Association between Intraoperative Blood Transfusion, Regional Anesthesia and Outcome after Pediatric Tumor Surgery for Nephroblastoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Participants and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Baseline and Perioperative Data
3.2. Primary Outcome: Influence of Intraoperative Blood Transfusions on Overall and Recurrence-Free Survival
3.3. Secondary Outcomes
3.3.1. Influence of Regional Anesthesia and Maintenance of Anesthesia on Overall and Recurrence-Free Survival
3.3.2. Length of Stay on Intensive Care Unit and Time to Hospital Discharge
3.3.3. Neutrophil-to-Lymphocyte Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Friedman, A.D. Wilms Tumor. Pediatr. Rev. 2013, 34, 328–330. [Google Scholar] [CrossRef]
- Pater, L.; Melchior, P.; Rübe, C.; Cooper, B.T.; McAleer, M.F.; Kalapurakal, J.A.; Paulino, A.C. Wilms Tumor. Pediatr. Blood Cancer 2021, 68 (Suppl. S2), e28257. [Google Scholar] [CrossRef]
- Malogolowkin, M.; Cotton, C.A.; Green, D.M.; Breslow, N.E.; Perlman, E.; Miser, J.; Ritchey, M.L.; Thomas, P.R.M.; Grundy, P.E.; D’Angio, G.J.; et al. Treatment of Wilms Tumor Relapsing after Initial Treatment with Vincristine, Actinomycin D, and Doxorubicin. A Report from the National Wilms Tumor Study Group. Pediatr. Blood Cancer 2008, 50, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Dome, J.S.; Liu, T.; Krasin, M.; Lott, L.; Shearer, P.; Daw, N.C.; Billups, C.A.; Wilimas, J.A. Improved Survival for Patients with Recurrent Wilms Tumor: The Experience at St. Jude Children’s Research Hospital. J. Pediatr. Hematol. Oncol. 2002, 24, 192–198. [Google Scholar] [CrossRef]
- Sudour, H.; Audry, G.; Schleimacher, G.; Patte, C.; Dussart, S.; Bergeron, C. Bilateral Wilms Tumors (WT) Treated with the SIOP 93 Protocol in France: Epidemiological Survey and Patient Outcome. Pediatr. Blood Cancer 2012, 59, 57–61. [Google Scholar] [CrossRef]
- Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for Cancer: A Trigger for Metastases. Cancer Res. 2017, 77, 1548–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Lian, J.; Chen, Y.; Zhao, X.; Du, C.; Xu, Y.; Hu, H.; Rao, H.; Hong, X. Circulating Tumor Cells (CTCs): A Unique Model of Cancer Metastases and Non-Invasive Biomarkers of Therapeutic Response. Front. Genet. 2021, 12, 734595. [Google Scholar] [CrossRef]
- Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and Polarized Inflammation in the Initiation and Promotion of Malignant Disease. Cancer Cell 2005, 7, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, M.L.; Redmond, H.P.; Bouchier-Hayes, D.J. The Effect of Laparotomy and Laparoscopy on the Establishment of Spontaneous Tumor Metastases. Surgery 1998, 124, 516–525. [Google Scholar] [CrossRef]
- Piegeler, T.; Beck-Schimmer, B. Anesthesia and Colorectal Cancer—The Perioperative Period as a Window of Opportunity? Eur. J. Surg. Oncol. 2016, 2, 1286–1295. [Google Scholar] [CrossRef]
- Piegeler, T.; Hollmann, M.W.; Borgeat, A.; Lirk, P. Do Amide Local Anesthetics Play a Therapeutic Role in the Perioperative Management of Cancer Patients? Int. Anesthesiol. Clin. 2016, 54, e17–e32. [Google Scholar] [CrossRef] [Green Version]
