget 2014, 5, 5218–5233. [Google Scholar] [CrossRef] [PubMed]
- Bellmunt, J.; Kim, J.; Mullane, S.A.; Reardon, B.; Orsola, A.; VanAllen, E.; Getz, G.; Kwiatkowski, D.J. Genomic predictors of recurrence (R) or progression (P) in high grade T1 (HGT1) non-muscle invasive (NMI) bladder cancer. J. Clin. Oncol. 2016, 4539. [Google Scholar] [CrossRef]
- Kobayashi, M.; Fujiyama, N.; Tanegashima, T.; Narita, S.; Yamamoto, Y.; Fujimoto, N.; Ueda, S.; Takeuchi, A.; Numakura, K.; Habuchi, T.; et al. Effect of HLA genotype on intravesical recurrence after bacillus Calmette–Guérin therapy for non-muscle-invasive bladder cancer. Cancer Immunol. Immunother. 2021, 71, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Galesloot, T.E.; Grotenhuis, A.J.; Kolev, D.; Aben, K.K.; Bryan, R.T.; Catto, J.W.F.; Cheng, K.K.; Conroy, S.; Dyrskjøt, L.; Fleshner, N.E.; et al. Genome-wide Meta-analysis Identifies Novel Genes Associated with Recurrence and Progression in Non–muscle-invasive Bladder Cancer. Eur. Urol. Oncol. 2022, 5, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Frantzi, M.; van Kessel, K.E.; Zwarthoff, E.C.; Marquez, M.; Rava, M.; Malats, N.; Merseburger, A.S.; Katafigiotis, I.; Stravodimos, K.; Mullen, W.; et al. Development and Validation of Urine-based Peptide Biomarker Panels for Detecting Bladder Cancer in a Multi-center Study. Clin. Cancer Res. 2016, 22, 4077–4086. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, G.; Mitra, A.P.; Mitra, S.A.; Almal, A.A.; Steven, K.E.; Skinner, D.G.; Fry, D.W.; Lenehan, P.F.; Worzel, W.P.; Cote, R.J. Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder. J. Urol. 2016, 195, 493–498. [Google Scholar] [CrossRef]
- Xu, X.; Wang, H.; Du, P.; Zhang, F.; Li, S.; Zhang, Z.; Yuan, J.; Liang, Z.; Zhang, X.; Guo, Y.; et al. A predictive nomogram for individualized recurrence stratification of bladder cancer using multiparametric MRI and clinical risk factors. J. Magn. Reson. Imag. 2019, 50, 1893–1904. [Google Scholar] [CrossRef] [PubMed]
- Borgi, A.; Ounallah, S.; Stambouli, N.; Selami, S.; Ben Ammar Elgaaied, A. Diagnosic system for predicting bladder cancer recurrence using association rules. In Proceedings of the IEEE SAI Intelligent Systems Conference (IntelliSys), London, UK, 10–11 November 2015; pp. 93–99. [Google Scholar] [CrossRef]
- Lee, J.; Choo, M.S.; Yoo, S.; Cho, M.C.; Son, H.; Jeong, H. Intravesical Prostatic Protrusion and Prognosis of Non-Muscle Invasive Bladder Cancer: Analysis of Long-Term Data over 5 Years with Machine-Learning Algorithms. J. Clin. Med. 2021, 10, 4263. [Google Scholar] [CrossRef]
- Hasnain, Z.; Mason, J.; Gill, K.; Miranda, G.; Gill, I.S.; Kuhn, P.; Newton, P.K. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. PLoS ONE 2019, 14, e0210976. [Google Scholar] [CrossRef]
- Lucas, M.; Jansen, I.; van Leeuwen, T.G.; Oddens, J.R.; de Bruin, D.M.; Marquering, H.A. Deep Learning–based Recurrence Prediction in Patients with Non–muscle-invasive Bladder Cancer. Eur. Urol. Focus 2022, 8, 165–172. [Google Scholar] [CrossRef]
- Jobczyk, M.; Stawiski, K.; Kaszkowiak, M.; Rajwa, P.; Różański, W.; Soria, F.; Shariat, S.F.; Fendler, W. Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non–muscle-invasive Bladder Cancer. Eur. Urol. Oncol. 2022, 5, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Vedder, M.M.; Márquez, M.; de Bekker-Grob, E.W.; Calle, M.L.; Dyrskjøt, L.; Kogevinas, M.; Segersten, U.; Malmström, P.-U.; Algaba, F.; Beukers, W.; et al. Risk Prediction Scores for Recurrence and Progression of Non-Muscle Invasive Bladder Cancer: An International Validation in Primary Tumours G. PLoS ONE 2014, 9, e96849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Getzler, I.; Bahouth, Z.; Nativ, O.; Rubinstein, J.; Halachmi, S. Preoperative neutrophil to lymphocyte ratio improves recurrence prediction of non-muscle invasive bladder cancer. BMC Urol. 2018, 18, 90. [Google Scholar] [CrossRef] [PubMed]
