Next Article in Journal
HER2 mRNA Levels, Estrogen Receptor Activity and Susceptibility to Trastuzumab in Primary Breast Cancer
Previous Article in Journal
Longitudinal Modulation of Loco-Regional Immunity in Ovarian Cancer Patients Receiving Intraperitoneal Chemotherapy
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Preclinical Models of Neuroendocrine Neoplasia

1
National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health (NIH), Bethesda, MD 20892, USA
2
Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
3
National Cancer Institute, NIH, Bethesda, MD 20892, USA
4
Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
5
Oxford Center for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
6
Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
7
University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
8
Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
*
Author to whom correspondence should be addressed.
Cancers 2022, 14(22), 5646; https://doi.org/10.3390/cancers14225646
Submission received: 26 October 2022 / Revised: 15 November 2022 / Accepted: 15 November 2022 / Published: 17 November 2022

Abstract

:

Simple Summary

Neuroendocrine neoplasia comprise many distinct and rare subtypes of cancers. Preclinical models are essential for improving understanding of these diseases because clinical data is scarce. We review available preclinical models across a wide spectrum of neuroendocrine neoplasia (including those affecting the lungs, gastrointestinal system, prostate, and adrenal glands). We consider models of varying complexity and accuracy, covering both in vitro models such as cell lines and 3D models, and in vivo models such as xenografts and genetically-engineered mouse models. Better access and understanding of these models as provided in this work will help to enable research into pathology and treatment across the spectrum of neuroendocrine neoplasia.

Abstract

Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation.

1. Introduction

Neuroendocrine neoplasia (NENs) comprise a spectrum of malignant neoplasia that originate in neuroendocrine cells and can affect almost any part of the body. They vary from low Ki-67 level neuroendocrine tumors (NETs) to high Ki-67 level grade 3 NETs and biologically distinct neuroendocrine carcinomas (NECs). Although patients with low-grade tumors can survive many years, their high-grade counterparts are extremely aggressive and have a dismal outcome. As neuroendocrine cells are ubiquitous in our body, NENs can form in different organs including the gastrointestinal (GI) tract, pancreas, lungs, gallbladder, thymus, thyroid gland, testes, prostate, ovaries, and skin. NETs occur most often in the gastroenteropancreatic (GEP) system (51–67%) and lungs (21–27%) [1,2,3]. Gastroenteropancreatic NETs (GEP-NETs) occur most often in the small intestine (30–31%), rectum (26–29%), pancreas (12–13%), or appendix (6%) [2,3].
NENs can cause a broad range of symptoms based on type, location and secretion of hormones. They are classified as functional or non-functional NENs based on whether or not, respectively, they secrete hormones. Most functional NENs are NETs [1,4,5]. Rates of functionality differ depending on the type of NET: 10% of gastrointestinal, 10% of pulmonary, 10–30% of pancreatic [6,7], and 40% of adrenal [8]. While functional NETs may cause significant clinical signs and symptoms that often leads to earlier diagnosis, presentation varies widely depending on the hormone secreted. Carcinoid syndrome, which occurs in up to 20% of patients with small bowel (SB)NETs, is associated with flushing, abdominal pain, diarrhea, bronchoconstriction, and carcinoid heart disease [3]. In contrast, due to the lack of signs and symptoms, non-functional NETs are often diagnosed in the later stages after the occurrence of symptoms related to the mass effect of the tumor or metastases [9]. Moreover, while most NETs are sporadic, 20% are associated with hereditary genetic syndromes, such as multiple endocrine neoplasia type 1, von Hippel-Lindau, tuberous sclerosis, and neurofibromatosis type 1 [1].
NENs have been recognized for at least a century. They are considered an orphan disease (i.e., have a prevalence of <200,000 in the United States), and hence research is relatively sparse [10]. Disappointingly, survival of patients with NENs has not changed appreciably over the past three decades in either the USA or UK and without robust preclinical models, future drug development and our understanding of the underlying pathophysiology can be challenging. Indeed, an unmet need is improvement in the available models for each NEN subtype (i.e., both their number and authentic recapitulation of the human disease) that will enable rigorous investigation of their derivation, biology, behavior, and new treatment strategies.
For instance, small cell prostate carcinoma resembles neuroendocrine small cell lung cancer (SCLC) and makes up a minor fraction (<2%) of prostate cancers [11,12,13]. However, systemic therapies for prostate adenocarcinoma (the most commonly diagnosed type) are currently based on inhibition of androgen receptor signaling, which unfortunately leads to partial or complete neuroendocrine transdifferentiation in 10–20% of patients and accompanying development of resistance to hormonal treatment [13,14,15]. This highlights the biomedical relevance of studying neuroendocrine cell differentiation, but preclinical models of de novo small cell prostate carcinoma (natively neuroendocrine) are limited except for xenografts [16,17]. The comparatively high incidence of treatment-induced neuroendocrine prostate cancer (t-NEPC) makes up an increasing fraction of both prostate and neuroendocrine tumors in treatment (especially within neuroendocrine carcinomas but also of NENs overall) [13], warranting development of better models for investigation.
Disease models are indispensable in yielding meaningful insights into the etiology and biology of human neoplasms and to develop novel treatments. Herein, we consider the existing in vitro models of NENs including human-derived cell lines and 3D models (such as organoids, spheroids, and tumoroids), and in vivo NEN models including patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMMs).
While more models are needed, this review also summarizes how those available have nonetheless provided valuable insights into the pathogenesis and natural history of human NENs. Moving forward, it will be increasingly important that current and new NEN models be used to study methods of early tumor detection, molecular predictors of tumor behavior that can be leveraged clinically, and responses (including mechanisms) to novel targeted drug therapies.

2. Results

2.1. Cell Lines

Cell line propagation is the oldest and simplest method of tissue culture. Their convenience makes them one of the more accessible and flexible strategies for basic mechanistic research and drug screening. However, the huge gap between the microenvironment experienced by tumors in vivo and in monolayer or spheroid culture on polystyrene limits their efficacy as a model system. Less aggressive cancers tend to be more reliant on particular environmental cues and often prove difficult or impossible to culture as homogeneous cell lines, leading to overrepresentation of poorly differentiated carcinomas and other rapidly growing forms in cell line libraries [18]. Cell lines are presented in Table 1.

2.1.1. NEN Cell Lines

Most NEN cell lines are derived from poorly differentiated carcinomas, whose aggressive behavior and rapid replication is better suited to long term in vitro culture than slow-growing well-differentiated NETs [66]. This unfortunately means that there is a lack of models for the latter types of tumors, although establishment of the first well-differentiated small bowel NET cell line (GOT1) and pancreatic NET cell line (NT-3) were reported [51,61]. Existing GEP-NET lines like CM, BON1, and KRJ-I exhibit significant karyotypic and genetic differences from most NETs, and may not be derived from enterochromaffin cells (although they may still have significant value as NEC models) [67,68,69,70].
Many NEN cell lines established in the late 20th century were derived from thyroid or lung primaries, and since then those developed have been from GEP-NETs. While development of new SCLC lines has continued [44], declining interest in such models reflects both decreasing smoking rates (and SCLC incidence) and increasing understanding of the limitations of 2D cell culture as a model system [35]. Increasingly, protocols for maintaining in vitro cell line models are established in parallel with PDX models of the same cells, a promising trend towards diversifying neuroendocrine research. Such combined models allow for assessment of multiple factors. For example, the first duodenal NEC cell line (TCC-NECT-2, 2018) induced cachexia in a PDX mouse model by an unknown mechanism, which invites further study that may have been missed if it had only been used in vitro [64,71]. Increasing accessibility of 3D culture techniques such as spheroids or organoids may also contribute to improved ability to recapitulate NEN characteristics. The recently established SS-2 line showed greater expression of cancer stem cell markers in spheroids than in adherent conditions [28]. Debate over the validity of data based on cell lines affirms their role as part of a complementary set of different models, which are critical to piecing together the molecular mechanisms of NEN, but best used in combination with other models [18].
While many lines have been derived and immortalized from NEN, few of them continue to behave like NEN in standard tissue culture. Many cell lines derived from functional NENs rapidly lose secretory function in vitro [48]. Some existing cell lines have been discovered upon closer examination to actually be Epstein-Barr virus-transformed lymphoblastoid cells (L-STS, H-STS, KRJ-I) [72]. However, it remains unclear what qualities are best used to describe NEN cells—between genetics, function, and RNA-seq identified behavior [73]. For example, transcriptomic and secretomic comparison of BON1 and KRJ-I suggests that the latter line is phenotypically more neuroendocrine, while immunohistochemical comparison suggests the latter is actually of lymphoblastoid origin [70,72]. Contradictory results like these show that while the development of new cell lines and models for neuroendocrine research is exciting, it is also important to better investigate the validity of existing models and the research based off them.

2.1.2. NEPC Cell Lines

The rising prevalence of neuroendocrine prostate cancer (NEPC) is generally thought to be due to use of androgen receptor (AR) signaling inhibitors in treatment of prostate adenocarcinoma [14]. In vitro, many methods have been established for reliable transdifferentiation from adenocarcinoma into neuroendocrine phenotypes [74,75,76]. This review does not go into great detail about prostate adenocarcinoma cell lines which may be transdifferentiated as opposed to established NEPC lines.

2.1.3. PPGL Cell Lines

Pheochromocytomas (PCC, referred to in combination with paragangliomas as PPGL) have historically proven challenging to establish as cell lines. The first human pheochromocytoma cell lines, KNA and KAT45, were reported in 1998 [19,20]. No further pheochromocytoma models were developed until 2013, when a slow-growing, benign tumor was successfully immortalized via lentiviral infection with human telomerase reverse transcriptase, producing the hPheo1 cell line [21]. While this method may affect the behavior of the underlying cells, it shows potential for allowing research into the mechanisms of such slow-growing tumors that typically struggle in vitro, and has been reproduced with other pheochromocytomas [77]. Murine models of PPGL such as MTT and MPC have also proven valuable since human cell lines are so sparse [78].

2.2. 3D Models

Organoid, tumoroid, and other 3D tissue culture strategies recapitulate the tumor microenvironment to a greater degree than ordinary cell culture at the cost of added expense and complexity per sample. Increasingly, automation and standardized, well-characterized protocols for organoid establishment have allowed a greater degree of tumor types to be captured in organoid lines and used for research [79]. While traditional cell lines remain the simplest and most commonly used model, organoids are a valuable step up that can help to characterize especially more indolent tumor types that struggle to grow in conventional tissue culture. Organoid systems are presented in Table 2.

2.2.1. NEN 3D Models

Individually developed 3D models are valuable for understanding which parameters affect samples’ ability to survive as organoids. Recent models in particular have focused on directly transitioning patient tissue into 3D growth environments to better recapitulate the tumor sources [87]. Library and biobank projects that standardize collection and seeding procedures across multiple centers have also contributed greatly to the number of different models available [79]. In particular, Fuji et al.’s recent work comparing the growth of each tissue sample across a matrix of different media supplements provides greater context to the different possible neuroendocrine niches [80]. As more NEN organoid models are developed, the heterogeneity and different growth factors needed by different tumors types will be further elucidated—in particular, currently the vast majority of NET (as opposed to NEC) cells fail in vitro, and developing models which provide them a suitable niche for growth should be a priority in the near future [80,89]. Recent advances have also been made in generation of small cell lung cancer (SCLC) organoids and a single lung-derived non-small cell neuroendocrine carcinoma [81,82].

2.2.2. NEPC 3D Models

Neuroendocrine prostate cancer organoids were first reported in 2018, in 3D culture using Matrigel [84]. The same organoids were also reimplanted as patient-derived organoid xenografts (PDOXs) [85]. Projects spanning in vitro and in vivo techniques like this by using PDOXs in conjunction with the original organoids help to find more reliable results from multiple convergent types of evidence. Follow-up studies have developed a defined medium for use in 3D culture based on functionalized polyethylene glycol hydrogel [86]. Defined media presents an opportunity to better understand the different niches in which different subtypes of tumor may flourish. Data transparency is particularly helpful in such projects—reporting not only which defined media mixtures worked but also all options which were tested [79,80].
PDOXs and seeding of PDX tissue into organoid culture allows a certain degree of interchange between these types of models, although it is unclear to what extent characteristics of the tumors are preserved during such changes. One advantage that organoids have over PDXs is the use of automation and robotics to achieve high throughput. One recent study derived organoids from the MURAL prostate cancer PDX biobank to compare many organoids in parallel, at scales which would be impossible in vivo [90].

2.2.3. PPGL 3D Models

There are no published manuscripts on PPGL 3D models [91,92,93].

2.3. Patient-Derived Xenografts

Many of the previously discussed models have been used successfully in xenografts after some in vitro passaging (which has been discussed elsewhere in detail for GEP-NENS), but xenografts of samples acquired directly from biopsy or surgery into immunodeficient mice is typically seen as the gold standard of comparative evidence [18,94]. Patient derived xenografts are presented in Table 3.

2.3.1. NEN PDXs

Although the first NEN PDX models (TEG13 and TSG13) were established in 1995, there was relatively little development in this area for the following two decades [96]. Compared to prostate cancers, where biobanks increasingly standardize protocols and collection procedures across regions, new NEN PDXs have been developed incrementally and by disparate methods [99,100,102,116,117]. Recently, 2 GEP-NEC PDX models have been described by Tran et al. [97]. Beyond drug screening, some NEN PDXs have also been used to analyze circulating cancer cells [116]. Since zebrafish mature more rapidly than mice but conserve many aspects of mammalian vasculature, there has recently been increased interest in their use as a model for angiogenesis in NEN development and invasion [99]. One organoid NEN biobank has also developed companion PDXs for their models, covered in more detail in that section [79]. To date, no studies have successfully establishd well-differentiated NENs in PDX lines.

2.3.2. NEPC PDXs

Historically, limited models for neuroendocrine prostate cancer (NEPC) specifically have been developed. With the advent of biobanks operating on standardized protocols, increasing numbers of NEPC models have become available [111,112,113]. Many prostate adenocarcinomas have been observed to transdifferentiate to a neuroendocrine phenotype under androgen starvation [111]. Of particular interest, Faugeroux et al. showed that circulating tumor cell explants from non-NE primaries may develop into NE tumors [55].

2.3.3. PPGL PDXs

One successful set of PPGL PDXs has been generated, although via a technically complex protocol [103]. Recent progress also includes a high-fidelity SDHb/ rat-to-mouse xenograft [93].

2.4. Genetically-Engineered Mouse Models

Neuroendocrine tumors are some of the most frequently inherited types of cancer, and are associated with more than ten different genetic syndromes [118]. These range from general oncogene/tumor suppressor genes like TP53 or RB1 to ones associated with systemic neuroendocrine disease like MEN1, VHL, or NF1 to highly specific risk factors like SDHx and EPAS1.
While cell lines and organoid models can be highly valuable in studying treatment and improving understanding of disease states, genetically engineered mouse models provide a window into tumorigenesis itself, in particular from a genetic perspective [119]. Early models often focused on systemic knockouts or transgenes, but engineered systems with such features as Cre/lox recombinases or drug-inducible promoters allow for precise spatial and temporal control of models [120]. These tools are especially useful with regard to genes that have large systemic effects like TP53, allowing researchers to isolate changes to it to a particular location or organ [121]. Similarly, while mouse models of heritable neuroendocrine disorders are valuable in recapitulating the overall progression of the disease, more specific models help to refine understanding of highly complex disorders [121,122]. MEN1 mutations are most often associated with pancreatic, parathyroid, and pituitary tumors [123]. MEN2-associated (RET) mutations are most often associated with medullary thyroid carcinoma, pheochromocytoma, and parathyroid tumors [124]. NF1 mutations are most often associated with adrenal, gastroenteropancreatic, and parathyroid tumors [125].
In the following section, we focus specifically on models engineered in mice. Notable genetic NEN models have also been developed in other organisms, in particular zebrafish. These are not discussed below for brevity but are referenced here for completeness [126,127,128,129,130,131,132,133,134,135,136].

2.4.1. NEN GEMMS

Specific models of NEN subtypes are lacking since many NENs are interrelated or poorly understood in terms of molecular drivers [122,137]. Use of organ-specific Cre/lox and drug-induced systems has been critical in developing more specific NEN models, although most today still focus on pancreatic NETs [120]. Many models also link SV40-Tag oncogenes to particular promoters to facilitate local expression. For pancreatic NETs the RIP-Tag paradigm and its successors have been especially well-studied [138,139,140]. Gastric NET models have been developed that induce tumorigenesis through both overexpression and inhibition of gastrin-related genes [141,142]. There is a distinct lack of specific GEMMs for intestinal NETs (even though they are among the most prevalent GEP-NETs) [122]. Current models are based on SV40-Tag driven by glucagon or intestinal trefoil factor promoters [143,144]. As lung tumors are rarely resected, GEMMs are an essential tool in lung NEN research [122,145]. Many current lung NEC models focus on selective knockouts of TP53, RB1, or PTEN to recapitulate SCLC or LCNEC [146,147]. Genetically engineered mouse models are presented in Table 4.

2.4.2. NEPC GEMMS

Before treatment-induced neuroendocrine transdifferentiation of prostate cancer was well understood, GEMMs that modeled transdifferentiation of prostate adencarcinomas to NE phenotypes were seen as flawed, even though this has been since been observed clinically [240,273]. As t-NEPC has become more common in recent years, there has been renewed interest in models that feature this neuroendocrine transdifferentiation [274,275]. Most models depend on oncogenes driven by variations of probasin or PSP94 promoters [232,236,239,241,276].

2.4.3. PPGL GEMMS

While models for genes of cluster 2 PPGL (RET, NF1, and TMEM127) have been studied since 1992, these models are suboptimal as they are generally associated with development of additional unrelated non-neuroendocrine tumors [92]. Historical attempts at generating GEMMS of cluster 1 pseudohypoxia (VHL, SDH) PPGL have failed to develop tumors or are embryonically lethal [277]. However, recent developments have changed this: The first successful pseudohypoxic PPGL GEMM was recently developed with a gain-of-function EPAS1 mutation, characterizing Pacak-Zhuang syndrome [148], and tetracycline-induced dual SDHB/NF1 mouse model was recently developed (showing that SDHB inactivation alone was insufficient for tumorigenesis, but coupling with NF1 lead to pheochromocytoma) [91,151].