- Chamaraux-Tran, T.-N.; Piegeler, T. The Amide Local Anesthetic Lidocaine in Cancer Surgery—Potential Antimetastatic Effects and Preservation of Immune Cell Function? A Narrative Review. Front. Med. 2017, 4, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piegeler, T.; Schläpfer, M.; Dull, R.O.; Schwartz, D.E.; Borgeat, A.; Minshall, R.D.; Beck-Schimmer, B. Clinically Relevant Concentrations of Lidocaine and Ropivacaine Inhibit TNFα-Induced Invasion of Lung Adenocarcinoma Cells In Vitro by Blocking the Activation of Akt and Focal Adhesion Kinase. Br. J. Anaesth. 2015, 115, 784–791. [Google Scholar] [CrossRef] [Green Version]
- Piegeler, T.; Votta-Velis, E.G.; Bakhshi, F.R.; Mao, M.; Carnegie, G.; Bonini, M.G.; Schwartz, D.E.; Borgeat, A.; Beck-Schimmer, B.; Minshall, R.D. Endothelial Barrier Protection by Local Anesthetics. Anesthesiology 2014, 120, 1414–1428. [Google Scholar] [CrossRef] [Green Version]
- Piegeler, T.; Votta-Velis, E.G.; Liu, G.; Place, A.T.; Schwartz, D.E.; Beck-Schimmer, B.; Minshall, R.D.; Borgeat, A. Antimetastatic Potential of Amide-Linked Local Anesthetics: Inhibition of Lung Adenocarcinoma Cell Migration and Inflammatory Src Signaling Independent of Sodium Channel Blockade. Anesthesiology 2012, 117, 548–559. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.J.; van Haaren, M.; Harlaar, J.J.; Park, H.C.; Bonjer, H.J.; Jeekel, J.; Zwaginga, J.J.; Schipperus, M. Long-Term Prognostic Value of Preoperative Anemia in Patients with Colorectal Cancer: A Systematic Review and Meta-Analysis. Surg. Oncol. 2017, 26, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Vamvakas, E.C.; Blajchman, M.A. Transfusion-Related Immunomodulation (TRIM): An Update. Blood Rev. 2007, 21, 327–348. [Google Scholar] [CrossRef]
- Dome, J.S.; Perlman, E.J.; Graf, N. Risk Stratification for Wilms Tumor: Current Approach and Future Directions. Am. Soc. Clin. Oncol. Educ. Book 2014, 34, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Towe, C.W.; Gulack, B.C.; Kim, S.; Ho, V.P.; Perry, Y.; Donahue, J.M.; Linden, P.A. Restrictive Transfusion Practices After Esophagectomy Are Associated with Improved Outcome: A Review of the Society of Thoracic Surgeons General Thoracic Database. Ann. Surg. 2018, 267, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.; Pescatori, M. Perioperative Blood Transfusions for the Recurrence of Colorectal Cancer. Cochrane Database Syst. Rev. 2006, 1, CD005033. [Google Scholar] [CrossRef] [PubMed]
- Pahl, J.; Cerwenka, A. Tricking the Balance: NK Cells in Anti-Cancer Immunity. Immunobiology 2017, 222, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, L.; Liu, Y.; Portwine, C.; Barty, R.L.; Heddle, N.M. An Epidemiologic Cohort Study Reviewing the Practice of Blood Product Transfusions among a Population of Pediatric Oncology Patients. Transfusion 2014, 54, 2736–2744. [Google Scholar] [CrossRef]
- Gonzalez, D.O.; Cooper, J.N.; Mantell, E.; Minneci, P.C.; Deans, K.J.; Aldrink, J.H. Perioperative Blood Transfusion and Complications in Children Undergoing Surgery for Solid Tumors. J. Surg. Res. 2017, 216, 129–137. [Google Scholar] [CrossRef]
- Althoff, F.C.; Neb, H.; Herrmann, E.; Trentino, K.M.; Vernich, L.; Füllenbach, C.; Freedman, J.; Waters, J.H.; Farmer, S.; Leahy, M.F.; et al. Multimodal Patient Blood Management Program Based on a Three-Pillar Strategy: A Systematic Review and Meta-Analysis. Ann. Surg. 2019, 269, 794–804. [Google Scholar] [CrossRef]