- Cambier, S.; Sylvester, R.J.; Collette, L.; Gontero, P.; Brausi, M.A.; van Andel, G.; Kirkels, W.J.; Silva, F.C.D.; Oosterlinck, W.; Prescott, S.; et al. EORTC Nomograms and Risk Groups for Predicting Recurrence, Progression, and Disease-specific and Overall Survival in Non–Muscle-invasive Stage Ta–T1 Urothelial Bladder Cancer Patients Treated with 1–3 Years of Maintenance Bacillus Calmette-Guérin. Eur. Urol. 2016, 69, 60–69. [Google Scholar] [CrossRef]
- Kim, H.S.; Jeong, C.W.; Kwak, C.; Kim, H.H.; Ku, J.H. Novel nomograms to predict recurrence and progression in primary non-muscle-invasive bladder cancer: Validation of predictive efficacy in comparison with European Organization of Research and Treatment of Cancer scoring system. World J. Urol. 2018, 37, 1867–1877. [Google Scholar] [CrossRef]
- Ali-El-Dein, B.; Sooriakumaran, P.; Trinh, Q.-D.; Barakat, T.S.; Nabeeh, A.; Ibrahiem, E.-H.I. Construction of predictive models for recurrence and progression in >1000 patients with non-muscle-invasive bladder cancer (NMIBC) from a single centre. BJU Int. 2013, 111, E331–E341. [Google Scholar] [CrossRef] [Green Version]
- Nerli, R.B.; Ghagane, S.C.; Shankar, K.; Sanikop, A.C.; Hiremath, M.B.; Dixit, N.S.; Magadum, L. Low-Grade, Multiple, Ta Non-muscle-Invasive Bladder Tumors: Tumor Recurrence and Worsening Progression. Indian J. Surg. Oncol. 2018, 9, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, J.; Sun, J.; Wang, K.; Tai, S.; Hua, R.; Yu, Y.; Fan, Y. Development of a new recurrence-free survival prediction nomogram for patients with primary non-muscle-invasive bladder cancer based on preoperative controlling nutritional status score. Cancer Manag. Res. 2021, 13, 6473. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Ibarrola, R.; Soria, F.; Abufaraj, M.; D’Andrea, D.; Preto, M.; Gust, K.M.; Briganti, A.; Shariat, S.F.; Gontero, P. Surgical checklist impact on recurrence-free survival of patients with non-muscle-invasive bladder cancer undergoing transurethral resection of bladder tumour. BJU Int. 2018, 123, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jia, Y.; Yu, C.; Xiao, H.; Guo, L.; Sun, F.; Wei, D.; Zhang, P.; Li, J.; Liu, J. Influences of Different Operative Methods on the Recurrence Rate of Non-Muscle-Invasive Bladder Cancer. Urol. J. 2020, 18, 411–416. [Google Scholar] [CrossRef]
- Ajili, F.; Issam, B.M.; Kourda, N.; Darouiche, A.; Chebil, M.; Boubaker, S. Prognostic Value of Artificial Neural Network in Predicting Bladder Cancer Recurrence after BCG Immunotherapy. J. Cytol. Histol. 2014, 5, 226. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Du, L.; Wang, L.; Jiang, X.; Zhang, S.; Li, J.; Yan, K.; Duan, W.; Zhao, Y.; Wang, L.; et al. Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Mol. Cancer 2018, 17, 142. [Google Scholar] [CrossRef]
- Gogalic, S.; Sauer, U.; Doppler, S.; Heinzel, A.; Perco, P.; Lukas, A.; Simpson, G.; Pandha, H.; Horvath, A.; Preininger, C. Validation of a protein panel for the noninvasive detection of recurrent non-muscle invasive bladder cancer. Biomarkers 2017, 22, 674–681. [Google Scholar] [CrossRef]
- López de Maturana, E.; Picornell, A.; Masson-Lecomte, A.; Kogevinas, M.; Márquez, M.; Carrato, A.; Tardón, A.; Lloreta, J.; García-Closas, M.; Silverman, D.; et al. Prediction of non-muscle invasive bladder cancer outcomes assessed by innovative multimarker prognostic models. BMC Cancer 2016, 16, 351. [Google Scholar] [CrossRef]
Study | Study Aim | Markers | AI Model | Results | Findings |
---|---|---|---|---|---|
Wang, H. et al. [46] | Current recurrence prediction after TURBT or cystectomy from MRI images—11 patients. |
|
|
| DWI-MRI has a better accuracy for predicting current recurrence than DCE. |
El-Assmy, A. et al. [47] | Current recurrence prediction after TURBT from MRI images—47 patients. |
|
|
| DWI-MRI can be used to predict current recurrences with good accuracy. |
Yang, Z. et al. [48] | Current recurrence prediction using FDG 1 PET/CT images—35 patients. |
|
|
| FDG PET/CT with additional pelvic images can be used to predict recurrence presence. |
Alongi, P. et al. [15] | Current recurrence prediction from FDG 1 PET/CT images—41 patients. |
|
|
| FDG PET/CT can effectively predict current recurrences. |