3. Conclusions

NENs constitute a heterogeneous and complex set of diseases. This feature demands a similarly heterogenous set of models to span the genetic and phenotypic diversity of the diseases. Since many forms are quite low in incidence, patient-derived models and clinical data about these diseases is at a premium, and preclinical models are all the more necessary to develop treatments for these patients with distinct but still lethal disease. Since aggressive disease is often better suited to in vitro growth and allows for more rapid assessment in mouse models, models are lacking for more indolent forms of neuroendocrine neoplasia, among all subtypes, but especially PPGL.
In this review, we have summarized available preclinical models for NENs, their history, as well as current use and translation. While no single model can fully recapitulate disease in the human body, convergent evidence from multiple different types of models brings us closer to that understanding. In spite of the many models developed, there is relatively little sharing and combination of those models for such integrated investigations. Future work would benefit from horizontal use of multiple types of models by researchers via increased collaborative sharing of data and models, including difficulties encountered during their generation. Large biobank projects are helpful in reaching a wide variety of a single type of model, but current biobanks have not made efforts to capture heterogeneity between model types as well as between individual models. Cell lines are perhaps the easiest models to work with for more aggressive disease types that grow well in simple in vitro culture, however, they may not reflect the actual phenotype of disease in vivo, and many patient-derived cells fail to thrive in continuous culture. Organoid or tumoroid models that better recapitulate the tumor microenvironment can allow for growth of a greater variety of tumor types in vitro, and better model their biology and responses to treatment. Immunodeficient PDX models further capture interactions between tumors and other tissues and in particular routes of metastasis. While immunocompetent mouse models are more complex and less often successful, they further allow for modeling tumor-immune interactions which are increasingly critical in understanding the potential of modern immunotherapy. Finally, genetically engineered mouse models fill a critical niche in understanding the pathogenesis of tumors, in particular in combination with spatial and temporal controls to introduce related mutations in a controlled fashion within mouse tissue.
Since neuroendocrine neoplasia represent such a genetically and phenotypically diverse group of pathologies, a diverse selection of models is also necessary to improve our understanding and treatment of them. This review underscores the conclusion that, despite persistent efforts by many groups, the establishment and application of NEN disease models have been limited. One reason is the indolent nature of these slowly growing tumors that make them difficult to propagate in culture or in animals, but another key factor is the rare nature of this disease and relatively small number of patients. Considering the recent rise in incidence (a 6.4-fold increase between 1973 and 2012 [2]), it is important to develop NEN disease models that more accurately reflect the biology of human NEN tissues in terms of diagnostic criteria and genetic alterations [89]. Much of the rise in incidence is thought to be the result of improved detection [2]. A greater diversity of model types and origins will help to address our understanding of these diseases in context of their increasing prevalence. All types of model systems are valuable at different parts of the drug screening and development process. Use and continued improvement of these models will drive preclinical advancements across the spectrum of neuroendocrine neoplasia.

Author Contributions

Conceptualization, J.d.R. and A.J.H.S.; data curation, A.J.H.S. and K.S.-A.; writing—original draft preparation, A.J.H.S., K.S.-A. and J.d.R.; writing—review and editing, K.E.L., N.R., S.K., P.H.E., K.P., E.B., D.E.Q., J.R.H., Y.P. and J.d.R.; supervision, J.d.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Intramural Research Program of the National Cancer Institute.

Acknowledgments

The authors would like to acknowledge Diana Varghese for her support in the drafting process.

Conflicts of Interest

D.E.Q. is currently receiving grant R01 CA260200 from the National Cancer Institute. Otherwise, the authors declare no conflict of interest.