- Osorio, J.; Jericó, C.; Miranda, C.; Santamaría, M.; Artigau, E.; Galofré, G.; Garsot, E.; Luna, A.; Puértolas, N.; Aldeano, A.; et al. Improved Postoperative Outcomes and Reduced Transfusion Rates after Implementation of a Patient Blood Management Program in Gastric Cancer Surgery. Eur. J. Surg. Oncol 2021, 47, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Wigmore, T.J.; Mohammed, K.; Jhanji, S. Long-Term Survival for Patients Undergoing Volatile versus IV Anesthesia for Cancer Surgery: A Retrospective Analysis. Anesthesiology 2016, 124, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Rojas-García, A.; Turner, S.; Pizzo, E.; Hudson, E.; Thomas, J.; Raine, R. Impact and Experiences of Delayed Discharge: A Mixed-Studies Systematic Review. Health Expect. Int. J. Public Particip. Health Care Health Policy 2018, 21, 41–56. [Google Scholar] [CrossRef]
- Kohn, R.; Harhay, M.O.; Weissman, G.E.; Anesi, G.L.; Bayes, B.; Greysen, S.R.; Ratcliffe, S.J.; Halpern, S.D.; Kerlin, M.P. Ward Capacity Strain: A Novel Predictor of Delays in Intensive Care Unit Survivor Throughput. Ann. Am. Thorac. Soc. 2019, 16, 387–390. [Google Scholar] [CrossRef]
- Siddique, S.M.; Tipton, K.; Leas, B.; Greysen, S.R.; Mull, N.K.; Lane-Fall, M.; McShea, K.; Tsou, A.Y. Interventions to Reduce Hospital Length of Stay in High-Risk Populations: A Systematic Review. JAMA Netw. Open 2021, 4, e2125846. [Google Scholar] [CrossRef] [PubMed]
- Bueno, H.; Ross, J.S.; Wang, Y.; Chen, J.; Vidán, M.T.; Normand, S.-L.T.; Curtis, J.P.; Drye, E.E.; Lichtman, J.H.; Keenan, P.S.; et al. Trends in Length of Stay and Short-Term Outcomes among Medicare Patients Hospitalized for Heart Failure, 1993–2006. JAMA 2010, 303, 2141–2147. [Google Scholar] [CrossRef]
- Kaufmann, K.; Heinrich, S. Minimizing Postoperative Pulmonary Complications in Thoracic Surgery Patients. Curr. Opin. Anaesthesiol. 2021, 34, 13–19. [Google Scholar] [CrossRef]
- Votta-Velis, E.G.; Piegeler, T.; Minshall, R.D.; Aguirre, J.; Beck-Schimmer, B.; Schwartz, D.E.; Borgeat, A. Regional Anaesthesia and Cancer Metastases: The Implication of Local Anaesthetics: Local Anaesthetics and Cancer Metastases. Acta Anaesthesiol. Scand. 2013, 57, 1211–1229. [Google Scholar] [CrossRef]
- Wall, T.P.; Buggy, D.J. Perioperative Intravenous Lidocaine and Metastatic Cancer Recurrence—A Narrative Review. Front. Oncol. 2021, 11, 688896. [Google Scholar] [CrossRef]
- Cakmakkaya, O.S.; Kolodzie, K.; Apfel, C.C.; Pace, N.L. Anaesthetic Techniques for Risk of Malignant Tumour Recurrence. Cochrane Database Syst. Rev. 2014, 11, CD008877. [Google Scholar] [CrossRef]
- Ang, E.; Ng, K.T.; Lee, Z.X.; Ti, L.K.; Chaw, S.H.; Wang, C.Y. Effect of Regional Anaesthesia Only versus General Anaesthesia on Cancer Recurrence Rate: A Systematic Review and Meta-Analysis with Trial Sequential Analysis. J. Clin. Anesth. 2020, 67, 110023. [Google Scholar] [CrossRef]