Study | Study Aim | Markers | AI Model | Results | Findings |
---|---|---|---|---|---|
Chen, J.-X. et al. [49] | Predicting recurrence after TURBT followed by intervesical therapy from histopathological parameters and IHC markers—72 patients. |
| Statistical analysis only (Cox regression analysis). | p < 0.05 considered to be significant. Highest recurrence was for cut-off values of: Ki67 LI > 25%, VEGF scoring > 8. | Grading with Ki67 Li with VEGF scoring can predict recurrence. |
Li, G. et al. [50] | Predicting recurrence within 5 years for T1 NMIBC after TURBT from histopathological markers—426 patients. |
| Statistical analysis only (Cox regression analysis). | p < 0.05 considered to be significant. | Squamous differentiation was an independent predictor of recurrence with poor response to intravesical therapy. |
Xu, H. et al. [51] | Predicting recurrence after TURBT from histopathological markers—869 patients. |
| Statistical analysis only (Cox regression analysis). | p < 0.05 considered to be significant. | Squamous and/or glandular differentiation was/were an independent prognostic predictor of recurrence. |
Zhao, G. et al. [52] | Prediction of recurrence from histopathological slides for T1 NMIBC—248 patients. |
| Statistical analysis (Cox regression models). | p < 0.05 considered to be significant. | Glandular differentiation and LVI could be used as predictors for recurrence. |
Chamie, K. et al. [53] | Prediction of recurrence rates in 2, 5, and 10 y for high-grade NMIBC patients—7410 patients. |
| Statistical analysis only. (Fine-gray competing-risks regression.) | Recurrence cumulative incidence rates for:
| Tumor stage was the only significant predictor correlated with higher rates of recurrence. |
Urdal, J. et al. [54] | Predicting recurrence from histopathological slides—42 patients. |
| Local binary pattern (LBP) and local variance (VAR) operators followed by a RUSBoost classifier. | Validating:
| Textural analyses for histopathological slides promises a good predictability for recurrence. |
Tokuyama et al. [44] | Predicting recurrence after TURBT in 2 years from histopathological slides—125 patients. |
| SVM | Testing:
| The SVM model using pathological markers only has a good potential to predict recurrence. |
Study | Study Aim | Markers | AI Model | Results | Findings |
---|---|---|---|---|---|
Mano, R. et al., [55] | Predicting recurrence from clinical markers—107 patients. |
| Statistical analysis only (Cox regression models and standardized cut-off-finder algorithm). | p < 0.05 considered to be significant. Best Cut-off value was at NLR > 2.43. | NLR > 2.43 has the potential to precisely predict recurrence. |
Rubinstein, J. et al. [56] | Prediction of recurrence in T1HG patients in 1 year using clinical markers from 2 cohorts—73 patients. |
|
| Testing and/or validating: not reported. Training:
| NLR > 2.5 decision node shows good prediction for recurrence, and cohort 1 has the highest prediction performance. |
Albayrak, S. et al. [57] | Predicting recurrence from clinical markers—86 patients. |
| Statistical analysis only. (Multiple linear regression model.) | p < 0.05 considered to be significant. | NLR and age considered to be significant predictors for recurrence. |
Ferro, M. et al. [58] | Predicting recurrence from clinical inflammatory markers for high-grade T1 NMIBC treated with BCG—1382 patients. |
| Statistical analysis only (Cox regression models). | p < 0.05 considered to be significant. | NLR and ESR inflammatory markers could predict recurrence, while mGPS 1 can increase the risk of recurrence. |
Srougi, V. et al. [59] | Detection and prediction of recurrence in the first 3 years from urinary biomarkers panel—134 patients. |
|
|
| Urinary markers panel can predict recurrence with a poor specificity. |
Rosser et al. [60] | Prediction of the presence of recurrence from urinary markers—125 patients. |
| The 11 models used nonparametric ROC analyses. | Validating: Best 2 models were:
|
|
Chevalier, M.F. et al. [61] | Prediction of recurrence after BCG from urinary biomarkers—28 patients. |