References

  1. Oronsky, B.; Ma, P.C.; Morgensztern, D.; Carter, C.A. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia 2017, 19, 991–1002. [Google Scholar] [CrossRef] [PubMed]
  2. Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
  3. Raphael, M.J.; Chan, D.L.; Law, C.; Singh, S. Principles of Diagnosis and Management of Neuroendocrine Tumours. CMAJ 2017, 189, E398–E404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Jensen, R.T.; Bodei, L.; Capdevila, J.; Couvelard, A.; Falconi, M.; Glasberg, S.; Kloppel, G.; Lamberts, S.; Peeters, M.; Rindi, G.; et al. Unmet Needs in Functional and Nonfunctional Pancreatic Neuroendocrine Neoplasms. Neuroendocrinology 2019, 108, 26–36. [Google Scholar] [CrossRef] [PubMed]
  5. Rindi, G.; Mete, O.; Uccella, S.; Basturk, O.; La Rosa, S.; Brosens, L.A.A.; Ezzat, S.; de Herder, W.W.; Klimstra, D.S.; Papotti, M.; et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr. Pathol. 2022, 33, 115–154. [Google Scholar] [CrossRef] [PubMed]
  6. Ma, Z.-Y.; Gong, Y.-F.; Zhuang, H.-K.; Zhou, Z.-X.; Huang, S.-Z.; Zou, Y.-P.; Huang, B.-W.; Sun, Z.-H.; Zhang, C.-Z.; Tang, Y.-Q.; et al. Pancreatic Neuroendocrine Tumors: A Review of Serum Biomarkers, Staging, and Management. World J. Gastroenterol. 2020, 26, 2305–2322. [Google Scholar] [CrossRef]
  7. Metz, D.C.; Jensen, R.T. Gastrointestinal Neuroendocrine Tumors: Pancreatic Endocrine Tumors. Gastroenterology 2008, 135, 1469–1492. [Google Scholar] [CrossRef] [Green Version]
  8. Ebbehoj, A.; Li, D.; Kaur, R.J.; Zhang, C.; Singh, S.; Li, T.; Atkinson, E.; Achenbach, S.; Khosla, S.; Arlt, W.; et al. Epidemiology of Adrenal Tumors—A Population-Based Study in Olmsted County, Minnesota. Lancet Diabetes Endocrinol. 2020, 8, 894–902. [Google Scholar] [CrossRef]
  9. Detterbeck, F.C. Clinical Presentation and Evaluation of Neuroendocrine Tumors of the Lung. Thorac. Surg. Clin. 2014, 24, 267–276. [Google Scholar] [CrossRef] [PubMed]
  10. Basu, B.; Sirohi, B.; Corrie, P. Systemic Therapy for Neuroendocrine Tumours of Gastroenteropancreatic Origin. Endocr. Relat. Cancer 2010, 17, R75–R90. [Google Scholar] [CrossRef] [PubMed]
  11. Chedgy, E.C.; Vandekerkhove, G.; Herberts, C.; Annala, M.; Donoghue, A.J.; Sigouros, M.; Ritch, E.; Struss, W.; Konomura, S.; Liew, J.; et al. Biallelic Tumour Suppressor Loss and DNA Repair Defects in de Novo Small-Cell Prostate Carcinoma. J. Pathol. 2018, 246, 244–253. [Google Scholar] [CrossRef] [PubMed]
  12. Abbas, F.; Civantos, F.; Benedetto, P.; Soloway, M.S. Small Cell Carcinoma of the Bladder and Prostate. Urology 1995, 46, 617–630. [Google Scholar] [CrossRef]
  13. Wang, Y.; Wang, Y.; Ci, X.; Choi, S.Y.C.; Crea, F.; Lin, D.; Wang, Y. Molecular Events in Neuroendocrine Prostate Cancer Development. Nat. Rev. Urol. 2021, 18, 581–596. [Google Scholar] [CrossRef] [PubMed]
  14. Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging Mechanisms of Resistance to Androgen Receptor Inhibitors in Prostate Cancer. Nat. Rev. Cancer 2015, 15, 701–711. [Google Scholar] [CrossRef] [Green Version]
  15. Conteduca, V.; Oromendia, C.; Eng, K.W.; Bareja, R.; Sigouros, M.; Molina, A.; Faltas, B.M.; Sboner, A.; Mosquera, J.M.; Elemento, O.; et al. Clinical Features of Neuroendocrine Prostate Cancer. Eur. J. Cancer 2019, 121, 7–18. [Google Scholar] [CrossRef]
  16. Tzelepi, V.; Zhang, J.; Lu, J.-F.; Kleb, B.; Wu, G.; Wan, X.; Hoang, A.; Efstathiou, E.; Sircar, K.; Navone, N.M.; et al. Modeling a Lethal Prostate Cancer Variant with Small-Cell Carcinoma Features. Clin. Cancer Res. 2012, 18, 666–677. [Google Scholar] [CrossRef] [Green Version]
  17. Lopez-Barcons, L.-A. Small-Cell Neuroendocrine Carcinoma of the Prostate: Are Heterotransplants a Better Experimental Model? Asian J. Androl. 2010, 12, 308–314. [Google Scholar] [CrossRef] [Green Version]
  18. Detjen, K.; Hammerich, L.; Özdirik, B.; Demir, M.; Wiedenmann, B.; Tacke, F.; Jann, H.; Roderburg, C. Models of Gastroenteropancreatic Neuroendocrine Neoplasms: Current Status and Future Directions. Neuroendocrinology 2021, 111, 217–236. [Google Scholar] [CrossRef]
  19. Pfragner, R.; Behmel, A.; Smith, D.P.; Ponder, B.A.; Wirnsberger, G.; Rinner, I.; Porta, S.; Henn, T.; Niederle, B. First Continuous Human Pheochromocytoma Cell Line: KNA. Biological, Cytogenetic and Molecular Characterization of KNA Cells. J. Neurocytol. 1998, 27, 175–186. [Google Scholar] [CrossRef]
  20. Venihaki, M.; Ain, K.; Dermitzaki, E.; Gravanis, A.; Margioris, A.N. KAT45, a Noradrenergic Human Pheochromocytoma Cell Line Producing Corticotropin-Releasing Hormone. Endocrinology 1998, 139, 713–722. [Google Scholar] [CrossRef]
  21. Ghayee, H.K.; Bhagwandin, V.J.; Stastny, V.; Click, A.; Ding, L.-H.; Mizrachi, D.; Zou, Y.S.; Chari, R.; Lam, W.L.; Bachoo, R.M.; et al. Progenitor Cell Line (HPheo1) Derived from a Human Pheochromocytoma Tumor. PLoS ONE 2013, 8, e65624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Dizdar, L.; Drusenheimer, J.; Werner, T.A.; Möhlendick, B.; Schütte, S.C.; Esposito, I.; Filler, T.J.; Knoefel, W.T.; Krieg, A. Establishment and Characterization of a Novel Cell Line Derived from a Small Cell Neuroendocrine Carcinoma of the Anal Canal. Neuroendocrinology 2018, 107, 246–256. [Google Scholar] [CrossRef] [PubMed]
  23. Ear, P.H.; Li, G.; Wu, M.; Abusada, E.; Bellizzi, A.M.; Howe, J.R. Establishment and Characterization of Small Bowel Neuroendocrine Tumor Spheroids. J. Vis. Exp. 2019, 152, e60303. [Google Scholar] [CrossRef] [PubMed]
  24. Quinn, L.A.; Moore, G.E.; Morgan, R.T.; Woods, L.K. Cell Lines from Human Colon Carcinoma with Unusual Cell Products, Double Minutes, and Homogeneously Staining Regions. Cancer Res. 1979, 39, 4914–4924. [Google Scholar] [PubMed]
  25. Lundqvist, M.; Mark, J.; Funa, K.; Heldin, N.E.; Morstyn, G.; Wedell, B.; Layton, J.; Oberg, K. Characterisation of a Cell Line (LCC-18) from a Cultured Human Neuroendocrine-Differentiated Colonic Carcinoma. Eur. J. Cancer 1991, 27, 1663–1668. [Google Scholar] [CrossRef]
  26. Krieg, A.; Mersch, S.; Boeck, I.; Dizdar, L.; Weihe, E.; Hilal, Z.; Krausch, M.; Möhlendick, B.; Topp, S.A.; Piekorz, R.P.; et al. New Model for Gastroenteropancreatic Large-Cell Neuroendocrine Carcinoma: Establishment of Two Clinically Relevant Cell Lines. PLoS ONE 2014, 9, e88713. [Google Scholar] [CrossRef] [Green Version]
  27. Gock, M.; Mullins, C.S.; Harnack, C.; Prall, F.; Ramer, R.; Göder, A.; Krämer, O.H.; Klar, E.; Linnebacher, M. Establishment, Functional and Genetic Characterization of a Colon Derived Large Cell Neuroendocrine Carcinoma Cell Line. World J. Gastroenterol. 2018, 24, 3749–3759. [Google Scholar] [CrossRef]
  28. Shinji, S.; Sasaki, N.; Yamada, T.; Koizumi, M.; Ohta, R.; Matsuda, A.; Yokoyama, Y.; Takahashi, G.; Hotta, M.; Hara, K.; et al. Establishment and Characterization of a Novel Neuroendocrine Carcinoma Cell Line Derived from a Human Ascending Colon Tumor. Cancer Sci. 2019, 110, 3708–3717. [Google Scholar] [CrossRef] [Green Version]
  29. Stuschke, M.; Budach, V.; Klaes, W.; Sack, H. Radiosensitivity, Repair Capacity, and Stem Cell Fraction in Human Soft Tissue Tumors: An in Vitro Study Using Multicellular Spheroids and the Colony Assay. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 69–80. [Google Scholar] [CrossRef]
  30. Fujiwara, T.; Motoyama, T.; Ishihara, N.; Watanabe, H.; Kumanishi, T.; Kato, K.; Ichinose, H.; Nagatsu, T. Characterization of Four New Cell Lines Derived from Small-Cell Gastrointestinal Carcinoma. Int. J. Cancer 1993, 54, 965–971. [Google Scholar] [CrossRef]
  31. Okumura, T.; Shimada, Y.; Omura, T.; Hirano, K.; Nagata, T.; Tsukada, K. MicroRNA Profiles to Predict Postoperative Prognosis in Patients with Small Cell Carcinoma of the Esophagus. Anticancer Res. 2015, 35, 719–727. [Google Scholar] [PubMed]
  32. Cama, A.; Verginelli, F.; Lotti, L.V.; Napolitano, F.; Morgano, A.; D’Orazio, A.; Vacca, M.; Perconti, S.; Pepe, F.; Romani, F.; et al. Integrative Genetic, Epigenetic and Pathological Analysis of Paraganglioma Reveals Complex Dysregulation of NOTCH Signaling. Acta Neuropathol. 2013, 126, 575–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  33. Oboshi, S.; Tsugawa, S.; Seido, T.; Shimosato, Y.; Koide, T. A New Floating Cell Line Derived from Human Pulmonary Carcinoma of Oat Cell Type. GANN Jpn. J. Cancer Res. 1971, 62, 505–514. [Google Scholar] [CrossRef]
  34. Fisher, E.R.; Paulson, J.D. A New in Vitro Cell Line Established from Human Large Cell Variant of Oat Cell Lung Cancer. Cancer Res. 1978, 38, 3830–3835. [Google Scholar]
  35. Sui, J.S.Y.; Martin, P.; Gray, S.G. Pre-Clinical Models of Small Cell Lung Cancer and the Validation of Therapeutic Targets. Expert Opin. Ther. Targets 2020, 24, 187–204. [Google Scholar] [CrossRef] [PubMed]
  36. Baillie-Johnson, H.; Twentyman, P.R.; Fox, N.E.; Walls, G.A.; Workman, P.; Watson, J.V.; Johnson, N.; Reeve, J.G.; Bleehen, N.M. Establishment and Characterisation of Cell Lines from Patients with Lung Cancer (Predominantly Small Cell Carcinoma). Br. J. Cancer 1985, 52, 495–504. [Google Scholar] [CrossRef] [Green Version]
  37. Bepler, G.; Jaques, G.; Koehler, A.; Gropp, C.; Havemann, K. Markers and Characteristics of Human SCLC Cell Lines. J. Cancer Res. Clin. Oncol. 1987, 113, 253–259. [Google Scholar] [CrossRef]
  38. Paulin, C.; Charnay, Y. Demonstration of delta sleep inducing peptide in a strain of human small cell lung cancer by immunocytology. C. R. Acad. Sci. III 1992, 314, 259–262. [Google Scholar]
  39. Giaccone, G.; Battey, J.; Gazdar, A.F.; Oie, H.; Draoui, M.; Moody, T.W. Neuromedin B Is Present in Lung Cancer Cell Lines. Cancer Res. 1992, 52, 2732s–2736s. [Google Scholar]
  40. Schauer, I.E.; Siriwardana, S.; Langan, T.A.; Sclafani, R.A. Cyclin D1 Overexpression vs. Retinoblastoma Inactivation: Implications for Growth Control Evasion in Non-Small Cell and Small Cell Lung Cancer. Proc. Natl. Acad. Sci. USA 1994, 91, 7827–7831. [Google Scholar] [CrossRef] [Green Version]
  41. Twentyman, P.R.; Wright, K.A.; Mistry, P.; Kelland, L.R.; Murrer, B.A. Sensitivity to Novel Platinum Compounds of Panels of Human Lung Cancer Cell Lines with Acquired and Inherent Resistance to Cisplatin. Cancer Res. 1992, 52, 5674–5680. [Google Scholar] [PubMed]
  42. Phelps, R.M.; Johnson, B.E.; Ihde, D.C.; Gazdar, A.F.; Carbone, D.P.; McClintock, P.R.; Linnoila, R.I.; Matthews, M.J.; Bunn, P.A., Jr.; Carney, D.; et al. NCI-Navy Medical Oncology Branch Cell Line Data Base. J. Cell. Biochem. 1996, 63, 32–91. [Google Scholar] [CrossRef] [PubMed]
  43. Virmani, A.K.; Fong, K.M.; Kodagoda, D.; McIntire, D.; Hung, J.; Tonk, V.; Minna, J.D.; Gazdar, A.F. Allelotyping Demonstrates Common and Distinct Patterns of Chromosomal Loss in Human Lung Cancer Types. Genes Chromosomes Cancer 1998, 21, 308–319. [Google Scholar] [CrossRef]
  44. Ohara, K.; Kinoshita, S.; Ando, J.; Azusawa, Y.; Ishii, M.; Harada, S.; Mitsuishi, Y.; Asao, T.; Tajima, K.; Yamamoto, T.; et al. SCLC-J1, a Novel Small Cell Lung Cancer Cell Line. Biochem. Biophys. Rep. 2021, 27, 101089. [Google Scholar] [CrossRef]
  45. Kaku, M.; Nishiyama, T.; Yagawa, K.; Abe, M. Establishment of a Carcinoembryonic Antigen-Producing Cell Line from Human Pancreatic Carcinoma. GANN Jpn. J. Cancer Res. 1980, 71, 596–601. [Google Scholar]
  46. Gueli, N.; Toto, G.; Palmieri, G.; Carmenini, G.; Delfino, A.; Ferrini, U. In Vitro Growth of a Cell Line Originated from a Human Insulinoma. J. Exp. Clin. Cancer Res. 1987, 6, 281–285. [Google Scholar]
  47. Evers, B.M.; Townsend, C.M.; Upp, J.R.; Allen, E.; Hurlbut, S.C.; Kim, S.W.; Rajaraman, S.; Singh, P.; Reubi, J.C.; Thompson, J.C. Establishment and Characterization of a Human Carcinoid in Nude Mice and Effect of Various Agents on Tumor Growth. Gastroenterology 1991, 101, 303–311. [Google Scholar] [CrossRef]
  48. Tillotson, L.G.; Lodestro, C.; Höcker, M.; Wiedenmann, B.; Newcomer, C.E.; Reid, L.M. Isolation, Maintenance, and Characterization of Human Pancreatic Islet Tumor Cells Expressing Vasoactive Intestinal Peptide. Pancreas 2001, 22, 91–98. [Google Scholar] [CrossRef]
  49. Yachida, S.; Zhong, Y.; Patrascu, R.; Davis, M.B.; Morsberger, L.A.; Griffin, C.A.; Hruban, R.H.; Laheru, D.; Iacobuzio-Donahue, C.A. Establishment and Characterization of a New Cell Line, A99, from a Primary Small Cell Carcinoma of the Pancreas. Pancreas 2011, 40, 905–910. [Google Scholar] [CrossRef] [Green Version]
  50. Krampitz, G.W.; George, B.M.; Willingham, S.B.; Volkmer, J.-P.; Weiskopf, K.; Jahchan, N.; Newman, A.M.; Sahoo, D.; Zemek, A.J.; Yanovsky, R.L.; et al. Identification of Tumorigenic Cells and Therapeutic Targets in Pancreatic Neuroendocrine Tumors. Proc. Natl. Acad. Sci. USA 2016, 113, 4464–4469. [Google Scholar] [CrossRef] [Green Version]
  51. Benten, D.; Behrang, Y.; Unrau, L.; Weissmann, V.; Wolters-Eisfeld, G.; Burdak-Rothkamm, S.; Stahl, F.R.; Anlauf, M.; Grabowski, P.; Möbs, M.; et al. Establishment of the First Well-Differentiated Human Pancreatic Neuroendocrine Tumor Model. Mol. Cancer Res. 2018, 16, 496–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. Viol, F.; Sipos, B.; Fahl, M.; Clauditz, T.S.; Amin, T.; Kriegs, M.; Nieser, M.; Izbicki, J.R.; Huber, S.; Lohse, A.W.; et al. Novel Preclinical Gastroenteropancreatic Neuroendocrine Neoplasia Models Demonstrate the Feasibility of Mutation-Based Targeted Therapy. Cell. Oncol. 2022. [Google Scholar] [CrossRef] [PubMed]
  53. Horoszewicz, J.S.; Leong, S.S.; Chu, T.M.; Wajsman, Z.L.; Friedman, M.; Papsidero, L.; Kim, U.; Chai, L.S.; Kakati, S.; Arya, S.K.; et al. The LNCaP Cell Line--a New Model for Studies on Human Prostatic Carcinoma. Prog Clin. Biol. Res. 1980, 37, 115–132. [Google Scholar]
  54. Johnson, B.E.; Whang-Peng, J.; Naylor, S.L.; Zbar, B.; Brauch, H.; Lee, E.; Simmons, A.; Russell, E.; Nam, M.H.; Gazdar, A.F. Retention of Chromosome 3 in Extrapulmonary Small Cell Cancer Shown by Molecular and Cytogenetic Studies. J. Natl. Cancer Inst. 1989, 81, 1223–1228. [Google Scholar] [CrossRef]
  55. Faugeroux, V.; Pailler, E.; Oulhen, M.; Deas, O.; Brulle-Soumare, L.; Hervieu, C.; Marty, V.; Alexandrova, K.; Andree, K.C.; Stoecklein, N.H.; et al. Genetic Characterization of a Unique Neuroendocrine Transdifferentiation Prostate Circulating Tumor Cell-Derived EXplant Model. Nat. Commun. 2020, 11, 1884. [Google Scholar] [CrossRef] [Green Version]
  56. Okasho, K.; Mizuno, K.; Fukui, T.; Lin, Y.-Y.; Kamiyama, Y.; Sunada, T.; Li, X.; Kimura, H.; Sumiyoshi, T.; Goto, T.; et al. Establishment and Characterization of a Novel Treatment-Related Neuroendocrine Prostate Cancer Cell Line KUCaP13. Cancer Sci. 2021, 112, 2781–2791. [Google Scholar] [CrossRef] [PubMed]
  57. Tanaka, N.; Onda, M.; Seya, T.; Kanazawa, Y.; Naito, Z.; Asano, G.; Oguro, T. Establishment and Characterization of a Human Rectal Neuroendocrine Carcinoma Xenograft into Nude Mice. Digestion 1999, 60, 117–124. [Google Scholar] [CrossRef]
  58. Takahashi, Y.; Onda, M.; Tanaka, N.; Seya, T. Establishment and Characterization of Two New Rectal Neuroendocrine Cell Carcinoma Cell Lines. Digestion 2000, 62, 262–270. [Google Scholar] [CrossRef] [PubMed]
  59. Pfragner, R.; Wirnsberger, G.; Niederle, B.; Behmel, A.; Rinner, I.; Mandl, A.; Wawrina, F.; Luo, J.; Adamiker, D.; Hoger, H.; et al. Establishment of a Continuous Cell Line from a Human Carcinoid of the Small Intestine (KRJ-I). Int. J. Oncol. 1996, 8, 513–520. [Google Scholar] [CrossRef]
  60. Konno, H.; Arai, T.; Tanaka, T.; Baba, M.; Matsumoto, K.; Kanai, T.; Nakamura, S.; Baba, S.; Naito, Y.; Sugimura, H.; et al. Antitumor Effect of a Neutralizing Antibody to Vascular Endothelial Growth Factor on Liver Metastasis of Endocrine Neoplasm. Jpn. J. Cancer Res. 1998, 89, 933–939. [Google Scholar] [CrossRef]