- Lee, Z.X.; Ng, K.T.; Ang, E.; Wang, C.Y.; Binti Shariffuddin, I.I. Effect of Perioperative Regional Anesthesia on Cancer Recurrence: A Meta-Analysis of Randomized Controlled Trials. Int. J. Surg. 2020, 82, 192–199. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Pei, L.-J.; Sun, C.; Zhao, M.-Y.; Che, L.; Huang, Y.-G. Regional Anesthesia and Cancer Recurrence in Patients with Late-Stage Cancer: A Systematic Review and Meta-Analysis. Chin. Med. J. 2021, 134, 2403–2411. [Google Scholar] [CrossRef]
- Chamaraux-Tran, T.N.; Mathelin, C.; Aprahamian, M.; Joshi, G.P.; Tomasetto, C.; Diemunsch, P.; Akladios, C. Antitumor Effects of Lidocaine on Human Breast Cancer Cells: An In Vitro and In Vivo Experimental Trial. Anticancer Res. 2018, 38, 95–105. [Google Scholar] [CrossRef]
- Freeman, J.; Crowley, P.D.; Foley, A.G.; Gallagher, H.C.; Iwasaki, M.; Ma, D.; Buggy, D.J. Effect of Perioperative Lidocaine and Cisplatin on Metastasis in a Murine Model of Breast Cancer Surgery. Anticancer Res. 2018, 38, 5599–5606. [Google Scholar] [CrossRef]
- Baptista-Hon, D.T.; Robertson, F.M.; Robertson, G.B.; Owen, S.J.; Rogers, G.W.; Lydon, E.L.; Lee, N.H.; Hales, T.G. Potent Inhibition by Ropivacaine of Metastatic Colon Cancer SW620 Cell Invasion and NaV1.5 Channel Function. Br. J. Anaesth. 2014, 113 (Suppl. S1), i39–i48. [Google Scholar] [CrossRef]
- Lirk, P.; Hollmann, M.W.; Fleischer, M.; Weber, N.C.; Fiegl, H. Lidocaine and Ropivacaine, but Not Bupivacaine, Demethylate Deoxyribonucleic Acid in Breast Cancer Cells in Vitro. Br. J. Anaesth. 2014, 113, i32–i38. [Google Scholar] [CrossRef] [Green Version]
- Hamid, H.K.S.; Davis, G.N.; Trejo-Avila, M.; Igwe, P.O.; Garcia-Marín, A. Prognostic and Predictive Value of Neutrophil-to-Lymphocyte Ratio after Curative Rectal Cancer Resection: A Systematic Review and Meta-Analysis. Surg. Oncol. 2021, 37, 101556. [Google Scholar] [CrossRef]
- Mjaess, G.; Chebel, R.; Karam, A.; Moussa, I.; Pretot, D.; Abi Tayeh, G.; Sarkis, J.; Semaan, A.; Peltier, A.; Aoun, F.; et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio (NLR) in Urological Tumors: An Umbrella Review of Evidence from Systematic Reviews and Meta-Analyses. Acta Oncol. 2021, 60, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Mazaki, J.; Katsumata, K.; Kasahara, K.; Tago, T.; Wada, T.; Kuwabara, H.; Enomoto, M.; Ishizaki, T.; Nagakawa, Y.; Tsuchida, A. Neutrophil-to-Lymphocyte Ratio Is a Prognostic Factor for Colon Cancer: A Propensity Score Analysis. BMC Cancer 2020, 20, 922. [Google Scholar] [CrossRef] [PubMed]
- Zou, P.; Yang, E.; Li, Z. Neutrophil-to-Lymphocyte Ratio Is an Independent Predictor for Survival Outcomes in Cervical Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 21917. [Google Scholar] [CrossRef]
- Forget, P.; Machiels, J.-P.; Coulie, P.G.; Berliere, M.; Poncelet, A.J.; Tombal, B.; Stainier, A.; Legrand, C.; Canon, J.-L.; Kremer, Y.; et al. Neutrophil:Lymphocyte Ratio and Intraoperative Use of Ketorolac or Diclofenac Are Prognostic Factors in Different Cohorts of Patients Undergoing Breast, Lung, and Kidney Cancer Surgery. Ann. Surg. Oncol. 2013, 20 (Suppl. S3), S650–S660. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ethier, J.-L.; Desautels, D.; Templeton, A.; Shah, P.S.; Amir, E. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Breast Cancer: A Systematic Review and Meta-Analysis. Breast Cancer Res. BCR 2017, 19, 2. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, P.C.; Jager, K.J.; Zwinderman, A.H.; Zoccali, C.; Dekker, F.W. The Analysis of Survival Data in Nephrology: Basic Concepts and Methods of Cox Regression. Kidney Int. 2008, 74, 705–709. [Google Scholar] [CrossRef]