|
|
| A ratio of T-cell to M-MDSC less than 1 shows an increased risk of recurrence. |
Alberice, J.V. et al. [62] | Prediction of recurrence from urinary biomarkers—48 patients. |
|
|
|
|
Naselli, A. et al. [63] | Predicting recurrence for 1 year after different operative methods: NBI-TUR 4 and WL-TUR 5—148 patients. |
| Statistical analysis only. (Logistic regression.) | (p < 0.05) considered to be significant. Recurrence rates were:
| NBI modality decreases the 1 y-recurrence risk more than WL. |
Sfakianos, J.P. et al. [64] | Predicting recurrence over 5 years from restaging TURBT before BCG therapy for high-grade NMIBC. 1021 patients. |
| Statistical analysis. (logistic regressions.) | (p < 0.05) considered to be significant. Recurrence rates were:
| Restaging TURBT can decrease the rate of recurrence for HG NMIBC patients. |
Culpan, M. et al. [65] | Prediction of recurrence after cystoscopy delay—407 patients. |
| Statistical analysis. (Multivariable logistic regression model.) | p < 0.05 considered to be significant. | Delay of 2–5 months in follow-up cystoscopy increases the risk of recurrence. |
Lu, J. et al. [66] | Prediction of recurrence undergoing different intravesical therapies—12,464 patients. |
| Statistical analysis: Network meta-analysis based on a Bayesian random-effects model. | Top 3 treatment based on AUC 6:
| GEM, BCG, and IFN are the top three effective drugs to decrease recurrence. |
Uhlig, A. et al. [67] | Predicting recurrence from gender clinical marker after BCG treatment—23,754 patients. |
| Statistical analysis only. (Random effect meta-analysis.) | (p < 0.05) considered to be significant. | Women are more likely to have higher risks of recurrence than males and a correlation between impaired BCG and female patients was found. |
Van Osch, F.H.M. et al. [68] | Prediction of recurrence from a clinical marker—722 patients. |
|
|
| The study shows poor association between smoking cessation and recurrence due to the small number of patients that quit smoking. |
Study | Study Aim | Markers | AI Model | Results | Findings |
---|---|---|---|---|---|
Kinde, I. et al. [69] | Prediction of recurrence from DNA genomics mutation markers using 2 cohorts—90 patients. |
|
|
| TERT biomarker is a significant predictor for recurrence. |
Rachakonda, P.S. et al. [70] | Predicting recurrence after TURBT from DNA genomic markers—327 patients. |
| Statistical analysis (Cox model). | p < 0.05 considered to be significant. | TERT mutation within rs2853669 polymorphism can be used as predictors for recurrence. |
Beukers, W. et al. [71] | Prediction of recurrence within 1 year from genomics biomarkers—977 patients. |
| Testing laboratories. |
| Although the combination of the 3 genes shows low sensitivity in LG recurrences, it has been noticed that those markers can better predict HG recurrence. |
Kandimalla, R. et al. [72] | Prediction of recurrence from genomics biomarkers—196 patients. |
|
| Validating:
| The combined methylation assay with FGFR3 can improve the accuracy of predicting recurrence. |
Batista, R. et al. [73] | Prediction presence of recurrence from genomics mutation markers—185 patients. |
|
|
| Uromonitor® test shows similar results comparing to cystoscopy. A combination of both markers can be used to achieve a high predicting recurrence performance. |
Park, J. et al. [74] | Prediction of recurrence after BCG treatment for T1G3 NMIBC from genomics biomarkers—61 patients. |
| Statistical analysis only (Cox regression). | p < 0.05 considered to be significant. | No significant results were shown for predicting recurrence for T1G3 NMIBC using the corresponding markers. |
Kavalieris, L. et al. [75] | Prediction of recurrence presence from mRNA genomics biomarkers—763 patients. |
|
| Validating:
| Cxbladder test has the potential to rule out recurrence cases due to high NPV. |
F. Johannes P. van Valenberg et al. [76] | Prediction of recurrence from mRNA genomics biomarkers—239 patients. |
|
| Testing:
| Comparing to UroVysion and cystoscopy in the same study, Xpert Monitor has the highest sensitivity and NPV values compared to the similar accuracies for Xpert and cystoscopy. |
Elsawy, A.A. et al. [77] | Prediction of recurrence from mRNA genomics biomarkers—181 patients. |
|
| Validating:
| Xpert Monitor shows a high association with early recurrence in addition to its good predictability. |
Bi, J. et al. [78] | Prediction of recurrence from the Circ-RNA genomics biomarker—68 patients. |
| Statistical analysis only. | p < 0.05 considered to be significant. | High expressions of Circ-ZKSCAN1 show a high correlation with decreasing recurrence. Furthermore, the marker has strong correlation with tumor stage and grade. |
Lian, P. et al. [79] | Prediction of recurrence from lncRNA genomics markers—343 patients. |
|
| p < 0.05 considered to be significant. | The eight lncRNA genes have the potential to predict recurrence. |
Liem, E.I.M.L. et al. [45] | Prediction of recurrence within 3 months from DNA markers after intravesical treatment for intermediate- and high-grade NMIBC. 114 patients. |
|
|
| A positive FISH test at 3 months after TURB had a 4.6 times greater risk of tumor recurrence than a negative FISH test. Furthermore, the significant correlation of recurrence was only noticed after 3 months post-TURBT. |
Kojima, T. et al. [80] | Prediction presence of recurrence within 3 months from DNA markers after intravesical treatment—468 patients. |
|
|
|
|
Witjes, J.A. et al. [81] | Prediction of recurrence from DNA methylation genomics markers—353 patients. |
|
|
| EpiCheck test can more effectively predict the recurrence for high-grade NMIBC. |
Roupret, M. et al. [82] | Prediction presence of recurrence from a DNA genomics marker after TURBT—127 patients. |
|
|
| ADXBLADDER test has the potential to detect the MCM5 marker that can help in predicting recurrence. |
Önal, B. et al. [83] | Prediction of the presence of recurrence from genomics biomarkers—65 patients. |
| NMP22 cut-off value of 6.4. |
| Compared to cytology, the NMP22 immunoassay genomic marker showed the highest results for LG patients. |
Su, S.-F. et al. [84] | Prediction of recurrence from DNA methylation genomics biomarkers—90 patients. |
|
| Testing:
| The hypermethylation of SOX1, and IRAK3 as well as hypomethylation of L1-MET genes can improve the predictability of recurrence. |
Shindo, T. et al. [85] | Prediction of current and late recurrence from mRNA genomics biomarkers—132 patients. |
|
|
| M-score is a significant predictor for current and late recurrences, and high levels of mRNA methylation increase the risk of recurrence. |
Reinert, T. et al. [86] | Prediction of recurrence within 1 year from DNA methylation markers—184 patients. |
|
|
| ZNF154 has the highest performance marker for predicting recurrence. Low specificities are also observed. |
Maldonado, L. et al. [87] | Prediction of recurrence after TURBT from DNA genomics markers for low grade-T0-NMIBC—36 patients. |
|
| p < 0.05 considered to be significant. | Methylated CCND2, CCNA1, and CALCA genes show significant results for recurrence prediction. Interestingly, CCNA1 is considered to be a suppressor tumor gene. |
Bellmunt, J. et al. [88] | Prediction of recurrence within 7.4 years for patients for HGT1 from genomics biomarkers—62 patients. |
| Statistical analysis only. | p < 0.05 considered to be significant. | The corresponding genomics markers have the potential to predict recurrence in high-grade T1 NMIBC. |
Kobayashi, M. et al. [89] | Prediction of recurrence after BCG therapy from human leukocyte antigen (HLA) genetic markers—195 patients. |
| Statistical analysis (Cox regressions). | p < 0.05 considered to be significant. | HLA-B homozygous were more likely than HLA-B heterozygous for intravesical recurrence. Furthermore, B07 and B44 genes decrease recurrence rates. Additionally, combination with CUETO scoring improved the C-index. |
Galesloot, T.E. et al. [90] | Predicting recurrence from genomic markers from six cohort—3400 patients. |
| Statistical analysis: GWASs 1 with Cox model. | SNPs with p < 5 × 10 considered to be significant.