  61. Kölby, L.; Bernhardt, P.; Ahlman, H.; Wängberg, B.; Johanson, V.; Wigander, A.; Forssell-Aronsson, E.; Karlsson, S.; Ahrén, B.; Stenman, G.; et al. A Transplantable Human Carcinoid as Model for Somatostatin Receptor-Mediated and Amine Transporter-Mediated Radionuclide Uptake. Am. J. Pathol. 2001, 158, 745–755. [Google Scholar] [CrossRef] [Green Version]
  62. Van Buren, G.; Rashid, A.; Yang, A.D.; Abdalla, E.K.; Gray, M.J.; Liu, W.; Somcio, R.; Fan, F.; Camp, E.R.; Yao, J.C.; et al. The Development and Characterization of a Human Midgut Carcinoid Cell Line. Clin. Cancer Res. 2007, 13, 4704–4712. [Google Scholar] [CrossRef] [Green Version]
  63. Pfragner, R.; Behmel, A.; Höger, H.; Beham, A.; Ingolic, E.; Stelzer, I.; Svejda, B.; Moser, V.A.; Obenauf, A.C.; Siegl, V.; et al. Establishment and Characterization of Three Novel Cell Lines—P-STS, L-STS, H-STS—Derived from a Human Metastatic Midgut Carcinoid. Anticancer Res. 2009, 29, 1951–1961. [Google Scholar]
  64. Yanagihara, K.; Kubo, T.; Mihara, K.; Kuwata, T.; Ochiai, A.; Seyama, T.; Yokozaki, H. Establishment of a Novel Cell Line from a Rare Human Duodenal Poorly Differentiated Neuroendocrine Carcinoma. Oncotarget 2018, 9, 36503–36514. [Google Scholar] [CrossRef] [Green Version]
  65. Pfragner, R.; Höfler, H.; Behmel, A.; Ingolic, E.; Walser, V. Establishment and Characterization of Continuous Cell Line MTC-SK Derived from a Human Medullary Thyroid Carcinoma. Cancer Res. 1990, 50, 4160–4166. [Google Scholar]
  66. April-Monn, S.L.; Wiedmer, T.; Skowronska, M.; Maire, R.; Schiavo Lena, M.; Trippel, M.; Di Domenico, A.; Muffatti, F.; Andreasi, V.; Capurso, G.; et al. Three-Dimensional Primary Cell Culture: A Novel Preclinical Model for Pancreatic Neuroendocrine Tumors. Neuroendocrinology 2021, 111, 273–287. [Google Scholar] [CrossRef]
  67. Gragnoli, C. The CM Cell Line Derived from Liver Metastasis of Malignant Human Insulinoma Is Not a Valid Beta Cell Model for in Vitro Studies. J. Cell. Physiol. 2008, 216, 569–570. [Google Scholar] [CrossRef]
  68. Lopez, J.R.; Claessen, S.M.H.; Macville, M.V.E.; Albrechts, J.C.M.; Skogseid, B.; Speel, E.-J.M. Spectral Karyotypic and Comparative Genomic Analysis of the Endocrine Pancreatic Tumor Cell Line BON-1. Neuroendocrinology 2010, 91, 131–141. [Google Scholar] [CrossRef]
  69. Boora, G.K.; Kanwar, R.; Kulkarni, A.A.; Pleticha, J.; Ames, M.; Schroth, G.; Beutler, A.S.; Banck, M.S. Exome-Level Comparison of Primary Well-Differentiated Neuroendocrine Tumors and Their Cell Lines. Cancer Genet. 2015, 208, 374–381. [Google Scholar] [CrossRef]
  70. Siddique, Z.-L.; Drozdov, I.; Floch, J.; Gustafsson, B.I.; Stunes, K.; Pfragner, R.; Kidd, M.; Modlin, I.M. KRJ-I and BON Cell Lines: Defining an Appropriate Enterochromaffin Cell Neuroendocrine Tumor Model. Neuroendocrinology 2009, 89, 458–470. [Google Scholar] [CrossRef]
  71. Yanagihara, K.; Kubo, T.; Iino, Y.; Mihara, K.; Morimoto, C.; Seyama, T.; Kuwata, T.; Ochiai, A.; Yokozaki, H. Development and Characterization of a Cancer Cachexia Model Employing a Rare Human Duodenal Neuroendocrine Carcinoma-Originating Cell Line. Oncotarget 2019, 10, 2435–2450. [Google Scholar] [CrossRef] [Green Version]
  72. Hofving, T.; Arvidsson, Y.; Almobarak, B.; Inge, L.; Pfragner, R.; Persson, M.; Stenman, G.; Kristiansson, E.; Johanson, V.; Nilsson, O. The Neuroendocrine Phenotype, Genomic Profile and Therapeutic Sensitivity of GEPNET Cell Lines. Endocr. Relat. Cancer 2018, 25, 367–380. [Google Scholar] [CrossRef] [Green Version]
  73. Alvarez, M.J.; Yan, P.; Alpaugh, M.L.; Bowden, M.; Sicinska, E.; Zhou, C.W.; Karan, C.; Realubit, R.B.; Mundi, P.S.; Grunn, A.; et al. Reply to ‘H-STS, L-STS and KRJ-I Are Not Authentic GEPNET Cell Lines’. Nat. Genet. 2019, 51, 1427–1428. [Google Scholar] [CrossRef]
  74. Chen, Y.; Cang, S.; Han, L.; Liu, C.; Yang, P.; Solangi, Z.; Lu, Q.; Liu, D.; Chiao, J.W. Establishment of Prostate Cancer Spheres from a Prostate Cancer Cell Line after Phenethyl Isothiocyanate Treatment and Discovery of Androgen-Dependent Reversible Differentiation between Sphere and Neuroendocrine Cells. Oncotarget 2016, 7, 26567–26579. [Google Scholar] [CrossRef]
  75. Chiao, J.W.; Hsieh, T.C.; Xu, W.; Sklarew, R.J.; Kancherla, R. Development of Human Prostate Cancer Cells to Neuroendocrine-like Cells by Interleukin-1. Int. J. Oncol. 1999, 15, 1033–1037. [Google Scholar] [CrossRef]
  76. Shui, X.; Xu, R.; Zhang, C.; Meng, H.; Zhao, J.; Shi, C. Advances in Neuroendocrine Prostate Cancer Research: From Model Construction to Molecular Network Analyses. Lab. Investig. 2021, 102, 332–340. [Google Scholar] [CrossRef]
  77. Florio, R.; De Lellis, L.; di Giacomo, V.; Di Marcantonio, M.C.; Cristiano, L.; Basile, M.; Verginelli, F.; Verzilli, D.; Ammazzalorso, A.; Prasad, S.C.; et al. Effects of PPARα Inhibition in Head and Neck Paraganglioma Cells. PLoS ONE 2017, 12, e0178995. [Google Scholar] [CrossRef] [Green Version]
  78. Korpershoek, E.; Pacak, K.; Martiniova, L. Murine Models and Cell Lines for the Investigation of Pheochromocytoma: Applications for Future Therapies? Endocr. Pathol. 2012, 23, 43–54. [Google Scholar] [CrossRef]
  79. Kawasaki, K.; Toshimitsu, K.; Matano, M.; Fujita, M.; Fujii, M.; Togasaki, K.; Ebisudani, T.; Shimokawa, M.; Takano, A.; Takahashi, S.; et al. An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell 2020, 183, 1420–1435.e21. [Google Scholar] [CrossRef]
  80. Fujii, M.; Shimokawa, M.; Date, S.; Takano, A.; Matano, M.; Nanki, K.; Ohta, Y.; Toshimitsu, K.; Nakazato, Y.; Kawasaki, K.; et al. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell 2016, 18, 827–838. [Google Scholar] [CrossRef] [Green Version]
  81. Kim, M.; Mun, H.; Sung, C.O.; Cho, E.J.; Jeon, H.-J.; Chun, S.-M.; Jung, D.J.; Shin, T.H.; Jeong, G.S.; Kim, D.K.; et al. Patient-Derived Lung Cancer Organoids as in Vitro Cancer Models for Therapeutic Screening. Nat. Commun. 2019, 10, 3991. [Google Scholar] [CrossRef] [Green Version]
  82. Gmeiner, W.H.; Miller, L.D.; Chou, J.W.; Dominijanni, A.; Mutkus, L.; Marini, F.; Ruiz, J.; Dotson, T.; Thomas, K.W.; Parks, G.; et al. Dysregulated Pyrimidine Biosynthesis Contributes to 5-FU Resistance in SCLC Patient-Derived Organoids but Response to a Novel Polymeric Fluoropyrimidine, CF10. Cancers 2020, 12, 788. [Google Scholar] [CrossRef] [Green Version]
  83. Gao, D.; Vela, I.; Sboner, A.; Iaquinta, P.J.; Karthaus, W.R.; Gopalan, A.; Dowling, C.; Wanjala, J.N.; Undvall, E.A.; Arora, V.K.; et al. Organoid Cultures Derived from Patients with Advanced Prostate Cancer. Cell 2014, 159, 176–187. [Google Scholar] [CrossRef] [Green Version]
  84. Puca, L.; Bareja, R.; Prandi, D.; Shaw, R.; Benelli, M.; Karthaus, W.R.; Hess, J.; Sigouros, M.; Donoghue, A.; Kossai, M.; et al. Patient Derived Organoids to Model Rare Prostate Cancer Phenotypes. Nat. Commun. 2018, 9, 2404. [Google Scholar] [CrossRef] [Green Version]
  85. Singh, N.; Ramnarine, V.R.; Song, J.H.; Pandey, R.; Padi, S.K.R.; Nouri, M.; Olive, V.; Kobelev, M.; Okumura, K.; McCarthy, D.; et al. The Long Noncoding RNA H19 Regulates Tumor Plasticity in Neuroendocrine Prostate Cancer. Nat. Commun. 2021, 12, 7349. [Google Scholar] [CrossRef]
  86. Mosquera, M.J.; Kim, S.; Bareja, R.; Fang, Z.; Cai, S.; Pan, H.; Asad, M.; Martin, M.L.; Sigouros, M.; Rowdo, F.M.; et al. Extracellular Matrix in Synthetic Hydrogel-Based Prostate Cancer Organoids Regulate Therapeutic Response to EZH2 and DRD2 Inhibitors. Adv. Mater. 2022, 34, e2100096. [Google Scholar] [CrossRef]
  87. Dijkstra, K.K.; van den Berg, J.G.; Weeber, F.; van de Haar, J.; Velds, A.; Kaing, S.; Peters, D.D.G.C.; Eskens, F.A.L.M.; de Groot, D.-J.A.; Tesselaar, M.E.T.; et al. Patient-Derived Organoid Models of Human Neuroendocrine Carcinoma. Front. Endocrinol. 2021, 12, 627819. [Google Scholar] [CrossRef]
  88. Iwata, R.; Maruyama, M.; Ito, T.; Nakano, Y.; Kanemura, Y.; Koike, T.; Oe, S.; Yoshimura, K.; Nonaka, M.; Nomura, S.; et al. Establishment of a Tumor Sphere Cell Line from a Metastatic Brain Neuroendocrine Tumor. Med. Mol. Morphol. 2017, 50, 211–219. [Google Scholar] [CrossRef]
  89. Kawasaki, K.; Fujii, M.; Sato, T. Gastroenteropancreatic Neuroendocrine Neoplasms: Genes, Therapies and Models. Dis. Model. Mech. 2018, 11, dmm029595. [Google Scholar] [CrossRef] [Green Version]
  90. Choo, N.; Ramm, S.; Luu, J.; Winter, J.M.; Selth, L.A.; Dwyer, A.R.; Frydenberg, M.; Grummet, J.; Sandhu, S.; Hickey, T.E.; et al. High-Throughput Imaging Assay for Drug Screening of 3D Prostate Cancer Organoids. SLAS Discov. 2021, 26, 1107–1124. [Google Scholar] [CrossRef]
  91. Takács-Vellai, K.; Farkas, Z.; Ősz, F.; Stewart, G.W. Model Systems in SDHx-Related Pheochromocytoma/Paraganglioma. Cancer Metastasis Rev. 2021, 40, 1177–1201. [Google Scholar] [CrossRef]
  92. Lepoutre-Lussey, C.; Thibault, C.; Buffet, A.; Morin, A.; Badoual, C.; Bénit, P.; Rustin, P.; Ottolenghi, C.; Janin, M.; Castro-Vega, L.-J.; et al. From Nf1 to Sdhb Knockout: Successes and Failures in the Quest for Animal Models of Pheochromocytoma. Mol. Cell. Endocrinol. 2016, 421, 40–48. [Google Scholar] [CrossRef]
  93. Powers, J.F.; Cochran, B.; Baleja, J.D.; Sikes, H.D.; Pattison, A.D.; Zhang, X.; Lomakin, I.; Shepard-Barry, A.; Pacak, K.; Moon, S.J.; et al. A Xenograft and Cell Line Model of SDH-Deficient Pheochromocytoma Derived from Sdhb+/− Rats. Endocr.-Relat. Cancer 2020, 27, 337–354. [Google Scholar] [CrossRef]
  94. Tsumura, R.; Koga, Y.; Hamada, A.; Kuwata, T.; Sasaki, H.; Doi, T.; Aikawa, K.; Ohashi, A.; Katano, I.; Ikarashi, Y.; et al. Report of the Use of Patient-Derived Xenograft Models in the Development of Anticancer Drugs in Japan. Cancer Sci. 2020, 111, 3386–3394. [Google Scholar] [CrossRef]
  95. Pinto, E.M.; Morton, C.; Rodriguez-Galindo, C.; McGregor, L.; Davidoff, A.M.; Mercer, K.; Debelenko, L.V.; Billups, C.; Ribeiro, R.C.; Zambetti, G.P. Establishment and Characterization of the First Pediatric Adrenocortical Carcinoma Xenograft Model Identifies Topotecan as a Potential Chemotherapeutic Agent. Clin. Cancer Res. 2013, 19, 1740–1747. [Google Scholar] [CrossRef] [Green Version]
  96. Aizawa, K.; Tanaka, N.; Yabusaki, H.; Suzuki, S.; Muto, I.; Nishimaki, T.; Suzuki, T.; Hatakeyama, K.; Tanaka, O. Chemotherapy of Human Small-Cell Gastrointestinal Carcinoma Xenografts in Nude Mice. Surg. Oncol. 1995, 4, 139–145. [Google Scholar] [CrossRef]
  97. Tran, C.G.; Borbon, L.C.; Mudd, J.L.; Abusada, E.; AghaAmiri, S.; Ghosh, S.C.; Vargas, S.H.; Li, G.; Beyer, G.V.; McDonough, M.; et al. Establishment of Novel Neuroendocrine Carcinoma Patient-Derived Xenograft Models for Receptor Peptide-Targeted Therapy. Cancers 2022, 14, 1910. [Google Scholar] [CrossRef]
  98. Yang, Z.; Zhang, L.; Serra, S.; Law, C.; Wei, A.; Stockley, T.L.; Ezzat, S.; Asa, S.L. Establishment and Characterization of a Human Neuroendocrine Tumor Xenograft. Endocr. Pathol. 2016, 27, 97–103. [Google Scholar] [CrossRef]
  99. Gaudenzi, G.; Albertelli, M.; Dicitore, A.; Würth, R.; Gatto, F.; Barbieri, F.; Cotelli, F.; Florio, T.; Ferone, D.; Persani, L.; et al. Patient-Derived Xenograft in Zebrafish Embryos: A New Platform for Translational Research in Neuroendocrine Tumors. Endocrine 2017, 57, 214–219. [Google Scholar] [CrossRef]
  100. Anderson, W.C.; Boyd, M.B.; Aguilar, J.; Pickell, B.; Laysang, A.; Pysz, M.A.; Bheddah, S.; Ramoth, J.; Slingerland, B.C.; Dylla, S.J.; et al. Initiation and Characterization of Small Cell Lung Cancer Patient-Derived Xenografts from Ultrasound-Guided Transbronchial Needle Aspirates. PLoS ONE 2015, 10, e0125255. [Google Scholar] [CrossRef]
  101. Giffin, M.J.; Cooke, K.; Lobenhofer, E.K.; Estrada, J.; Zhan, J.; Deegen, P.; Thomas, M.; Murawsky, C.M.; Werner, J.; Liu, S.; et al. AMG 757, a Half-Life Extended, DLL3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small-Cell Lung Cancer. Clin. Cancer Res. 2021, 27, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
  102. Chamberlain, C.E.; German, M.S.; Yang, K.; Wang, J.; VanBrocklin, H.; Regan, M.; Shokat, K.M.; Ducker, G.S.; Kim, G.E.; Hann, B.; et al. A Patient-Derived Xenograft Model of Pancreatic Neuroendocrine Tumors Identifies Sapanisertib as a Possible New Treatment for Everolimus-Resistant Tumors. Mol. Cancer Ther. 2018, 17, 2702–2709. [Google Scholar] [CrossRef] [Green Version]
  103. Powers, J.F.; Pacak, K.; Tischler, A.S. Pathology of Human Pheochromocytoma and Paraganglioma Xenografts in NSG Mice. Endocr. Pathol. 2017, 28, 2–6. [Google Scholar] [CrossRef] [Green Version]
  104. van Haaften-Day, C.; Raghavan, D.; Russell, P.; Wills, E.J.; Gregory, P.; Tilley, W.; Horsfall, D.J. Xenografted Small Cell Undifferentiated Cancer of Prostate: Possible Common Origin with Prostatic Adenocarcinoma. Prostate 1987, 11, 271–279. [Google Scholar] [CrossRef]
  105. Jelbart, M.E.; Russell, P.J.; Russell, P.; Wass, J.; Fullerton, M.; Wills, E.J.; Raghavan, D. Site-Specific Growth of the Prostate Xenograft Line UCRU-PR-2. Prostate 1989, 14, 163–175. [Google Scholar] [CrossRef]
  106. Jelbart, M.E.; Russell, P.J.; Fullerton, M.; Russell, P.; Funder, J.; Raghavan, D. Ectopic Hormone Production by a Prostatic Small Cell Carcinoma Xenograft Line. Mol. Cell. Endocrinol. 1988, 55, 167–172. [Google Scholar] [CrossRef]
  107. Pinthus, J.H.; Waks, T.; Schindler, D.G.; Harmelin, A.; Said, J.W.; Belldegrun, A.; Ramon, J.; Eshhar, Z. WISH-PC2: A Unique Xenograft Model of Human Prostatic Small Cell Carcinoma. Cancer Res. 2000, 60, 6563–6567. [Google Scholar]
  108. Agemy, L.; Harmelin, A.; Waks, T.; Leibovitch, I.; Rabin, T.; Pfeffer, M.R.; Eshhar, Z. Irradiation Enhances the Metastatic Potential of Prostatic Small Cell Carcinoma Xenografts. Prostate 2008, 68, 530–539. [Google Scholar] [CrossRef]
  109. Aparicio, A.; Tzelepi, V.; Araujo, J.C.; Guo, C.C.; Liang, S.; Troncoso, P.; Logothetis, C.J.; Navone, N.M.; Maity, S.N. Neuroendocrine Prostate Cancer Xenografts with Large-Cell and Small-Cell Features Derived from a Single Patient’s Tumor: Morphological, Immunohistochemical, and Gene Expression Profiles. Prostate 2011, 71, 846–856. [Google Scholar] [CrossRef]
  110. Palanisamy, N.; Yang, J.; Shepherd, P.D.A.; Li-Ning-Tapia, E.M.; Labanca, E.; Manyam, G.C.; Ravoori, M.K.; Kundra, V.; Araujo, J.C.; Efstathiou, E.; et al. The MD Anderson Prostate Cancer Patient-Derived Xenograft Series (MDA PCa PDX) Captures the Molecular Landscape of Prostate Cancer and Facilitates Marker-Driven Therapy Development. Clin. Cancer Res. 2020, 26, 4933–4946. [Google Scholar] [CrossRef]
  111. Lin, D.; Wyatt, A.W.; Xue, H.; Wang, Y.; Dong, X.; Haegert, A.; Wu, R.; Brahmbhatt, S.; Mo, F.; Jong, L.; et al. High Fidelity Patient-Derived Xenografts for Accelerating Prostate Cancer Discovery and Drug Development. Cancer Res. 2014, 74, 1272–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  112. Nguyen, H.M.; Vessella, R.L.; Morrissey, C.; Brown, L.G.; Coleman, I.M.; Higano, C.S.; Mostaghel, E.A.; Zhang, X.; True, L.D.; Lam, H.-M.; et al. LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease an--d Serve as Models for Evaluating Cancer Therapeutics. Prostate 2017, 77, 654–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  113. Risbridger, G.P.; Clark, A.K.; Porter, L.H.; Toivanen, R.; Bakshi, A.; Lister, N.L.; Pook, D.; Pezaro, C.J.; Sandhu, S.; Keerthikumar, S.; et al. The MURAL Collection of Prostate Cancer Patient-Derived Xenografts Enables Discovery through Preclinical Models of Uro-Oncology. Nat. Commun. 2021, 12, 5049. [Google Scholar] [CrossRef] [PubMed]