Parameter | All (n = 65) |
---|---|
Age (years; mean (SD)) | 3.8 ± 3.1 |
Weight (kg; mean (SD)) | 15.8 ± 9.2 |
Male (n (%)) | 31 (48%) |
ASA classification | |
I | 0 (0%) |
II | 39 (60%) |
III | 25 (38%) |
IV | 1 (2%) |
Tumor staging (n (%)) | |
I | 32 (52%) |
II | 9 (15%) |
III | 11 (18%) |
IV | 8 (13%) |
V | 1 (1%) |
Metastasis at diagnosis (n (%)) | 7 (11%) |
Neoadjuvant chemotherapy (n (%)) | 57 (88%) |
Duration of surgery (minutes; median (IQR)) | 204 (129) |
Surgical approach | |
Laparotomy (n (%)) | 64 (98%) |
Laparoscopy (n (%)) | 1 (2%) |
Duration of anesthesia (minutes; median (IQR)) | 315 (149) |
Type of induction of anesthesia | |
intravenous (n (%)) | 50 (77%) |
inhalational (n (%)) | 4 (6%) |
intravenous RSI (n (%)) | 11 (17%) |
Maintenance of anesthesia | |
balanced anesthesia (n (%)) | 54 (83%) |
TIVA (n (%)) | 11 (17%) |
Crystalloids (mL/kg BW; median (IQR)) | 63 (43) |
Crystalloids (mL/kgBW/h; median (IQR)) | 13 (7) |
Colloids used (n (%)) | 36 (55%) |
Colloids (mL/kg BW; median (IQR)) | 20 (21) |
Regional anesthesia | |
none (n (%)) | 20 (31%) |
any (n (%)) | 45 (69%) |
Type of RA | |
caudal block (n (%)) | 10 (15%) |
epidural anesthesia (n (%)) | 35 (54%) |
Postoperative care | |
PACU/recovery room (n (%)) | 29 (45%) |
ICU (n (%)) | 36 (55%) |
Parameter | PRBC Transfused (n = 18) | No PRBC (p = 47) | p-Value |
---|---|---|---|
Age (years; mean ± SD) | 4.4 ± 3.0 | 3.6 ± 3.1 | 0.37 ° |
Weight (kg; mean ± SD) | 15.2 ± 9.4 | 17.2 ± 8.7 | 0.44 ° |
Male patients (n (%)) | 8 (44%) | 23 (49%) | 0.67 * |
ASA classification | 0.1 * | ||
I | 0 (0%) | 0 (0%) | |
II | 8 (44%) | 31 (66%) | |
III | 9 (50%) | 16 (34%) | |
IV | 1 (6%) | 0 (0%) | |
Tumor staging (n (%)) | 0.005 * | ||
I | 5 (28%) | 27 (63%) | |
II | 4 (22%) | 5 (12%) | |
III | 7 (39%) | 4 (9%) | |
IV | 1 (6%) | 7 (16%) | |
V | 1 (6%) | 0 (0%) | |
Metastasis at diagnosis (n (%)) | 1 (6%) | 6 (13%) | 0.663 * |
Neoadjuvant chemotherapy (n (%)) | 16 (89%) | 41 (87%) | 1.0 * |
Duration of surgery (minutes; median (IQR)) | 271 (106) | 171 (66) | 0.001 & |
Duration of anesthesia (minutes; median (IQR)) | 376 (123) | 278 (76) | <0.001 & |
Maintenance of anesthesia | 0.713 * | ||
balanced anesthesia (n (%)) | 16 (89%) | 38 (81%) | |
TIVA (n (%)) | 2 (11%) | 9 (19%) | |
Crystalloids (mL/kg BW; median (IQR)) | 80 (47) | 67 (41) | 0.005 & |
Crystalloids (mL/kgBW/h; median (IQR)) | 13 (9) | 14 (6) | 0.403 & |
Colloids used (n (%)) | 13 (72%) | 23 (49%) | 0.091 § |
Colloids (mL/kg BW; median (IQR)) | 20 (29) | 22 (22) | 0.922 & |
Regional anesthesia | |||
none (n (%)) | 6 (33%) | 14 (30%) | 0.782 § |
any (n (%)) | 12 (67%) | 33 (70%) | |
Type of RA | |||
caudal block (n (%)) | 1 (6%) | 9 (19%) | 0.442 * |
epidural anesthesia (n (%)) | 11 (61%) | 24 (51%) | |
Postoperative care | 0.272 § | ||
PACU/recovery room (n (%)) | 10 (56%) | 19 (40%) | |
ICU (n (%)) | 8 (44%) | 28 (59%) |
Parameter | RA (n = 45) | No RA (n = 20) | p-Value |
---|---|---|---|
Age (years; median (IQR)) | 3.1 (3.6) | 1.9 (3.4) | 0.744 & |
Weight (kg; median (IQR)) | 15.6 (8.5) | 10.8 (7.7) | 0.191 & |