| The SNP rs12885353 was the most associated locus with recurrence. Additionally, SCFD1 2 was the most associated gene with a decreased risk of recurrence. |
Frantzi, M. et al. [91] | Prediction of recurrence presence from peptide genomics biomarkers—636 patients. |
|
| Validating:
| The use of urine-based peptide biomarkers with ML promises a good predictability for recurrence. |
Bartsch, G. et al. [92] | Prediction of recurrence within 5 years after TURBT from genomics biomarkers—100 patients. |
|
| testing:
| Genomic programming can help build a good model for predicting recurrence. Additionally, both rules show similar results. |
Study | Study Aim | Markers | AI Model | Results | Findings |
---|---|---|---|---|---|
Xu, X. et al. [93] | Prediction of recurrence in the first 2 years from radiomics and clinical markers—71 patients. |
|
| Validation:
| The combined model shows the best prediction of recurrence. |
Borgi et al. [94] | Predicting recurrence after TURBT followed by BCG treatment—543 patients. |
| Classifier based on association rules (CBA). | Testing:
| The use of association rules exhibits a good sensitivity for recurrence prediction. |
Lee, J. et al. [95] | Prediction of recurrence in 5 years from clinicopathological markers after TURBT—122 patients. |
| SVM | Testing and/or validating: not reported. Training:
| Addition of IPP improved the model predicting recurrence accuracy. |
Hasnain, Z. et al. [96] (Study 1) | Prediction of recurrence in the 1st year from clinicopathological markers—3071 patients. |
|
| Testing:
| Prediction for first year of recurrence shows best results rather than 3 and 5 years prediction. |
Hasnain, Z. et al. [96] (Study 2) | Prediction of recurrence within 3 years from clinicopathological markers—2955 patients. |
|
| Testing:
| Metaclassifier shows its robustness along predictions of 1, 3, and 5 years of recurrence. |
Hasnain, Z. et al. [96] (Study 3) | Prediction of recurrence within 5 years from clinicopathological markers—2695 patients. |
|
| Testing:
| Although Model 1 shows the highest sensitivity among the 1–2 and 3 years prediction, metaclassifiers maintain the most accuracy and show the best performance. |
Lucas, M. et al. [97] (Study 1) | Prediction of recurrence in the 1st year from histopathology slides and clinical markers—359 patients. |
|
| Testing:
| The combined histo-clinical markers enhance the model performance especially for 1 y recurrence prediction. |
Lucas, M. et al. [97] (Study 2) | Prediction of recurrence in the 5 years from histopathology slides and clinical markers—281 patients. |
|
| Testing:
| The combined histo-clinical markers demonstrated better recurrence prediction performance using the 5 y model rather than using the 1 y model. |
Jobczyk et al. [98] | Prediction of recurrence within 10 years using clinicopathological markers—3892 patients. |
| CPH deep neural network (DeepSurv). | External Validating:
| DeepSurv could be considered to predict recurrence after undergoing various treatments. |
Vedder, M.M. et al. [99] | Predicting recurrence for Ta/T1 NMIBC in 10-years from 3 cohorts—1892 patients. |
| Statistical analysis (Cox regression based on EORTC and CUETO scores). |
| The EORTC and CUETO risk scores can predict recurrence. |
Getzler, I. et al. [100] | Predicting recurrence from NLR—113 patients. |
| Statistical analysis only (Cox regressions). | p < 0.05 considered to be significant. | NLR > 2.5 is a significant predictor of recurrence. Additionally, its combination with the EORTC score improves predictability on the whole cohort. |
Cambier, S. et al. [101] | Predicting recurrence rates for 1 and 5 years after TURBT followed by 1–3 years BCG treatment—1812 patients. |
| Statistical analysis only (logistic regression model and nomograms). | Validating:
| Nomogram shows high recurrence rates for high-grade and multiple tumors. |
Kim, H.S. et al. [102] | Prediction of recurrence in 5 years after TURBT— 970 patients. |
| Statistical analysis only (nomograms). | Internal Validation:
| The first study that shows gross hematuria as a significant predictor for recurrence. |
Ali-El-Dein, B. et al. [103] | Prediction of recurrence for 1 year and 5 years—1019 patients. |
| Statistical analysis (Cox and logistic regression for nomograms). |
| Five-year Nomogram shows a higher predictive performance than one-year Nomogram. |
Nerli, R.B. et al. [104] | Predicting recurrence in 5 years of multiple low-grade Ta NMIBC. |
| Statistical analysis (Cox models). | All significant markers show p < or = 0.001.