  114. Lawrence, M.G.; Obinata, D.; Sandhu, S.; Selth, L.A.; Wong, S.Q.; Porter, L.H.; Lister, N.; Pook, D.; Pezaro, C.J.; Goode, D.L.; et al. Patient-Derived Models of Abiraterone- and Enzalutamide-Resistant Prostate Cancer Reveal Sensitivity to Ribosome-Directed Therapy. Eur. Urol. 2018, 74, 562–572. [Google Scholar] [CrossRef] [PubMed]
  115. Zhang, L.; Yang, J.; Cai, J.; Song, X.; Deng, J.; Huang, X.; Chen, D.; Yang, M.; Wery, J.-P.; Li, S.; et al. A Subset of Gastric Cancers with EGFR Amplification and Overexpression Respond to Cetuximab Therapy. Sci. Rep. 2013, 3, 2992. [Google Scholar] [CrossRef] [Green Version]
  116. Jiang, J.; Wang, D.D.; Yang, M.; Chen, D.; Pang, L.; Guo, S.; Cai, J.; Wery, J.-P.; Li, L.; Li, H.Q.; et al. Comprehensive Characterization of Chemotherapeutic Efficacy on Metastases in the Established Gastric Neuroendocrine Cancer Patient Derived Xenograft Model. Oncotarget 2015, 6, 15639–15651. [Google Scholar] [CrossRef] [Green Version]
  117. Saunders, L.R.; Bankovich, A.J.; Anderson, W.C.; Aujay, M.A.; Bheddah, S.; Black, K.; Desai, R.; Escarpe, P.A.; Hampl, J.; Laysang, A.; et al. A DLL3-Targeted Antibody-Drug Conjugate Eradicates High-Grade Pulmonary Neuroendocrine Tumor-Initiating Cells in Vivo. Sci. Transl. Med. 2015, 7, 302ra136. [Google Scholar] [CrossRef] [Green Version]
  118. Crona, J.; Skogseid, B. GEP- NETS UPDATE: Genetics of Neuroendocrine Tumors. European Journal of Endocrinology 2016, 174, R275–R290. [Google Scholar] [CrossRef] [Green Version]
  119. Kersten, K.; de Visser, K.E.; van Miltenburg, M.H.; Jonkers, J. Genetically Engineered Mouse Models in Oncology Research and Cancer Medicine. EMBO Mol. Med. 2017, 9, 137–153. [Google Scholar] [CrossRef]
  120. Lines, K.E.; Vas Nunes, R.P.; Frost, M.; Yates, C.J.; Stevenson, M.; Thakker, R.V. A MEN1 Pancreatic Neuroendocrine Tumour Mouse Model under Temporal Control. Endocr. Connect. 2017, 6, 232–242. [Google Scholar] [CrossRef] [Green Version]
  121. Pelosi, G.; Sonzogni, A.; Harari, S.; Albini, A.; Bresaola, E.; Marchiò, C.; Massa, F.; Righi, L.; Gatti, G.; Papanikolaou, N.; et al. Classification of Pulmonary Neuroendocrine Tumors: New Insights. Transl. Lung Cancer Res. 2017, 6, 513–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Gahete, M.D.; Jiménez-Vacas, J.M.; Alors-Pérez, E.; Herrero-Aguayo, V.; Fuentes-Fayos, A.C.; Pedraza-Arévalo, S.; Castaño, J.P.; Luque, R.M. Mouse Models of Endocrine Tumors. J. Endocrinol. 2019, 240, R73–R96. [Google Scholar] [CrossRef] [Green Version]
  123. Thakker, R.V. Multiple Endocrine Neoplasia Type 1 (MEN1) and Type 4 (MEN4). Mol. Cell. Endocrinol. 2014, 386, 2–15. [Google Scholar] [CrossRef] [PubMed]
  124. Jimenez, C.; Gagel, R.F. Genetic Testing in Endocrinology: Lessons Learned from Experience with Multiple Endocrine Neoplasia Type 2 (MEN2). Growth Horm. IGF Res. 2004, 14, 150–157. [Google Scholar] [CrossRef] [PubMed]
  125. Kalkan, E.; Waguespack, S.G. Endocrine Tumors Associated with Neurofibromatosis Type 1, Peutz-Jeghers Syndrome and Other Familial Neoplasia Syndromes. Endocr. Tumor Syndr. Genet. 2013, 41, 166–181. [Google Scholar] [CrossRef]
  126. Heanue, T.A.; Boesmans, W.; Bell, D.M.; Kawakami, K.; Berghe, P.V.; Pachnis, V. A Novel Zebrafish Ret Heterozygous Model of Hirschsprung Disease Identifies a Functional Role for Mapk10 as a Modifier of Enteric Nervous System Phenotype Severity. PLoS Genet. 2016, 12, e1006439. [Google Scholar] [CrossRef] [Green Version]
  127. Elbialy, A.; Asakawa, S.; Watabe, S.; Kinoshita, S. A Zebrafish Acromegaly Model Elevates DNA Damage and Impairs DNA Repair Pathways. Biology 2018, 7, 47. [Google Scholar] [CrossRef] [Green Version]
  128. Zhu, S.; Lee, J.-S.; Guo, F.; Shin, J.; Perez-Atayde, A.R.; Kutok, J.L.; Rodig, S.J.; Neuberg, D.S.; Helman, D.; Feng, H.; et al. Activated ALK Collaborates with MYCN in Neuroblastoma Pathogenesis. Cancer Cell 2012, 21, 362–373. [Google Scholar] [CrossRef] [Green Version]
  129. Burzynski, G.; Shepherd, I.T.; Enomoto, H. Genetic Model System Studies of the Development of the Enteric Nervous System, Gut Motility and Hirschsprung’s Disease. Neurogastroenterol. Motil. 2009, 21, 113–127. [Google Scholar] [CrossRef]
  130. Yang, H.W.; Kutok, J.L.; Lee, N.H.; Piao, H.Y.; Fletcher, C.D.M.; Kanki, J.P.; Look, A.T. Targeted Expression of Human MYCN Selectively Causes Pancreatic Neuroendocrine Tumors in Transgenic Zebrafish. Cancer Res. 2004, 64, 7256–7262. [Google Scholar] [CrossRef] [Green Version]
  131. Liu, N.-A.; Jiang, H.; Ben-Shlomo, A.; Wawrowsky, K.; Fan, X.-M.; Lin, S.; Melmed, S. Targeting Zebrafish and Murine Pituitary Corticotroph Tumors with a Cyclin-Dependent Kinase (CDK) Inhibitor. Proc. Natl. Acad. Sci. USA 2011, 108, 8414–8419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Ríos, Y.; Melmed, S.; Lin, S.; Liu, N.-A. Zebrafish Usp39 Mutation Leads to Rb1 MRNA Splicing Defect and Pituitary Lineage Expansion. PLoS Genet. 2011, 7, e1001271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  133. van Rooijen, E.; Voest, E.E.; Logister, I.; Bussmann, J.; Korving, J.; van Eeden, F.J.; Giles, R.H.; Schulte-Merker, S. Von Hippel-Lindau Tumor Suppressor Mutants Faithfully Model Pathological Hypoxia-Driven Angiogenesis and Vascular Retinopathies in Zebrafish. Dis. Models Mech. 2010, 3, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  134. Vitale, G.; Gaudenzi, G.; Dicitore, A.; Cotelli, F.; Ferone, D.; Persani, L. Zebrafish as an Innovative Model for Neuroendocrine Tumors. Endocr.-Relat. Cancer 2014, 21, R67–R83. [Google Scholar] [CrossRef] [PubMed]
  135. Kim, S.-H.; Speirs, C.K.; Solnica-Krezel, L.; Ess, K.C. Zebrafish Model of Tuberous Sclerosis Complex Reveals Cell-Autonomous and Non-Cell-Autonomous Functions of Mutant Tuberin. Dis. Models Mech. 2011, 4, 255–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  136. Shin, J.; Padmanabhan, A.; de Groh, E.D.; Lee, J.-S.; Haidar, S.; Dahlberg, S.; Guo, F.; He, S.; Wolman, M.A.; Granato, M.; et al. Zebrafish Neurofibromatosis Type 1 Genes Have Redundant Functions in Tumorigenesis and Embryonic Development. Dis. Models Mech. 2012, 5, 881–894. [Google Scholar] [CrossRef] [Green Version]
  137. Capdevila, J.; Casanovas, O.; Salazar, R.; Castellano, D.; Segura, A.; Fuster, P.; Aller, J.; García-Carbonero, R.; Jimenez-Fonseca, P.; Grande, E.; et al. Translational Research in Neuroendocrine Tumors: Pitfalls and Opportunities. Oncogene 2017, 36, 1899–1907. [Google Scholar] [CrossRef]
  138. Zumsteg, A.; Strittmatter, K.; Klewe-Nebenius, D.; Antoniadis, H.; Christofori, G. A Bioluminescent Mouse Model of Pancreatic {beta}-Cell Carcinogenesis. Carcinogenesis 2010, 31, 1465–1474. [Google Scholar] [CrossRef] [Green Version]
  139. Kobayashi, S.; Contractor, T.; Vosburgh, E.; Du, Y.-C.N.; Tang, L.H.; Clausen, R.; Harris, C.R. Alleles of Insm1 Determine Whether RIP1-Tag2 Mice Produce Insulinomas or Nonfunctioning Pancreatic Neuroendocrine Tumors. Oncogenesis 2019, 8, 16. [Google Scholar] [CrossRef]
  140. Chun, M.G.H.; Mao, J.-H.; Chiu, C.W.; Balmain, A.; Hanahan, D. Polymorphic Genetic Control of Tumor Invasion in a Mouse Model of Pancreatic Neuroendocrine Carcinogenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 17268–17273. [Google Scholar] [CrossRef] [Green Version]
  141. Wang, T.C.; Bonner-Weir, S.; Oates, P.S.; Chulak, M.; Simon, B.; Merlino, G.T.; Schmidt, E.V.; Brand, S.J. Pancreatic Gastrin Stimulates Islet Differentiation of Transforming Growth Factor Alpha-Induced Ductular Precursor Cells. J. Clin. Investig. 1993, 92, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
  142. Friis-Hansen, L.; Sundler, F.; Li, Y.; Gillespie, P.J.; Saunders, T.L.; Greenson, J.K.; Owyang, C.; Rehfeld, J.F.; Samuelson, L.C. Impaired Gastric Acid Secretion in Gastrin-Deficient Mice. Am. J. Physiol. 1998, 274, G561–G568. [Google Scholar] [CrossRef] [PubMed]
  143. Grant, S.G.; Seidman, I.; Hanahan, D.; Bautch, V.L. Early Invasiveness Characterizes Metastatic Carcinoid Tumors in Transgenic Mice. Cancer Res. 1991, 51, 4917–4923. [Google Scholar] [PubMed]
  144. Gum, J.R.; Hicks, J.W.; Crawley, S.C.; Yang, S.C.; Borowsky, A.D.; Dahl, C.M.; Kakar, S.; Kim, D.H.; Cardiff, R.D.; Kim, Y.S. Mice Expressing SV40 T Antigen Directed by the Intestinal Trefoil Factor Promoter Develop Tumors Resembling Human Small Cell Carcinoma of the Colon. Mol. Cancer Res. 2004, 2, 504–513. [Google Scholar] [CrossRef] [PubMed]
  145. Gazdar, A.F.; Bunn, P.A.; Minna, J.D. Small-Cell Lung Cancer: What We Know, What We Need to Know and the Path Forward. Nat. Rev. Cancer 2017, 17, 725–737. [Google Scholar] [CrossRef]
  146. Cui, M.; Augert, A.; Rongione, M.; Conkrite, K.; Parazzoli, S.; Nikitin, A.Y.; Ingolia, N.; MacPherson, D. PTEN Is a Potent Suppressor of Small Cell Lung Cancer. Mol. Cancer Res. 2014, 12, 654–659. [Google Scholar] [CrossRef] [Green Version]
  147. McFadden, D.G.; Papagiannakopoulos, T.; Taylor-Weiner, A.; Stewart, C.; Carter, S.L.; Cibulskis, K.; Bhutkar, A.; McKenna, A.; Dooley, A.; Vernon, A.; et al. Genetic and Clonal Dissection of Murine Small Cell Lung Carcinoma Progression by Genome Sequencing. Cell 2014, 156, 1298–1311. [Google Scholar] [CrossRef] [Green Version]
  148. Wang, H.; Cui, J.; Yang, C.; Rosenblum, J.S.; Zhang, Q.; Song, Q.; Pang, Y.; Fang, F.; Sun, M.; Dmitriev, P.; et al. A Transgenic Mouse Model of Pacak—Zhuang Syndrome with An Epas1 Gain-of-Function Mutation. Cancers 2019, 11, 667. [Google Scholar] [CrossRef] [Green Version]
  149. Jacks, T.; Shih, T.S.; Schmitt, E.M.; Bronson, R.T.; Bernards, A.; Weinberg, R.A. Tumour Predisposition in Mice Heterozygous for a Targeted Mutation in Nf1. Nat. Genet. 1994, 7, 353–361. [Google Scholar] [CrossRef]
  150. Merlo, A.; Bernardo-Castiñeira, C.; Sáenz-de-Santa-María, I.; Pitiot, A.S.; Balbín, M.; Astudillo, A.; Valdés, N.; Scola, B.; Toro, R.D.; Méndez-Ferrer, S.; et al. Role of VHL, HIF1A and SDH on the Expression of MiR-210: Implications for Tumoral Pseudo-Hypoxic Fate. Oncotarget 2016, 8, 6700–6717. [Google Scholar] [CrossRef] [Green Version]
  151. Armstrong, N.; Storey, C.M.; Noll, S.E.; Margulis, K.; Soe, M.H.; Xu, H.; Yeh, B.; Fishbein, L.; Kebebew, E.; Howitt, B.E.; et al. SDHB Knockout and Succinate Accumulation Are Insufficient for Tumorigenesis but Dual SDHB/NF1 Loss Yields SDHx-like Pheochromocytomas. Cell Rep. 2022, 38, 110453. [Google Scholar] [CrossRef] [PubMed]
  152. You, M.J.; Castrillon, D.H.; Bastian, B.C.; O’Hagan, R.C.; Bosenberg, M.W.; Parsons, R.; Chin, L.; DePinho, R.A. Genetic Analysis of Pten and Ink4a/Arf Interactions in the Suppression of Tumorigenesis in Mice. Proc. Natl. Acad. Sci. USA 2002, 99, 1455–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  153. Smith-Hicks, C.L.; Sizer, K.C.; Powers, J.F.; Tischler, A.S.; Costantini, F. C-Cell Hyperplasia, Pheochromocytoma and Sympathoadrenal Malformation in a Mouse Model of Multiple Endocrine Neoplasia Type 2B. EMBO J. 2000, 19, 612–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. Linnoila, R.I.; Sahu, A.; Miki, M.; Ball, D.W.; DeMayo, F.J. MORPHOMETRIC ANALYSIS OF CC10-HASH1 TRANSGENIC MOUSE LUNG: A Model for Bronchiolization of Alveoli and Neuroendocrine Carcinoma. Exp. Lung Res. 2000, 26, 595–615. [Google Scholar] [CrossRef]
  155. Meuwissen, R.; Linn, S.C.; Linnoila, R.I.; Zevenhoven, J.; Mooi, W.J.; Berns, A. Induction of Small Cell Lung Cancer by Somatic Inactivation of Both Trp53 and Rb1 in a Conditional Mouse Model. Cancer Cell 2003, 4, 181–189. [Google Scholar] [CrossRef] [Green Version]
  156. Schaffer, B.E.; Park, K.-S.; Yiu, G.; Conklin, J.F.; Lin, C.; Burkhart, D.L.; Karnezis, A.N.; Sweet-Cordero, E.A.; Sage, J. Loss of P130 Accelerates Tumor Development in a Mouse Model for Human Small-Cell Lung Carcinoma. Cancer Res. 2010, 70, 3877–3883. [Google Scholar] [CrossRef] [Green Version]
  157. Hanahan, D. Heritable Formation of Pancreatic β-Cell Tumours in Transgenic Mice Expressing Recombinant Insulin/Simian Virus 40 Oncogenes. Nature 1985, 315, 115–122. [Google Scholar] [CrossRef]
  158. Rindi, G.; Grant, S.G.; Yiangou, Y.; Ghatei, M.A.; Bloom, S.R.; Bautch, V.L.; Solcia, E.; Polak, J.M. Development of Neuroendocrine Tumors in the Gastrointestinal Tract of Transgenic Mice. Heterogeneity of Hormone Expression. Am. J. Pathol. 1990, 136, 1349–1363. [Google Scholar]
  159. Murphy, D.; Bishop, A.; Rindi, G.; Murphy, M.N.; Stamp, G.W.; Hanson, J.; Polak, J.M.; Hogan, B. Mice Transgenic for a Vasopressin-SV40 Hybrid Oncogene Develop Tumors of the Endocrine Pancreas and the Anterior Pituitary. A Possible Model for Human Multiple Endocrine Neoplasia Type 1. Am. J. Pathol. 1987, 129, 552–566. [Google Scholar]
  160. Dyer, K.R.; Messing, A. Peripheral Neuropathy Associated with Functional Islet Cell Adenomas in SV40 Transgenic Mice. J. Neuropathol. Exp. Neurol. 1989, 48, 399–412. [Google Scholar] [CrossRef]
  161. Bell, R.H.; Memoli, V.A.; Longnecker, D.S. Hyperplasia and Tumors of the Islets of Langerhans in Mice Bearing an Elastase I-SV40 T-Antigen Fusion Gene. Carcinogenesis 1990, 11, 1393–1398. [Google Scholar] [CrossRef] [PubMed]
  162. Cartier, N.; Miquerol, L.; Tulliez, M.; Lepetit, N.; Levrat, F.; Grimber, G.; Briand, P.; Kahn, A. Diet-Dependent Carcinogenesis of Pancreatic Islets and Liver in Transgenic Mice Expressing Oncogenes under the Control of the L-Type Pyruvate Kinase Gene Promoter. Oncogene 1992, 7, 1413–1422. [Google Scholar] [PubMed]
  163. Montag, A.G.; Oka, T.; Baek, K.H.; Choi, C.S.; Jay, G.; Agarwal, K. Tumors in Hepatobiliary Tract and Pancreatic Islet Tissues of Transgenic Mice Harboring Gastrin Simian Virus 40 Large Tumor Antigen Fusion Gene. Proc. Natl. Acad. Sci. USA 1993, 90, 6696–6700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Onrust, S.V.; Hartl, P.M.; Rosen, S.D.; Hanahan, D. Modulation of L-Selectin Ligand Expression during an Immune Response Accompanying Tumorigenesis in Transgenic Mice. J. Clin. Investig. 1996, 97, 54–64. [Google Scholar] [CrossRef] [Green Version]
  165. Tuttle, R.L.; Gill, N.S.; Pugh, W.; Lee, J.-P.; Koeberlein, B.; Furth, E.E.; Polonsky, K.S.; Naji, A.; Birnbaum, M.J. Regulation of Pancreatic β-Cell Growth and Survival by the Serine/Threonine Protein Kinase Akt1/PKBα. Nat. Med. 2001, 7, 1133–1137. [Google Scholar] [CrossRef]
  166. Alliouachene, S.; Tuttle, R.L.; Boumard, S.; Lapointe, T.; Berissi, S.; Germain, S.; Jaubert, F.; Tosh, D.; Birnbaum, M.J.; Pende, M. Constitutively Active Akt1 Expression in Mouse Pancreas Requires S6 Kinase 1 for Insulinoma Formation. J. Clin. Investig. 2008, 118, 3629–3638. [Google Scholar] [CrossRef]
  167. Sotillo, R.; Dubus, P.; Martín, J.; de la Cueva, E.; Ortega, S.; Malumbres, M.; Barbacid, M. Wide Spectrum of Tumors in Knock-in Mice Carrying a Cdk4 Protein Insensitive to INK4 Inhibitors. EMBO J. 2001, 20, 6637–6647. [Google Scholar] [CrossRef] [Green Version]
  168. Pelengaris, S.; Khan, M.; Evan, G.I. Suppression of Myc-Induced Apoptosis in Beta Cells Exposes Multiple Oncogenic Properties of Myc and Triggers Carcinogenic Progression. Cell 2002, 109, 321–334. [Google Scholar] [CrossRef] [Green Version]
  169. Bertolino, P.; Tong, W.-M.; Galendo, D.; Wang, Z.-Q.; Zhang, C.-X. Heterozygous Men1 Mutant Mice Develop a Range of Endocrine Tumors Mimicking Multiple Endocrine Neoplasia Type 1. Mol. Endocrinol. 2003, 17, 1880–1892. [Google Scholar] [CrossRef] [Green Version]
  170. Bertolino, P.; Radovanovic, I.; Casse, H.; Aguzzi, A.; Wang, Z.-Q.; Zhang, C.-X. Genetic Ablation of the Tumor Suppressor Menin Causes Lethality at Mid-Gestation with Defects in Multiple Organs. Mech. Dev. 2003, 120, 549–560. [Google Scholar] [CrossRef]