Male patients (n (%)) | 21 (47%) | 10 (50%) | 1.0 § |
ASA classification | 0.025 * | ||
I | 0 (0%) | 0 (0%) | |
II | 31 (69%) | 8 (40%) | |
III | 14 (31%) | 11 (55%) | |
IV | 0 (0%) | 1 (5%) | |
Tumor staging (n (%)) | 0.029 * | ||
I | 19 (46%) | 13 (65%) | |
II | 9 (22%) | 0 (0%) | |
III | 6 (14.6%) | 5 (25%) | |
IV | 7 (17.1%) | 1 (5%) | |
V | 0 (0%) | 1 (5%) | |
Metastasis at diagnosis (n (%)) | 1 (5%) | 6 (13%) | 0.423 * |
Neoadjuvant chemotherapy (n (%)) | 40 (89%) | 17 (85%) | 0.693 § |
Duration of surgery (minutes; median (IQR)) | 187 (80) | 274 (175) | 0.201 & |
Duration of anesthesia (minutes; median (IQR)) | 315 (72) | 326 (150) | 0.68 & |
Maintenance of anesthesia | 0.079 * | ||
balanced anesthesia (n (%)) | 40 (89%) | 14 (70%) | |
TIVA (n (%)) | 5 (11%) | 6 (30%) | |
Crystalloids (mL/kg BW; median (IQR)) | 76 (35) | 69 (58) | 0.348 & |
Crystalloids (mL/kgBW/h; median (IQR)) | 14 (6) | 13 (12) | 0.46 & |
Colloids used (n (%)) | 27 (60%) | 9 (45%) | 0.291 § |
Colloids (mL/kg BW; median (IQR)) | 23 (16) | 10 (24) | 0.04 & |
Postoperative care | 0.001 * | ||
PACU/recovery room (n (%)) | 31 (69%) | 5 (25%) | |
ICU (n (%)) | 14 (31%) | 15 (75%) |
Type of Survival | Comparison | HR | 95% CI | p-Value |
---|---|---|---|---|
OS | PRBC vs. No PRBC | 5.37 | 0.42–68.4 | 0.124 |
No RA vs. Any RA | 1.14 | 0.1–13.37 | 0.91 | |
Balanced anesthesia vs. TIVA | 3.3 | 0.15–70.8 | 0.45 | |
RFS | PRBC vs. No PRBC | 7.59 | 1.36–42.2 | 0.004 |
No RA vs. Any RA | 0.89 | 0.18–4.43 | 0.89 | |
Balanced anesthesia vs. TIVA | 3.38 | 0.48–23.9 | 0.22 |
Variable | Beta | SE | HR | 95% CI | p-Value |
---|---|---|---|---|---|
Stage [I + II vs. III + IV + V] | 0.73 | 0.78 | 2.07 | 0.45–9.53 | 0.351 |
PRBC [PRBC vs. No PRBC] | 1.79 | 0.85 | 5.99 | 1.12–31.96 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, S.D.; Both, C.P.; Sponholz, C.; Voelker, M.T.; Christiansen, H.; Niggli, F.; Schmitz, A.; Weiss, M.; Thomas, J.; Stehr, S.N.; et al. Association between Intraoperative Blood Transfusion, Regional Anesthesia and Outcome after Pediatric Tumor Surgery for Nephroblastoma. Cancers 2022, 14, 5585. https://doi.org/10.3390/cancers14225585
Müller SD, Both CP, Sponholz C, Voelker MT, Christiansen H, Niggli F, Schmitz A, Weiss M, Thomas J, Stehr SN, et al. Association between Intraoperative Blood Transfusion, Regional Anesthesia and Outcome after Pediatric Tumor Surgery for Nephroblastoma. Cancers. 2022; 14(22):5585. https://doi.org/10.3390/cancers14225585
Chicago/Turabian StyleMüller, Sarah D., Christian P. Both, Christoph Sponholz, Maria Theresa Voelker, Holger Christiansen, Felix Niggli, Achim Schmitz, Markus Weiss, Jörg Thomas, Sebastian N. Stehr, and et al. 2022. "Association between Intraoperative Blood Transfusion, Regional Anesthesia and Outcome after Pediatric Tumor Surgery for Nephroblastoma" Cancers 14, no. 22: 5585. https://doi.org/10.3390/cancers14225585
APA StyleMüller, S. D., Both, C. P., Sponholz, C., Voelker, M. T., Christiansen, H., Niggli, F., Schmitz, A., Weiss, M., Thomas, J., Stehr, S. N., & Piegeler, T. (2022). Association between Intraoperative Blood Transfusion, Regional Anesthesia and Outcome after Pediatric Tumor Surgery for Nephroblastoma. Cancers, 14(22), 5585. https://doi.org/10.3390/cancers14225585