| Multiple low-grade Ta NMIBC patients show a higher risks of predicting recurrence. |
Zhao, L. et al. [105] | Prediction of recurrence with 1, 3, and 5 years from clinicopathological markers and controlling nutritional status (CONUT 3) score—94 patients. |
| A nomogram with a cut-off value at CONUT > 1. | Internal Validating:
| CONUT score could increase the predictability of recurrence. |
Suarez-Ibarrola et al. [106] | Predicting recurrence rates in 3 years from clinicopathological markers for patients undergoing TURBT—547 patients. |
| Statistical analysis only (Cox regression model). | (p < 0.05) considered to be significant. | The high quality of TURBT could drastically enhance the prediction of recurrence rates. |
Li, S. et al. [107] | Predicting recurrence in 2 years from clinicopathological markers after different operative methods: (pin-ERBT 6, TURBT, and HoLRBT 7)—115 patients. |
| Statistical approach only. | (p < 0.05) considered to be significant.
| Pin-ERBT can decrease the risk of recurrence comparing to TURBT and HoLRBT. |
Ajili, F. et al. [108] | Prediction of recurrence after BCG immunotherapy from clinicopathological and genomics markers. 308 patients. |
| MLP 2 based ANN | Testing:
| ANN model promises a good performance for predicting recurrence with combined genetic clinicopathological markers. |
Zhan. Y. et al. [109] | Prediction of recurrence from urinary markers using three lncRNAs 5 panel: (MALAT1, PCAT-1, and SPRY4-IT1)—368 patients. |
|
| Validation:
| Urinary exosomal panels can effectively predict recurrence. Furthermore, PCAT-1 can independently predict recurrence. |
Gogalic, Selma et al. [110] | Prediction of current recurrence using combined markers—45 patients. |
| LASSO logistic regression. | Validating:
| Combined markers model outperformed any individual markers models, especially after adjusting creatinine levels. |
López de Maturana, E. et al. [111] | Prediction of recurrence in 4 years from clinicopathological and genomics markers—995 patients |
| Statistical models only:
| Testing:
| Genomics markers did not improve the model predictability for recurrence. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalata, A.T.; Shehata, M.; Van Bogaert, E.; Ali, K.M.; Alksas, A.; Mahmoud, A.; El-Gendy, E.M.; Mohamed, M.A.; Giridharan, G.A.; Contractor, S.; et al. Predicting Recurrence of Non-Muscle-Invasive Bladder Cancer: Current Techniques and Future Trends. Cancers 2022, 14, 5019. https://doi.org/10.3390/cancers14205019
Shalata AT, Shehata M, Van Bogaert E, Ali KM, Alksas A, Mahmoud A, El-Gendy EM, Mohamed MA, Giridharan GA, Contractor S, et al. Predicting Recurrence of Non-Muscle-Invasive Bladder Cancer: Current Techniques and Future Trends. Cancers. 2022; 14(20):5019. https://doi.org/10.3390/cancers14205019
Chicago/Turabian StyleShalata, Aya T., Mohamed Shehata, Eric Van Bogaert, Khadiga M. Ali, Ahmed Alksas, Ali Mahmoud, Eman M. El-Gendy, Mohamed A. Mohamed, Guruprasad A. Giridharan, Sohail Contractor, and et al. 2022. "Predicting Recurrence of Non-Muscle-Invasive Bladder Cancer: Current Techniques and Future Trends" Cancers 14, no. 20: 5019. https://doi.org/10.3390/cancers14205019
APA StyleShalata, A. T., Shehata, M., Van Bogaert, E., Ali, K. M., Alksas, A., Mahmoud, A., El-Gendy, E. M., Mohamed, M. A., Giridharan, G. A., Contractor, S., & El-Baz, A. (2022). Predicting Recurrence of Non-Muscle-Invasive Bladder Cancer: Current Techniques and Future Trends. Cancers, 14(20), 5019. https://doi.org/10.3390/cancers14205019