  171. Gelling, R.W.; Du, X.Q.; Dichmann, D.S.; Romer, J.; Huang, H.; Cui, L.; Obici, S.; Tang, B.; Holst, J.J.; Fledelius, C.; et al. Lower Blood Glucose, Hyperglucagonemia, and Pancreatic Alpha Cell Hyperplasia in Glucagon Receptor Knockout Mice. Proc. Natl. Acad. Sci. USA 2003, 100, 1438–1443. [Google Scholar] [CrossRef] [PubMed]
  172. Lewis, B.C.; Klimstra, D.S.; Varmus, H.E. The C-Myc and PyMT Oncogenes Induce Different Tumor Types in a Somatic Mouse Model for Pancreatic Cancer. Genes Dev. 2003, 17, 3127–3138. [Google Scholar] [CrossRef] [Green Version]
  173. Neumann, C.A.; Krause, D.S.; Carman, C.V.; Das, S.; Dubey, D.P.; Abraham, J.L.; Bronson, R.T.; Fujiwara, Y.; Orkin, S.H.; Van Etten, R.A. Essential Role for the Peroxiredoxin Prdx1 in Erythrocyte Antioxidant Defence and Tumour Suppression. Nature 2003, 424, 561–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  174. Biondi, C.A.; Gartside, M.G.; Waring, P.; Loffler, K.A.; Stark, M.S.; Magnuson, M.A.; Kay, G.F.; Hayward, N.K. Conditional Inactivation of the MEN1 Gene Leads to Pancreatic and Pituitary Tumorigenesis but Does Not Affect Normal Development of These Tissues. Mol. Cell. Biol. 2004, 24, 3125–3131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  175. Loffler, K.A.; Biondi, C.A.; Gartside, M.G.; Serewko-Auret, M.M.; Duncan, R.; Tonks, I.D.; Mould, A.W.; Waring, P.; Muller, H.K.; Kay, G.F.; et al. Lack of Augmentation of Tumor Spectrum or Severity in Dual Heterozygous Men1 and Rb1 Knockout Mice. Oncogene 2007, 26, 4009–4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  176. Harding, B.; Lemos, M.C.; Reed, A.A.C.; Walls, G.V.; Jeyabalan, J.; Bowl, M.R.; Tateossian, H.; Sullivan, N.; Hough, T.; Fraser, W.D.; et al. Multiple Endocrine Neoplasia Type 1 Knockout Mice Develop Parathyroid, Pancreatic, Pituitary and Adrenal Tumours with Hypercalcaemia, Hypophosphataemia and Hypercorticosteronaemia. Endocr. Relat. Cancer 2009, 16, 1313–1327. [Google Scholar] [CrossRef]
  177. Lines, K.E.; Javid, M.; Reed, A.A.C.; Walls, G.V.; Stevenson, M.; Simon, M.; Kooblall, K.G.; Piret, S.E.; Christie, P.T.; Newey, P.J.; et al. Genetic Background Influences Tumour Development in Heterozygous Men1 Knockout Mice. Endocr. Connect. 2020, 9, 426–437. [Google Scholar] [CrossRef]
  178. Shen, H.-C.J.; He, M.; Powell, A.; Adem, A.; Lorang, D.; Heller, C.; Grover, A.C.; Ylaya, K.; Hewitt, S.M.; Marx, S.J.; et al. Recapitulation of Pancreatic Neuroendocrine Tumors in Human Multiple Endocrine Neoplasia Type I Syndrome via Pdx1-Directed Inactivation of Men1. Cancer Res. 2009, 69, 1858–1866. [Google Scholar] [CrossRef] [Green Version]
  179. Shen, H.-C.J.; Adem, A.; Ylaya, K.; Wilson, A.; He, M.; Lorang, D.; Hewitt, S.M.; Pechhold, K.; Harlan, D.M.; Lubensky, I.A.; et al. Deciphering von Hippel-Lindau (VHL/Vhl)-Associated Pancreatic Manifestations by Inactivating Vhl in Specific Pancreatic Cell Populations. PLoS ONE 2009, 4, e4897. [Google Scholar] [CrossRef] [Green Version]
  180. Lu, J.; Herrera, P.L.; Carreira, C.; Bonnavion, R.; Seigne, C.; Calender, A.; Bertolino, P.; Zhang, C.X. Alpha Cell-Specific Men1 Ablation Triggers the Transdifferentiation of Glucagon-Expressing Cells and Insulinoma Development. Gastroenterology 2010, 138, 1954–1965. [Google Scholar] [CrossRef]
  181. Shen, H.-C.J.; Ylaya, K.; Pechhold, K.; Wilson, A.; Adem, A.; Hewitt, S.M.; Libutti, S.K. Multiple Endocrine Neoplasia Type 1 Deletion in Pancreatic Alpha-Cells Leads to Development of Insulinomas in Mice. Endocrinology 2010, 151, 4024–4030. [Google Scholar] [CrossRef] [PubMed]
  182. Yu, R.; Dhall, D.; Nissen, N.N.; Zhou, C.; Ren, S.-G. Pancreatic Neuroendocrine Tumors in Glucagon Receptor-Deficient Mice. PLoS ONE 2011, 6, e23397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  183. Pei, X.-H.; Bai, F.; Li, Z.; Smith, M.D.; Whitewolf, G.; Jin, R.; Xiong, Y. Cytoplasmic CUL9/PARC Ubiquitin Ligase Is a Tumor Suppressor and Promotes P53-Dependent Apoptosis. Cancer Res. 2011, 71, 2969–2977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  184. Quinn, T.J.; Yuan, Z.; Adem, A.; Geha, R.; Vrikshajanani, C.; Koba, W.; Fine, E.; Hughes, D.T.; Schmid, H.A.; Libutti, S.K. Pasireotide (SOM230) Is Effective for the Treatment of Pancreatic Neuroendocrine Tumors (PNETs) in a Multiple Endocrine Neoplasia Type 1 (MEN1) Conditional Knockout Mouse Model. Surgery 2012, 152, 1068–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  185. Singh, M.; Couto, S.S.; Forrest, W.F.; Lima, A.; Cheng, J.H.; Molina, R.; Long, J.E.; Hamilton, P.; McNutt, A.; Kasman, I.; et al. Anti-VEGF Antibody Therapy Does Not Promote Metastasis in Genetically Engineered Mouse Tumour Models. J. Pathol. 2012, 227, 417–430. [Google Scholar] [CrossRef]
  186. Jones, H.B.; Reens, J.; Brocklehurst, S.R.; Betts, C.J.; Bickerton, S.; Bigley, A.L.; Jenkins, R.P.; Whalley, N.M.; Morgan, D.; Smith, D.M. Islets of Langerhans from Prohormone Convertase-2 Knockout Mice Show α-Cell Hyperplasia and Tumorigenesis with Elevated α-Cell Neogenesis. Int. J. Exp. Pathol. 2014, 95, 29–48. [Google Scholar] [CrossRef]
  187. Glenn, S.T.; Jones, C.A.; Sexton, S.; LeVea, C.M.; Caraker, S.M.; Hajduczok, G.; Gross, K.W. Conditional Deletion of P53 and Rb in the Renin-Expressing Compartment of the Pancreas Leads to a Highly Penetrant Metastatic Pancreatic Neuroendocrine Carcinoma. Oncogene 2014, 33, 5706–5715. [Google Scholar] [CrossRef] [Green Version]
  188. Takano, Y.; Kasai, K.; Takagishi, Y.; Kikumori, T.; Imai, T.; Murata, Y.; Hayashi, Y. Pancreatic Neuroendocrine Tumors in Mice Deficient in Proglucagon-Derived Peptides. PLoS ONE 2015, 10, e0133812. [Google Scholar] [CrossRef]
  189. Parisi, T.; Bronson, R.T.; Lees, J.A. Inactivation of the Retinoblastoma Gene Yields a Mouse Model of Malignant Colorectal Cancer. Oncogene 2015, 34, 5890–5899. [Google Scholar] [CrossRef] [Green Version]
  190. Azzopardi, S.; Pang, S.; Klimstra, D.S.; Du, Y.-C.N. P53 and P16Ink4a/P19Arf Loss Promotes Different Pancreatic Tumor Types from PyMT-Expressing Progenitor Cells. Neoplasia 2016, 18, 610–617. [Google Scholar] [CrossRef] [Green Version]
  191. Wong, C.; Tang, L.H.; Davidson, C.; Vosburgh, E.; Chen, W.; Foran, D.J.; Notterman, D.A.; Levine, A.J.; Xu, E.Y. Two Well-Differentiated Pancreatic Neuroendocrine Tumor Mouse Models. Cell Death Differ. 2020, 27, 269–283. [Google Scholar] [CrossRef] [PubMed]
  192. Yamauchi, Y.; Kodama, Y.; Shiokawa, M.; Kakiuchi, N.; Marui, S.; Kuwada, T.; Sogabe, Y.; Tomono, T.; Mima, A.; Morita, T.; et al. Rb and P53 Execute Distinct Roles in the Development of Pancreatic Neuroendocrine Tumors. Cancer Res. 2020, 80, 3620–3630. [Google Scholar] [CrossRef] [PubMed]
  193. Carter, A.M.; Kumar, N.; Herring, B.; Tan, C.; Guenter, R.; Telange, R.; Howse, W.; Viol, F.; McCaw, T.R.; Bickerton, H.H.; et al. Cdk5 Drives Formation of Heterogeneous Pancreatic Neuroendocrine Tumors. Oncogenesis 2021, 10, 83. [Google Scholar] [CrossRef] [PubMed]
  194. Efrat, S.; Teitelman, G.; Anwar, M.; Ruggiero, D.; Hanahan, D. Glucagon Gene Regulatory Region Directs Oncoprotein Expression to Neurons and Pancreatic a Cells. Neuron 1988, 1, 605–613. [Google Scholar] [CrossRef]
  195. Lee, Y.C.; Asa, S.L.; Drucker, D.J. Glucagon Gene 5’-Flanking Sequences Direct Expression of Simian Virus 40 Large T Antigen to the Intestine, Producing Carcinoma of the Large Bowel in Transgenic Mice. J. Biol. Chem. 1992, 267, 10705–10708. [Google Scholar] [CrossRef]
  196. Asa, S.L.; Lee, Y.C.; Drucker, D.J. Development of Colonic and Pancreatic Endocrine Tumours in Mice Expressing a Glucagon-SV40 T Antigen Transgene. Virchows Arch. 1996, 427, 595–606. [Google Scholar] [CrossRef] [PubMed]
  197. Williams, B.O.; Remington, L.; Albert, D.M.; Mukai, S.; Bronson, R.T.; Jacks, T. Cooperative Tumorigenic Effects of Germline Mutations in Rb and P53. Nat. Genet. 1994, 7, 480–484. [Google Scholar] [CrossRef]
  198. Piret, S.E.; Thakker, R.V. Mouse Models for Inherited Endocrine and Metabolic Disorders. J. Endocrinol. 2011, 211, 211–230. [Google Scholar] [CrossRef]
  199. Contractor, T.; Clausen, R.; Harris, G.R.; Rosenfeld, J.A.; Carpizo, D.R.; Tang, L.; Harris, C.R. IGF2 Drives Formation of Ileal Neuroendocrine Tumors in Patients and Mice. Endocr. Relat. Cancer 2020, 27, 175–186. [Google Scholar] [CrossRef]
  200. Lopez, M.J.; Upchurch, B.H.; Rindi, G.; Leiter, A.B. Studies in Transgenic Mice Reveal Potential Relationships between Secretin-Producing Cells and Other Endocrine Cell Types. J. Biol. Chem. 1995, 270, 885–891. [Google Scholar] [CrossRef] [Green Version]
  201. Asa, S.L.; Kovacs, K.; Stefaneanu, L.; Horvath, E.; Billestrup, N.; Gonzalez-Manchon, C.; Vale, W. Pituitary Adenomas in Mice Transgenic for Growth Hormone-Releasing Hormone. Endocrinology 1992, 131, 2083–2089. [Google Scholar] [CrossRef] [PubMed]
  202. Stefaneanu, L.; Rindi, G.; Horvath, E.; Murphy, D.; Polak, J.M.; Kovacs, K. Morphology of Adenohypophysial Tumors in Mice Transgenic for Vasopressin-SV40 Hybrid Oncogene. Endocrinology 1992, 130, 1789–1795. [Google Scholar] [CrossRef]
  203. Stenzel-Poore, M.P.; Cameron, V.A.; Vaughan, J.; Sawchenko, P.E.; Vale, W. Development of Cushing’s Syndrome in Corticotropin-Releasing Factor Transgenic Mice. Endocrinology 1992, 130, 3378–3386. [Google Scholar] [CrossRef] [PubMed]
  204. Helseth, A.; Siegal, G.P.; Haug, E.; Bautch, V.L. Transgenic Mice That Develop Pituitary Tumors. A Model for Cushing’s Disease. Am. J. Pathol. 1992, 140, 1071–1080. [Google Scholar] [PubMed]
  205. Low, M.J.; Liu, B.; Hammer, G.D.; Rubinstein, M.; Allen, R.G. Post-Translational Processing of Proopiomelanocortin (POMC) in Mouse Pituitary Melanotroph Tumors Induced by a POMC-Simian Virus 40 Large T Antigen Transgene. J. Biol. Chem. 1993, 268, 24967–24975. [Google Scholar] [CrossRef]
  206. Fero, M.L.; Rivkin, M.; Tasch, M.; Porter, P.; Carow, C.E.; Firpo, E.; Polyak, K.; Tsai, L.-H.; Broudy, V.; Perlmutter, R.M.; et al. A Syndrome of Multiorgan Hyperplasia with Features of Gigantism, Tumorigenesis, and Female Sterility in P27Kip1-Deficient Mice. Cell 1996, 85, 733–744. [Google Scholar] [CrossRef] [Green Version]
  207. Kiyokawa, H.; Kineman, R.D.; Manova-Todorova, K.O.; Soares, V.C.; Hoffman, E.S.; Ono, M.; Khanam, D.; Hayday, A.C.; Frohman, L.A.; Koff, A. Enhanced Growth of Mice Lacking the Cyclin-Dependent Kinase Inhibitor Function of P27Kip1. Cell 1996, 85, 721–732. [Google Scholar] [CrossRef] [Green Version]
  208. Nakayama, K.; Ishida, N.; Shirane, M.; Inomata, A.; Inoue, T.; Shishido, N.; Horii, I.; Loh, D.Y.; Nakayama, K. Mice Lacking P27Kip1 Display Increased Body Size, Multiple Organ Hyperplasia, Retinal Dysplasia, and Pituitary Tumors. Cell 1996, 85, 707–720. [Google Scholar] [CrossRef] [Green Version]
  209. Franklin, D.S.; Godfrey, V.L.; Lee, H.; Kovalev, G.I.; Schoonhoven, R.; Chen-Kiang, S.; Su, L.; Xiong, Y. CDK Inhibitors P18INK4c and P27Kip1 Mediate Two Separate Pathways to Collaboratively Suppress Pituitary Tumorigenesis. Genes Dev. 1998, 12, 2899–2911. [Google Scholar] [CrossRef] [Green Version]
  210. Kumar, T.R.; Graham, K.E.; Asa, S.L.; Low, M.J. Simian Virus 40 T Antigen-Induced Gonadotroph Adenomas: A Model of Human Null Cell Adenomas. Endocrinology 1998, 139, 3342–3351. [Google Scholar] [CrossRef]
  211. Vooijs, M.; van der Valk, M.; Riele, H.t.; Berns, A. Flp-Mediated Tissue-Specific Inactivation of the Retinoblastoma Tumor Suppressor Gene in the Mouse. Oncogene 1998, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
  212. Vooijs, M.; Jonkers, J.; Lyons, S.; Berns, A. Noninvasive Imaging of Spontaneous Retinoblastoma Pathway-Dependent Tumors in Mice. Cancer Res. 2002, 62, 1862–1867. [Google Scholar] [PubMed]
  213. Crabtree, J.S.; Scacheri, P.C.; Ward, J.M.; Garrett-Beal, L.; Emmert-Buck, M.R.; Edgemon, K.A.; Lorang, D.; Libutti, S.K.; Chandrasekharappa, S.C.; Marx, S.J.; et al. A Mouse Model of Multiple Endocrine Neoplasia, Type 1, Develops Multiple Endocrine Tumors. Proc. Natl. Acad. Sci. USA 2001, 98, 1118–1123. [Google Scholar] [CrossRef] [Green Version]
  214. Biondi, C.; Gartside, M.; Tonks, I.; Paterson, C.; Hayward, N.K.; Kay, G.F. Targeting and Conditional Inactivation of the Murine Men1 Locus Using the Cre Recombinase: LoxP System. Genesis 2002, 32, 150–151. [Google Scholar] [CrossRef] [Green Version]
  215. Fedele, M.; Battista, S.; Kenyon, L.; Baldassarre, G.; Klein-Szanto, A.J.P.; Parlow, A.F.; Visone, R.; Pierantoni, G.M.; Outwater, E.; Santoro, M.; et al. Overexpression of the HMGA2 Gene in Transgenic Mice Leads to the Onset of Pituitary Adenomas. Oncogene 2002, 21, 3190–3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  216. Lloyd, R.V.; Ruebel, K.H.; Zhang, S.; Jin, L. Pituitary Hyperplasia in Glycoprotein Hormone Alpha Subunit-, P18INK4C-, and P27kip-1-Null Mice: Analysis of Proteins Influencing P27kip-1 Ubiquitin Degradation. Am. J. Pathol. 2002, 160, 1171–1179. [Google Scholar] [CrossRef]
  217. Tsai, K.Y.; MacPherson, D.; Rubinson, D.A.; Nikitin, A.Y.; Bronson, R.; Mercer, K.L.; Crowley, D.; Jacks, T. ARF Mutation Accelerates Pituitary Tumor Development in Rb+/− Mice. Proc. Natl. Acad. Sci. USA 2002, 99, 16865–16870. [Google Scholar] [CrossRef] [Green Version]
  218. Crabtree, J.S.; Scacheri, P.C.; Ward, J.M.; McNally, S.R.; Swain, G.P.; Montagna, C.; Hager, J.H.; Hanahan, D.; Edlund, H.; Magnuson, M.A.; et al. Of Mice and MEN1: Insulinomas in a Conditional Mouse Knockout. Mol. Cell. Biol. 2003, 23, 6075–6085. [Google Scholar] [CrossRef] [Green Version]
  219. Zindy, F.; Nilsson, L.M.; Nguyen, L.; Meunier, C.; Smeyne, R.J.; Rehg, J.E.; Eberhart, C.; Sherr, C.J.; Roussel, M.F. Hemangiosarcomas, Medulloblastomas, and Other Tumors in Ink4c/P53-Null Mice. Cancer Res. 2003, 63, 5420–5427. [Google Scholar]
  220. Fedele, M.; Pentimalli, F.; Baldassarre, G.; Battista, S.; Klein-Szanto, A.J.; Kenyon, L.; Visone, R.; De Martino, I.; Ciarmiello, A.; Arra, C.; et al. Transgenic Mice Overexpressing the Wild-Type Form of the HMGA1 Gene Develop Mixed Growth Hormone/Prolactin Cell Pituitary Adenomas and Natural Killer Cell Lymphomas. Oncogene 2005, 24, 3427–3435. [Google Scholar] [CrossRef] [Green Version]
  221. Abbud, R.A.; Takumi, I.; Barker, E.M.; Ren, S.-G.; Chen, D.-Y.; Wawrowsky, K.; Melmed, S. Early Multipotential Pituitary Focal Hyperplasia in the α-Subunit of Glycoprotein Hormone-Driven Pituitary Tumor-Transforming Gene Transgenic Mice. Mol. Endocrinol. 2005, 19, 1383–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  222. Donangelo, I.; Gutman, S.; Horvath, E.; Kovacs, K.; Wawrowsky, K.; Mount, M.; Melmed, S. Pituitary Tumor Transforming Gene Overexpression Facilitates Pituitary Tumor Development. Endocrinology 2006, 147, 4781–4791. [Google Scholar] [CrossRef] [PubMed]
  223. Chesnokova, V.; Kovacs, K.; Castro, A.-V.; Zonis, S.; Melmed, S. Pituitary Hypoplasia in Pttg−/− Mice Is Protective for Rb+/− Pituitary Tumorigenesis. Mol. Endocrinol. 2005, 19, 2371–2379. [Google Scholar] [CrossRef] [Green Version]
  224. Sotillo, R.; Renner, O.; Dubus, P.; Ruiz-Cabello, J.; Martín-Caballero, J.; Barbacid, M.; Carnero, A.; Malumbres, M. Cooperation between Cdk4 and P27kip1 in Tumor Development: A Preclinical Model to Evaluate Cell Cycle Inhibitors with Therapeutic Activity. Cancer Res. 2005, 65, 3846–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  225. Guidi, C.J.; Mudhasani, R.; Hoover, K.; Koff, A.; Leav, I.; Imbalzano, A.N.; Jones, S.N. Functional Interaction of the Retinoblastoma and Ini1/Snf5 Tumor Suppressors in Cell Growth and Pituitary Tumorigenesis. Cancer Res. 2006, 66, 8076–8082. [Google Scholar] [CrossRef] [Green Version]
  226. Yin, Z.; Williams-Simons, L.; Parlow, A.F.; Asa, S.; Kirschner, L.S. Pituitary-Specific Knockout of the Carney Complex Gene Prkar1a Leads to Pituitary Tumorigenesis. Mol. Endocrinol. 2008, 22, 380–387. [Google Scholar] [CrossRef] [Green Version]
  227. Raitila, A.; Lehtonen, H.J.; Arola, J.; Heliövaara, E.; Ahlsten, M.; Georgitsi, M.; Jalanko, A.; Paetau, A.; Aaltonen, L.A.; Karhu, A. Mice with Inactivation of Aryl Hydrocarbon Receptor-Interacting Protein (Aip) Display Complete Penetrance of Pituitary Adenomas with Aberrant ARNT Expression. Am. J. Pathol. 2010, 177, 1969–1976. [Google Scholar] [CrossRef]
  228. Roussel-Gervais, A.; Bilodeau, S.; Vallette, S.; Berthelet, F.; Lacroix, A.; Figarella-Branger, D.; Brue, T.; Drouin, J. Cooperation between Cyclin E and P27Kip1 in Pituitary Tumorigenesis. Mol. Endocrinol. 2010, 24, 1835–1845. [Google Scholar] [CrossRef] [Green Version]
  229. Bai, F.; Chan, H.L.; Smith, M.D.; Kiyokawa, H.; Pei, X.-H. P19Ink4d Is a Tumor Suppressor and Controls Pituitary Anterior Lobe Cell Proliferation. Mol. Cell. Biol. 2014, 34, 2121–2134. [Google Scholar] [CrossRef] [Green Version]
  230. Bentley, L.; Esapa, C.T.; Nesbit, M.A.; Head, R.A.; Evans, H.; Lath, D.; Scudamore, C.L.; Hough, T.A.; Podrini, C.; Hannan, F.M.; et al. An N-Ethyl-N-Nitrosourea Induced Corticotropin-Releasing Hormone Promoter Mutation Provides a Mouse Model for Endogenous Glucocorticoid Excess. Endocrinology 2014, 155, 908–922. [Google Scholar] [CrossRef] [Green Version]
  231. Harvey, M.; Vogel, H.; Lee, E.Y.; Bradley, A.; Donehower, L.A. Mice Deficient in Both P53 and Rb Develop Tumors Primarily of Endocrine Origin. Cancer Res. 1995, 55, 1146–1151. [Google Scholar] [PubMed]
  232. Greenberg, N.M.; DeMayo, F.; Finegold, M.J.; Medina, D.; Tilley, W.D.; Aspinall, J.O.; Cunha, G.R.; Donjacour, A.A.; Matusik, R.J.; Rosen, J.M. Prostate Cancer in a Transgenic Mouse. Proc. Natl. Acad. Sci. USA 1995, 92, 3439–3443. [Google Scholar] [CrossRef]
  233. Gingrich, J.R.; Barrios, R.J.; Morton, R.A.; Boyce, B.F.; DeMayo, F.J.; Finegold, M.J.; Angelopoulou, R.; Rosen, J.M.; Greenberg, N.M. Metastatic Prostate Cancer in a Transgenic Mouse. Cancer Res. 1996, 56, 4096–4102. [Google Scholar] [PubMed]
  234. Kaplan-Lefko, P.J.; Chen, T.-M.; Ittmann, M.M.; Barrios, R.J.; Ayala, G.E.; Huss, W.J.; Maddison, L.A.; Foster, B.A.; Greenberg, N.M. Pathobiology of Autochthonous Prostate Cancer in a Pre-Clinical Transgenic Mouse Model. Prostate 2003, 55, 219–237. [Google Scholar] [CrossRef]
  235. Garabedian, E.M.; Humphrey, P.A.; Gordon, J.I. A Transgenic Mouse Model of Metastatic Prostate Cancer Originating from Neuroendocrine Cells. Proc. Natl. Acad. Sci. USA 1998, 95, 15382–15387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  236. Gabril, M.Y.; Onita, T.; Ji, P.G.; Sakai, H.; Chan, F.L.; Koropatnick, J.; Chin, J.L.; Moussa, M.; Xuan, J.W. Prostate Targeting: PSP94 Gene Promoter/Enhancer Region Directed Prostate Tissue-Specific Expression in a Transgenic Mouse Prostate Cancer Model. Gene Ther. 2002, 9, 1589–1599. [Google Scholar] [CrossRef]
  237. Gabril, M.Y.; Duan, W.; Wu, G.; Moussa, M.; Izawa, J.I.; Panchal, C.J.; Sakai, H.; Xuan, J.W. A Novel Knock-in Prostate Cancer Model Demonstrates Biology Similar to That of Human Prostate Cancer and Suitable for Preclinical Studies. Mol. Ther. 2005, 11, 348–362. [Google Scholar] [CrossRef]
  238. Klezovitch, O.; Chevillet, J.; Mirosevich, J.; Roberts, R.L.; Matusik, R.J.; Vasioukhin, V. Hepsin Promotes Prostate Cancer Progression and Metastasis. Cancer Cell 2004, 6, 185–195. [Google Scholar] [CrossRef] [Green Version]
  239. Duan, W.; Gabril, M.Y.; Moussa, M.; Chan, F.L.; Sakai, H.; Fong, G.; Xuan, J.W. Knockin of SV40 Tag Oncogene in a Mouse Adenocarcinoma of the Prostate Model Demonstrates Advantageous Features over the Transgenic Model. Oncogene 2005, 24, 1510–1524. [Google Scholar] [CrossRef] [Green Version]
  240. Zhou, Z.; Flesken-Nikitin, A.; Corney, D.C.; Wang, W.; Goodrich, D.W.; Roy-Burman, P.; Nikitin, A.Y. Synergy of P53 and Rb Deficiency in a Conditional Mouse Model for Metastatic Prostate Cancer. Cancer Res. 2006, 66, 7889–7898. [Google Scholar] [CrossRef] [Green Version]
  241. Perez-Stable, C.; Altman, N.H.; Brown, J.; Harbison, M.; Cray, C.; Roos, B.A. Prostate, Adrenocortical, and Brown Adipose Tumors in Fetal Globin/T Antigen Transgenic Mice. Lab. Investig. 1996, 74, 363–373. [Google Scholar] [PubMed]
  242. Perez-Stable, C.; Altman, N.H.; Mehta, P.P.; Deftos, L.J.; Roos, B.A. Prostate Cancer Progression, Metastasis, and Gene Expression in Transgenic Mice. Cancer Res. 1997, 57, 900–906. [Google Scholar] [PubMed]
  243. Reiner, T.; de las Pozas, A.; Parrondo, R.; Perez-Stable, C. Progression of Prostate Cancer from a Subset of P63-Positive Basal Epithelial Cells in FG/Tag Transgenic Mice. Mol. Cancer Res. 2007, 5, 1171–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  244. Libutti, S.K.; Crabtree, J.S.; Lorang, D.; Burns, A.L.; Mazzanti, C.; Hewitt, S.M.; O’Connor, S.; Ward, J.M.; Emmert-Buck, M.R.; Remaley, A.; et al. Parathyroid Gland-Specific Deletion of the Mouse Men1 Gene Results in Parathyroid Neoplasia and Hypercalcemic Hyperparathyroidism. Cancer Res. 2003, 63, 8022–8028. [Google Scholar] [PubMed]
  245. Czéh, M.; Loddenkemper, C.; Shalapour, S.; Schön, C.; Robine, S.; Goldscheid, E.; Stein, H.; Schüler, T.; Willimsky, G.; Blankenstein, T. The Immune Response to Sporadic Colorectal Cancer in a Novel Mouse Model. Oncogene 2010, 29, 6591–6602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  246. Searle, P.F.; Thomas, D.P.; Faulkner, K.B.; Tinsley, J.M. Stomach Cancer in Transgenic Mice Expressing Human Papillomavirus Type 16 Early Region Genes from a Keratin Promoter. J. Gen. Virol. 1994, 75 Pt 5, 1125–1137. [Google Scholar] [CrossRef]
  247. Syder, A.J.; Karam, S.M.; Mills, J.C.; Ippolito, J.E.; Ansari, H.R.; Farook, V.; Gordon, J.I. A Transgenic Mouse Model of Metastatic Carcinoma Involving Transdifferentiation of a Gastric Epithelial Lineage Progenitor to a Neuroendocrine Phenotype. Proc. Natl. Acad. Sci. USA 2004, 101, 4471–4476. [Google Scholar] [CrossRef] [Green Version]
  248. Veniaminova, N.A.; Hayes, M.M.; Varney, J.M.; Merchant, J.L. Conditional Deletion of Menin Results in Antral G Cell Hyperplasia and Hypergastrinemia. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G752–G764. [Google Scholar] [CrossRef] [Green Version]
  249. Ihler, F.; Vetter, E.V.; Pan, J.; Kammerer, R.; Debey-Pascher, S.; Schultze, J.L.; Zimmermann, W.; Enders, G. Expression of a Neuroendocrine Gene Signature in Gastric Tumor Cells from CEA 424-SV40 Large T Antigen-Transgenic Mice Depends on SV40 Large T Antigen. PLoS ONE 2012, 7, e29846. [Google Scholar] [CrossRef] [Green Version]
  250. Calvete, O.; Varro, A.; Pritchard, D.M.; Barroso, A.; Oteo, M.; Morcillo, M.Á.; Vargiu, P.; Dodd, S.; Garcia, M.; Reyes, J.; et al. A Knockin Mouse Model for Human ATP4aR703C Mutation Identified in Familial Gastric Neuroendocrine Tumors Recapitulates the Premalignant Condition of the Human Disease and Suggests New Therapeutic Strategies. Dis. Model. Mech. 2016, 9, 975–984. [Google Scholar] [CrossRef] [Green Version]
  251. Sundaresan, S.; Kang, A.J.; Hayes, M.M.; Choi, E.-Y.K.; Merchant, J.L. Deletion of Men1 and Somatostatin Induces Hypergastrinemia and Gastric Carcinoids. Gut 2017, 66, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
  252. Michiels, F.-M.; Chappuis, S.; Caillou, B.; Pasini, A.; Talbot, M.; Monier, R.; Lenoir, G.M.; Feunteun, J.; Billaud, M. Development of Medullary Thyroid Carcinoma in Transgenic Mice Expressing the RET Protooncogene Altered by a Multiple Endocrine Neoplasia Type 2A Mutation. Proc. Natl. Acad. Sci. USA 1997, 94, 3330–3335. [Google Scholar] [CrossRef] [PubMed]
  253. Powell, D.J.; Russell, J.; Nibu, K.; Li, G.; Rhee, E.; Liao, M.; Goldstein, M.; Keane, W.M.; Santoro, M.; Fusco, A.; et al. The RET/PTC3 Oncogene: Metastatic Solid-Type Papillary Carcinomas in Murine Thyroids. Cancer Res. 1998, 58, 5523–5528. [Google Scholar] [PubMed]
  254. Cho, J.-Y.; Sagartz, J.E.; Capen, C.C.; Mazzaferri, E.L.; Jhiang, S.M. Early Cellular Abnormalities Induced by RET/PTC1 Oncogene in Thyroid-Targeted Transgenic Mice. Oncogene 1999, 18, 3659–3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  255. La Perle, K.M.D.; Jhiang, S.M.; Capen, C.C. Loss of P53 Promotes Anaplasia and Local Invasion in Ret/PTC1-Induced Thyroid Carcinomas. Am. J. Pathol. 2000, 157, 671–677. [Google Scholar] [CrossRef] [Green Version]
  256. Acton, D.S.; Velthuyzen, D.; Lips, C.J.; Höppener, J.W. Multiple Endocrine Neoplasia Type 2B Mutation in Human RET Oncogene Induces Medullary Thyroid Carcinoma in Transgenic Mice. Oncogene 2000, 19, 3121–3125. [Google Scholar] [CrossRef] [Green Version]
  257. Russell, J.P.; Powell, D.J.; Cunnane, M.; Greco, A.; Portella, G.; Santoro, M.; Fusco, A.; Rothstein, J.L. The TRK-T1 Fusion Protein Induces Neoplastic Transformation of Thyroid Epithelium. Oncogene 2000, 19, 5729–5735. [Google Scholar] [CrossRef] [Green Version]
  258. Powell, D.J.; Russell, J.P.; Li, G.; Kuo, B.A.; Fidanza, V.; Huebner, K.; Rothstein, J.L. Altered Gene Expression in Immunogenic Poorly Differentiated Thyroid Carcinomas from RET/PTC3p53−/− Mice. Oncogene 2001, 20, 3235–3246. [Google Scholar] [CrossRef] [Green Version]
  259. Suzuki, H.; Willingham, M.C.; Cheng, S. Mice with a Mutation in the Thyroid Hormone Receptor β Gene Spontaneously Develop Thyroid Carcinoma: A Mouse Model of Thyroid Carcinogenesis. Thyroid 2002, 12, 963–969. [Google Scholar] [CrossRef]
  260. Ribeiro-Neto, F.; Leon, A.; Urbani-Brocard, J.; Lou, L.; Nyska, A.; Altschuler, D.L. CAMP-Dependent Oncogenic Action of Rap1b in the Thyroid Gland. J. Biol. Chem. 2004, 279, 46868–46875. [Google Scholar] [CrossRef] [Green Version]
  261. Vitagliano, D.; Portella, G.; Troncone, G.; Francione, A.; Rossi, C.; Bruno, A.; Giorgini, A.; Coluzzi, S.; Nappi, T.C.; Rothstein, J.L.; et al. Thyroid Targeting of the N-Ras(Gln61Lys) Oncogene in Transgenic Mice Results in Follicular Tumors That Progress to Poorly Differentiated Carcinomas. Oncogene 2006, 25, 5467–5474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  262. Pestourie, C.; Thézé, B.; Kuhnast, B.; Le Helleix, S.; Gombert, K.; Dollé, F.; Tavitian, B.; Ducongé, F. PET Imaging of Medullary Thyroid Carcinoma in MEN2A Transgenic Mice Using 6-[(18)F]F-L-DOPA. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 58–66. [Google Scholar] [CrossRef] [PubMed]
  263. Yeager, N.; Klein-Szanto, A.; Kimura, S.; Di Cristofano, A. Pten Loss in the Mouse Thyroid Causes Goiter and Follicular Adenomas: Insights into Thyroid Function and Cowden Disease Pathogenesis. Cancer Res. 2007, 67, 959–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  264. Antico-Arciuch, V.G.; Dima, M.; Liao, X.-H.; Refetoff, S.; Di Cristofano, A. Cross-Talk between PI3K and Estrogen in the Mouse Thyroid Predisposes to the Development of Follicular Carcinomas with a Higher Incidence in Females. Oncogene 2010, 29, 5678–5686. [Google Scholar] [CrossRef] [Green Version]
  265. Chakravarty, D.; Santos, E.; Ryder, M.; Knauf, J.A.; Liao, X.-H.; West, B.L.; Bollag, G.; Kolesnick, R.; Thin, T.H.; Rosen, N.; et al. Small-Molecule MAPK Inhibitors Restore Radioiodine Incorporation in Mouse Thyroid Cancers with Conditional BRAF Activation. J. Clin. Investig. 2011, 121, 4700–4711. [Google Scholar] [CrossRef] [Green Version]
  266. Dobson, M.E.; Diallo-Krou, E.; Grachtchouk, V.; Yu, J.; Colby, L.A.; Wilkinson, J.E.; Giordano, T.J.; Koenig, R.J. Pioglitazone Induces a Proadipogenic Antitumor Response in Mice with PAX8-PPARγ Fusion Protein Thyroid Carcinoma. Endocrinology 2011, 152, 4455–4465. [Google Scholar] [CrossRef]
  267. Arciuch, V.G.A.; Russo, M.A.; Dima, M.; Kang, K.S.; Dasrath, F.; Liao, X.-H.; Refetoff, S.; Montagna, C.; Cristofano, A.D. Thyrocyte-Specific Inactivation of P53 and Pten Results in Anaplastic Thyroid Carcinomas Faithfully Recapitulating Human Tumors. Oncotarget 2011, 2, 1109–1126. [Google Scholar] [CrossRef] [Green Version]
  268. Pringle, D.R.; Yin, Z.; Lee, A.A.; Manchanda, P.K.; Yu, L.; Parlow, A.F.; Jarjoura, D.; Perle, K.M.D.L.; Kirschner, L.S. Thyroid-Specific Ablation of the Carney Complex Gene, PRKAR1A, Results in Hyperthyroidism and Follicular Thyroid Cancer. Endocr.-Relat. Cancer 2012, 19, 435–446. [Google Scholar] [CrossRef] [Green Version]
  269. Pozo, K.; Castro-Rivera, E.; Tan, C.; Plattner, F.; Schwach, G.; Siegl, V.; Meyer, D.; Guo, A.; Gundara, J.; Mettlach, G.; et al. The Role of Cdk5 in Neuroendocrine Thyroid Cancer. Cancer Cell 2013, 24, 499–511. [Google Scholar] [CrossRef] [Green Version]
  270. Zhu, X.; Zhao, L.; Park, J.W.; Willingham, M.C.; Cheng, S. Synergistic Signaling of KRAS and Thyroid Hormone Receptor β Mutants Promotes Undifferentiated Thyroid Cancer through MYC Up-Regulation. Neoplasia 2014, 16, 757–769. [Google Scholar] [CrossRef] [Green Version]
  271. Charles, R.-P.; Silva, J.; Iezza, G.; Phillips, W.A.; McMahon, M. Activating BRAF and PIK3CA Mutations Cooperate to Promote Anaplastic Thyroid Carcinogenesis. Mol. Cancer Res. 2014, 12, 979–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  272. McFadden, D.G.; Vernon, A.; Santiago, P.M.; Martinez-McFaline, R.; Bhutkar, A.; Crowley, D.M.; McMahon, M.; Sadow, P.M.; Jacks, T. P53 Constrains Progression to Anaplastic Thyroid Carcinoma in a Braf-Mutant Mouse Model of Papillary Thyroid Cancer. Proc. Natl. Acad. Sci. USA 2014, 111, E1600–E1609. [Google Scholar] [CrossRef] [PubMed]
  273. Shappell, S.B.; Thomas, G.V.; Roberts, R.L.; Herbert, R.; Ittmann, M.M.; Rubin, M.A.; Humphrey, P.A.; Sundberg, J.P.; Rozengurt, N.; Barrios, R.; et al. Prostate Pathology of Genetically Engineered Mice: Definitions and Classification. The Consensus Report from the Bar Harbor Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res. 2004, 64, 2270–2305. [Google Scholar] [CrossRef] [Green Version]
  274. Rickman, D.S.; Beltran, H.; Demichelis, F.; Rubin, M.A. Biology and Evolution of Poorly Differentiated Neuroendocrine Tumors. Nat. Med. 2017, 23, 664–673. [Google Scholar] [CrossRef] [PubMed]
  275. Berman-Booty, L.D.; Knudsen, K.E. Models of Neuroendocrine Prostate Cancer. Endocr.-Relat. Cancer 2015, 22, R33–R49. [Google Scholar] [CrossRef] [Green Version]
  276. Masumori, N.; Thomas, T.Z.; Chaurand, P.; Case, T.; Paul, M.; Kasper, S.; Caprioli, R.M.; Tsukamoto, T.; Shappell, S.B.; Matusik, R.J. A Probasin-Large T Antigen Transgenic Mouse Line Develops Prostate Adenocarcinoma and Neuroendocrine Carcinoma with Metastatic Potential1. Cancer Res. 2001, 61, 2239–2249. [Google Scholar]
  277. Bayley, J.-P.; van Minderhout, I.; Hogendoorn, P.C.W.; Cornelisse, C.J.; van der Wal, A.; Prins, F.A.; Teppema, L.; Dahan, A.; Devilee, P.; Taschner, P.E.M. Sdhd and Sdhd/H19 Knockout Mice Do Not Develop Paraganglioma or Pheochromocytoma. PLoS ONE 2009, 4, e7987. [Google Scholar] [CrossRef]
Table 1. Human neuroendocrine neoplasm-derived cell lines.
Table 1. Human neuroendocrine neoplasm-derived cell lines.
Cell LineSource 1Type# RefsYearReferences
KNAAMPCC31998[19]
KAT45AMbenign-1998[20]
hPheo1AMbenign-2013[21]
NEC-DUE3Ansmall cell carcinoma LN met12018[22]
NEC913, NEC1452AP, CLN met-2019[23]
COLO320Ccolorectal w NE features181979[24]
LCC-18Ccolon11991[25]
NEC-DUE2Clymph node met12014[26]
HROC57CPD large cell carcinoma12018[27]
SS-2Cascending colon carcinoma12019[28]
EPG1CB--1992[29]
ECC18Eesophageal11993[30]
TYUC-1Esmall cell carcinoma32015[31]
NEC-DUE1GEJcarcinoid hepatic met12014[26]
PTJ64pJTbenign-2013[32]
OATLSCLC-1971[33]
SHP-77LSCLC171978[34]
DMS-273LSCLC181978[35]
COR-L24LSCLC71985[36]
COR-L47LSCLC91985[36]
COR-L51LSCLC71985[36]
SCLC-21HLSCLC131987[37]
CPC-NLSCLC101992[38]
UMC-11Lcarcinoid91992[39]
NCI-H720Latypical carcinoid131992[39,40]
NCI-H727Lbronchial carcinoid231992[39]
COR-L103LSCLC31992[41]
COR-L266LSCLC11992[41]
COR-L279LSCLC121992[41]
NCI-H82LSCLC401996[42]
NCI-H0446LSCLC331996[42]
NCI-H0510LSCLC231996[42]
NCI-H0524LSCLC251996[42]
NCI-H1105LSCLC101996[42]
NCI-H1436LSCLC121996[42]
NCI-H1694LSCLC121996[42]
NCI-H1930LSCLC121996[42]
NCI-H1963LSCLC171996[42]
NCI-H2029LSCLC111996[42]
NCI-H2171LSCLC261996[42]
NCI-H2196LSCLC101996[42]
HCC33LSCLC151998[43]
SCLC-J1LSCLC-2021[44]
QGP1Padelta-islet carcinoma221980[45]
CMPainsulinoma51987[46]
BON1Pacarcinoid LN met121991[47]
HuNETPaVIP-secreting22001[48]
A99Pasmall cell carcinoma32011[49]
APL1Papancreatic liver met-2016[50]
NT-3PaWD carcinoid LN met22018[51]
NT-18PPaNET-2022[52]
NT-18LMPaliver met NT-18P-2022[52]
NT-36Parecurrence of NT-18P-2022[52]
NT-32Papancreatic NEC-2022[52]
LnCaPPr--1980[53]
NCI-H660Prsmall cell prostate cancer151989[54]
Faugeroux 2020Prtreatment-induced-2020[55]
KUCaP13Prtreatment-induced-2021[56]
N-TAK-1Rrectal carcinoma-1999[57]
NECS-PRrectal carcinoma12000[58]
NECS-LRrectal carcinoma liver met12000[58]
KRJ-ISBileal carcinoid81996[59]
CT-nu-1SBatypical duodenal carcinoid-1998[60]
GOT1SBileal carcinoid liver met32001[61]
CNDT2SBmidgut carcinoid liver met32007[62]
P-STSSBileal carcinoid primary42009[63]
L-STSSBileal carcinoid LN met42009[63]
H-STSSBileal carcinoid liver met32009[63]
TCC-NECT-2SBduodenal carcinoma22018[64]
NT-38SBduodenal NEC-2022[52]
MTC-FTMTC21990[65]
MTC-SKTMTC61990[65]
1 Adrenal medulla (AM), anus (An), Ampullary (AP), colon (C), carotid body (CB), esophagus (E), gastroesophageal junction (GEJ), jugulotympanic (JT), lung (L), pancreas (Pa), pituitary (Pi), prostate (Pr), rectum (R), small bowel (SB), stomach (St), thyroid (T), unknown (U).
Table 2. Human neuroendocrine neoplasm-derived organoids.
Table 2. Human neuroendocrine neoplasm-derived organoids.
PDX LineHostSource 1Successes 2Attempts 2YearReferences
NEC913, NEC1452spheroidAP, C112019[23]
CRC14organoidC112016[80]
Kawasaki 2020organoidGEP-NEC16232020[79]
Kawasaki 2020organoidGEP-NET3162020[79]
Kim 2019organoidL332019[81]
Gmeiner 2020organoidL442020[82]
April-Monn 2021organoidPa672021[66]
MSK-PCa4organoidPr7322014[83]
OWCMorganoidPr4252018[84,85,86]
CRC19organoidR112016[80]
Dijkstra 2021organoidSt/C132021[87]
ANI-27SspheroidU112017[88]
1 Adrenal medulla (AM), anus (An), Ampullary (AP), colon (C), carotid body (CB), esophagus (E), gastroesophageal junction (GEJ), jugulotympanic (JT), lung (L), pancreas (Pa), pituitary (Pi), prostate (Pr), rectum (R), small bowel (SB), stomach (St), thyroid (T), unknown (U). 2 “Successes” denotes models established for serial passaging, and “attempts” denotes number of tumor explants which failed to survive (to the extent reported on by the primary article in question).
Table 3. Neuroendocrine neoplasm patient-derived xenografts.
Table 3. Neuroendocrine neoplasm patient-derived xenografts.
PDX LineHostSource 1Successes 2Attempts 2YearReferences
SJ-ACC3CB17 scid−/−AC112013[95]
HROC57NMRI nu/nu miceC112018[27]
TEG13athymic nude miceE111995[96]
Kawasaki 2020NOG miceGEP-NEC15222020[79]
Tran 2022NSG miceGEP-NEC262022[97]
Yang 2016NOD/SCID miceGEP-NET10662016[98]
Gaudenzi 2017Tg(fli1a:EGFP) y1 zebrafishGEP-NET232017[99]
Anderson 2015NOD/SCID miceL8122015[100]
LXFSNOG Taconic miceL112021[101]
HNV PDX-PNETathymic nude micePa112018[102]
Gaudenzi 2017Tg(fli1a:EGFP) y1 zebrafishPi162017[99]
Powers 2017NSG micePPGL3132017[103]
UCRU-PR-2nude micePr111987[104,105,106]
WISH-PC2SCID micePr112000[107,108]
WM-4ASCID micePr112008[108]
MDA PCaCB17 SCID micePr5112011[16,109,110]
KUCaP13SCID micePr112014[56]
LTLNOD/SCID micePr7182014[111]
LuCaPNu/Nu or CB17 SCID micePr422017[112]
MURALNSG or NOD/SCID micePr3022018[113,114]
Faugeroux 2020NSG micePr7152020[55]
EN-1nude miceSB111998[60]
TSG15athymic nude miceSt111995[96]
HuPrime GABalb/c nude miceSt2022013[115,116]
1 Adrenal medulla (AM), anus (An), colon (C), carotid body (CB), esophagus (E), gallbladder (G), gastroesophageal junction (GEJ), jugulotympanic (JT), lung (L), pancreas (Pa), pituitary (Pi), prostate (Pr), rectum (R), small bowel (SB), stomach (St), thyroid (T), unknown (U). 2 Fraction of attempts which were NE not specified. 2 “Successes” denotes models established for serial passaging, and “attempts” denotes number of tumor explants which failed to survive (to the extent reported on by the primary article in question).
Table 4. Genetically-engineered mouse models of neuroendocrine neoplasia.
Table 4. Genetically-engineered mouse models of neuroendocrine neoplasia.
Model 1Organ 2Neoplasia TypeModel Type 3Gene (Promoter 4)YearReferences
EPAS1-polyhormonal, polycythemiatransgenicEPAS1A529V2019[148]
Nf1+/−AMPCC, leukemiaheterozygous KONF11994[149]
NF1+/−AMpheoheterozygous KONF12016[92]
NES-VHLAMPGLTS inducible KOVHL (NES)2017[150]
SDHBf/fNF1f/fRosamt/mg/+Th-CreAMPCCmultiple KOSDHB, NF12021[151]
Ink4a Arf+/+ Pten+/−
Ink4a Arf+/− Pten+/−
Ink4a Arf−/− Pten+/−
AM, C, LPCC, NEC, NEPCmultiple KOCDKN2A, ARF, PTEN2002[152]
RET-KOAM, TPCC, MTCKIRET2000[153]
ITF-TagCNECtransgenicSV40-Tag (ITF)2004[144]
CC10-hASH1LSCLC, NSCLCtransgenicASCL1 (SCGB1A1)2000[154]
RB-TP53-KOLSCLC, LCNEChomozygous KORB1, TP532003[155]
RB-TP53-RB1-KOLSCLC, LCNEChomozygous KORB1, TP53, RB12010[156]
RP-TP53-PTEN-KOLSCLC, LCNEC, NSCLCmultiple KORB1, TP53, PTEN2014[146]
RIP-TagPaNETtransgenicSV40-Tag (RIP2)1985[157]
RIP-Tag2 (Tg(RIP1-Tag)2Dh)PaNEN varioustransgenicSV40-Tag (RIP)1985[143,157,158]
VT-C (Avp-Tag)PainsulinomatransgenicSV40-Tag (AVP)1987[159]
SV-202PainsulinomatransgenicSV40-Tag (MT)1989[160]
ELSV
(Tg(Ela-l, SV4OE)Bril8)
Painsulinoma, D cell hyperplasiatransgenicSV40-Tag (EL)1990[161]
L-PK/Tag
(Tg(Pklr-Tag)Ak)
Paislet cell carcinomatransgenicSV40-Tag (L-type pyruvate kinase)1992[162]
GP1.5 Tag, GP10.5 TagPainsulinoma, ductal hyperplasiatransgenicSV40-Tag (GAST)1993[163]
RIP-Tag5 (Tg(RIP1-Tag)5Dh)Painsulinoma/invasive carcinomatransgenicSV40-Tag (RIP)1996[164]
RIP-MyrAkt1PaNETtransgenicMyrAKt1 (RIP)2001[165,166]
Cdk4R24C/R24C
(Cdk4tm1.1Bbd/Cdk4tm1.1Bbd)
Painsulinomahomozygous KICDK4R24C2001[167]
pIns-c-MycERTAM/RIP-Bcl-xL Paislet cell carcinomaTS transgenicMYC, BCL-xl (RIP)2002[168]
Men1T/T; Men1T/+ (Men1tm1Zqw/Men1+)Papolyhormonalheterozygous KOMEN12003[169]
Men1F/F-RipCre+ (Men1tm1.2Zqw/Men1tm1.2Zqw
Tg(Ins2-cre)23Herr/0)
Paislet cell carcinomahomozygous KOMEN1 (RIP)2003[169,170]
Gcgr−/−Paglucagonoma, exocrine hyperplasiahomozygous KOGCGR2003[171]
elastase-tv-a;
RCAS-c-myc; p16/p19−/−
PaNETtransgenicMYC, INK4a/ARF (EL)2003[172]
elastase-tv-a;
RCAS-PyMT; p16/p19−/−
PaprogenitortransgenicpyMT, INK4a/ARF (EL)2003[172]
Prdx1−/−
(Prdx1tm1Rave/Prdx1tm1Rave)
Paadenomahomozygous KOPRDX12003[173]
Men1loxP/loxP Rip-cre+ (Men1tm1Gfk/Men1tm1Gfk Tg(Ins2cre)25Mgn)PainsulinomaTS homozygous KOMEN1 (RIP)2004[174]
Men1+/−; Rb1ΔX2/+ (Men1tm1.1Gfk
/Men1+Rb1tm1Tyj /Rb1+)
Painsulinomaheterozygous KOMEN12007[175]
RIP-MyrAkt1
(Tg(Ins2-Akt1 *)3Mbb)
Painsulinoma, islet cell carcinomatransgenicAKT1 (RIP)2008[166]
Men1tm1Rvt/Men1+Painsulinomaheterozygous KOMEN12009[176,177]
Pdx1-Cre; Men1f/f (Men1tm1Ctre/Men1tm1Ctre;
Tg(Pdx1-cre)89.1Dam/0)
Painsulinomahomozygous KOMEN1 (PDX1)2009[178]
Pdx1-Cre; Vhlf/f
(Vhltm1Lss/Vhltm1Lss;
Tg(Pdx1-cre)89.1Dam/0)
PaadenomaTS homozygous KOVHL (PDX1)2009[179]
Men1F/F-GluCre+PamixedTS homozygous KOMEN1 (RG)2010[180]
Glu-Cre;Men1f/f PainsulinomaTS homozygous KOMEN1 (RG)2010[181]
RipTag-IRES-Luciferase (RTL1 )
(Tg(Ins1-Tag, -luc)1Gcr)
Painsulinoma/invasive carcinomatransgenicSV40-Tag (RIP)2010[138]
RIP-Tag
(Tg(RIP1-Tag)2Dh)
Painsulinoma/invasive carcinomatransgenicSV40-Tag (RIP)2010[140]
Gcgr−/−
(Gcgrtm1Jcp/Gcgrtm1Jcp)
Paglucagonomahomozygous KOGCGR2011[182]
Cul9tm1.2Yxi/Cul9+Painsulinomaheterozygous KOCUL92011[183]
PDX1-MENPaNETTS homozygous KOMEN1 (PDX1)2012[184]
RIP-TβAg
(Tg(Ins2-Tag*, FLPe)#Gne)
Painsulinoma/invasive carcinomatransgenicSV40-Tag (RIP)2012[185]
Pc2−/−
(Pcsk2tm1Dfs/Pcsk2tm1Dfs)
Paadenomahomozygous KOPCSK22014[186]
RenCre; Tp53loxP/loxP RbloxP/loxP Paglucagonoma, unrelated sarcomaTS homozygous KOTP53, RB1 (REN)2014[187]
Gcggfp/gfpPaislet cell carcinomamultiple KOGCG2015[188]
Fabpl-Cretg/+Rbc/c
(Tg(Fabp1-cre)1Jig/Rbfl/fl)
PaNECTS homozygous KORB1 (FABP1)2015[189]
RIP7-rtTA; tet-o-MT; p48-Cre;
p16/p19loxP/loxP
PaNETtransgenicPyMT, INK4A/ARF (RIP, PTF1A)2016[190]
RIP7-rtTA; tet-o-MT; p48-Cre;p53loxP/loxPPaNETtransgenicPyMT, TP53 (RIP, PTF1A)2016[190]
Pdx1-tTA; tet-o-MT; p48- Cre; p16/p19lox/loxPaNETtransgenicPyMT, INK4A/ARF (PDX1, PTF1A)2016[190]
Pdx1-tTA; tet-o-MT; p48-Cre;p53lox/loxPamixed acinar cell carcinoma/NEtransgenicPyMT, p53 (PDX1, PTF1A)2016[190]
Men1L/L/RIP2-CreER (Tg(Ins2-cre/ERT)1Dam/J, (RIP2-CreER), Men1tm1.1Ctre/J) PainsulinomaTS inducible KOMEN1 (RIP2)2017[120]
RIP-Tag
(Tg(RIP1-Tag)2Dh)
PapNET nonfunctionaltransgenicSV40-Tag (RIP)2019[139]
Men1flox/flox Ptenflox/flox RIP-Cre(Men1tm1.2Ctre, Ptentm1Hwu; Ins1tm1.1(cre)Thor) PainsulinomaTS homozygous KOMEN1, PTEN (RIP)2020[191]
Men1flox/flox Ptenflox/flox MIP-Cre(Men1tm1.2Ctre, Ptentm1Hwu; Ins1tm1.1(cre)Thor) PainsulinomaTS homozygous KOMEN1, PTEN (MIP)2020[191]
Pdx1-Cre; Rbf/fPaNETTS homozygous KORB1 (PDX1)2020[192]
Pdx1-Cre; Trp53R172H; Rbf/fPaNETTS homozygous KOTP53, RB1 (PDX1)2020[192]
INS-p25OEPaNETTS inducible KICDK5R1 (IN2/tetOp)2021[193]
Glu2-TagPa, CNETtransgenicSV40-Tag (RG)1988[194]
RIP-Tag/RIPPyST1Pa, CNETtransgenicSV40-Tag (RIPPyST1)1991[143]
GLUTag-Y Tg(Gcg-TAg)25Ddr Pa, Cinvasive carcinoma, glucagonomatransgenicSV40-Tag (RG)1992[195,196]
TP53+/− RB+/−/TP53−/−RB+/−Pa, Pi, TMTC, ICC, lymphomamultiple KOTP53, RB11994[197]
MEN1+/−Pa, Pi, T, PT, AMNETheterozygous KOMEN12011[198]
RIP-Tag/RIPPyST Pa, SBpolyhormonal invasive carcinomatransgenicSV40-Tag, PyST1 (RIP)1990[158]
RIP-Tag
(Tg(RIP1-Tag)2Dh)
Pa, SBpNET and siNETtransgenicSV40-Tag (RIP)2020[199]
Secretin-Tag Pa, SB, Cpolyhormonal NENtransgenicSV40-Tag (SCT)1995[200]
GHRH-MTPipolyhormonaltransgenicGHRH (MT)1992[201]
AVP/SV40PipolyhormonaltransgenicSV40 (AVP)1992[202]
CRH-MTPicorticotropinomatransgenicCRH (MT)1992[203]
PyLT-1PicorticotropinomatransgenicPyLT (Py early region)1992[204]
POMC-SV40PicorticotropinomatransgenicPyLT-SV40 (POMC)1993[205]
Cdkn1b+/-Pisomatotropinomaheterozygous KOCDKN1B1996[206,207,208]
p18INK4cPisomatotropinomaheterozygous KOCDKN2C1998[209]
p18−/−Picorticotropinomahomozygous KOCDKN2C1998[209]
p18−/−p27−/−Picorticotropinomahomozygous KOCDKN2C, CDKN1B1998[209]
hFSHB-SV40tsTagPigonadotropinoma non-functioning adenomastransgenicSV40-Tag (FSHb)1998[210]
Rb−/−Pi-TS KORB11998[211,212]
Men1TSM/+Piprolactinomamultiple KOMEN12001[213,214]
HMGA2PipolyhormonaltransgenicHMGA2 (CMV)2002[215]
p18/aSUPithyrotropinomamultiple KOTP18, αSU2002[216]
Rb+/−; ARF−/−Pi-heterozygous KORB1, ARF2002[217]
Men1ΔN/ΔN; RIPcre(Men1tm1.2Ctre/Men1tm1.2Ctre
Tg(Ins2-cre)25Mgn/0
Tg(Ins2-cre)1Heed/0
Tg(Ins2-cre)1Dh/0)
PiinsulinomaTS homozygous KOMEN1 (RIP)2003[218]
Ink4c/p53-nullPi-homozygous KOINK4c, ARF2003[219]
HMGA1PipolyhormonaltransgenicHMGA1 (CMV)2005[220]
αGSU PTTG Rb+/−PigonadotropinomatransgenicPTTG (αSU), RB12005[221,222,223]
Cdk4R/R; p27−/−Pi-homozygous KOCDK4R/RCDKN1B2005[224]
Rb+/−; Ini1+/−Picorticotropinomaheterozygous KORB1, INI12006[225]
Prkar1a+/−PisomatotropinomaTS heterozygous KOPRKAR1c2008[226]
Aip+/−Pisomatotropinomaheterozygous KOAIP2010[227]
Tg-PCE; p27Kip1−/−PisomatotropinomatransgenicCCNE1 CDKN1B2010[228]
p19Ink4dPipolyhormonalhomozygous KOCDKN2D2014[229]
Crh-1201Picorticotropinomainducible KICRH (mutCrh)2014[230]
Rb?/? Tp53?/?Pi, T, PaMTC, ICCmultiple KOTP53, RB11995[231]
TRAMPPrNEPCtransgenicSV40-Tag (PB)1995[232,233,234]
CR2-TagPrNEPC, NECtransgenicSV40-Tag (Cryptdin-2)1998[235]
PSP-TGMAPPrNEPC, NECtransgenicSV40-Tag (PSP94)2002[236,237]
12T-7f LPB-Tag/PB-HepsinPrNEPCtransgenicSV40-Tag (PB)2004[238]
PSP-KIMAPPrNEPCKISV40-Tag (PSP94)2005[237,239]
P53PE−/−; RbPE−/−PrNEPC, adenomahomozygous KOTP53, RB12006[240]
FG-TagPr, ACNEPC, ACTtransgenicSV40-Tag (HbF)1996[241,242,243]
PTH-MENPT-TS homozygous KOMEN1 (PTH)2003[244]
Vil-Cre-ERT2 LoxP-Tag
(Tg (Vil-cre) 997Gum/J)
SB, CNEC, glandular, mixedtransgenicSV40-Tag (stochastic)2010[245]
INS-GASStNETtransgenicGAST (RIP)1993[141]
bK6-HPV16eStNECtransgenicHPV-16 early region (bk6)1994[246]
Gastrin KOStNEThomozygous KOGAST1998[142]
Atp4b-SV40 TagStNECtransgenicSV40-Tag (ATP4b)2004[247]
Villin-Cre; Men1loxP/loxPStadenomaTS homozygous KOMEN1 (VIL1)2012[248]
CEA424-SV40-Tag
(Tg(CEACAM5-Tag) L5496Wzm/Cnrm)
Stdysplastic, NECtransgenicSV40-Tag (CEA)2012[249]
Atp4aR703C/R703CStdysplasiahomozygous KIATP4AR703C2016[250]
VillinCre; Men1loxP/loxP; Sst−/−StECL cell tumorhomozygous KOMEN1 (VIL1)2017[251]
CT/RETTMTCtransgenicRETC634R (Ctct/cgrp/CGRP)1997[252]
RET/PTC3TPTCTS KIRET/Ptc3 (TG)1998[253]
RET/PTC1TPTCTS KIRET/PTC1 (TG)1999[254]
ret/PTC1 TP53?/?TATCmultiple KORET-PTC1 (TG), TP532000[255]
CALC-MEN2B-RETTMTCKIRETM918T (CT/CGRP)2000[256]
TRK-T1TPTCtransgenicTRK-T1 (TG)2000[257]
RET/PTC3, Tp53−/−TATChomozygous KORET-PTC3 (TG), TP532001[258]
TrRbPV-PVTFTCmultiple KITRbPV/PV (Tg)2002[259]
Rap1bGV12-LoxP-N17TFTCtransgenicRAP1bG12V (Tg)2004[260]
N-RASQ61KTPTCtransgenicNRASQ61K (TG)2006[261]
CT-RETTMTCtransgenicRET1 (CT/CGRP)2010[262]
PtenL/L-TPO-CreTFTCTS homozygous KOPTEN (TPO)2010[263,264]
BRAFV600ETPTCTS inducible KI BRAFV600E (TG)2011[265]
Pten-PPFPTFTChomozygous KOPPFP, PTEN (TPO) 2011[266]
[Pten, p53] thyr−/−TATCTS homozygous KOTP53, PTEN2011[267]
R1a-TpoKOTFTCTS homozygous KOPRKAR1A (TPO)2012[268]
p25OETMTCTS inducible KICDK5R1 (ENO2)2013[269]
ThrbPV/PV; KrasG12DTATChomozygous KITHRBPV/PV (TG) KRASG12D (TG)2014[270]
BRAFV600E/PIK3CAH1047FTATCTS KIBRAFV600E (TG) PIK3CAH1047R2014[271]
BRAFV600E/PIK3CAH1047FTATCTS KIBRAFV600E (TPO)2014[147,272]
1 ?/? indicates that multiple homo/heterozygous knockout combinations were created targeting the same genes. 2 Adrenal medulla (AM), anus (An), colon (C), carotid body (CB), esophagus (E), gastroesophageal junction (GEJ), jugulotympanic (JT), lung (L), pancreas (Pa), Pituitary (Pi), prostate (Pr), parathyroid (PT), rectum (R), small bowel (SB), stomach (St), thyroid (T), unknown (U). 3 Tissue specific (TS), knock-out (KO), knock-in (KI); multiple indicates both homozygous and heterozygous models were used. 4 Bovine arginine vasopressin (AVP), bovine thyroglobulin (Tg), carcinoembryonic antigen (CEA), mouse metallothionein 1 (MT), mouse insulin promoter (MIP), polyoma middle T antigen (PyMT), rat elastase promoter 1 (EL), rat glucagon promoter (RG), rat insulin promoter (RI), rat insulin-2 (RIP2), rat probasin promoter (PB), simian virus 40 large T antigen (SV40-Tag).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Sedlack, A.J.H.; Saleh-Anaraki, K.; Kumar, S.; Ear, P.H.; Lines, K.E.; Roper, N.; Pacak, K.; Bergsland, E.; Quelle, D.E.; Howe, J.R.; et al. Preclinical Models of Neuroendocrine Neoplasia. Cancers 2022, 14, 5646. https://doi.org/10.3390/cancers14225646

AMA Style

Sedlack AJH, Saleh-Anaraki K, Kumar S, Ear PH, Lines KE, Roper N, Pacak K, Bergsland E, Quelle DE, Howe JR, et al. Preclinical Models of Neuroendocrine Neoplasia. Cancers. 2022; 14(22):5646. https://doi.org/10.3390/cancers14225646

Chicago/Turabian Style

Sedlack, Andrew J. H., Kimia Saleh-Anaraki, Suresh Kumar, Po Hien Ear, Kate E. Lines, Nitin Roper, Karel Pacak, Emily Bergsland, Dawn E. Quelle, James R. Howe, and et al. 2022. "Preclinical Models of Neuroendocrine Neoplasia" Cancers 14, no. 22: 5646. https://doi.org/10.3390/cancers14225646

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop