Current Developments in Cellular Therapy for Castration Resistant Prostate Cancer: A Systematic Review of Clinical Studies
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Mechanics of Cellular Immunotherapy
1.1.1. Dendritic Cell Vaccine
1.1.2. T-Cell Therapies
1.2. CAR T-Cell Therapy
1.3. Target Proteins
1.3.1. PSMA
1.3.2. PSCA
1.3.3. EpCAM
2. Methods
3. Results
3.1. Dendritic Cell Therapy
3.1.1. Sipuleucel-T
3.1.2. BPX101
3.1.3. DCVAC/PCa
3.1.4. Tn-MUC1
3.2. CAR T-Cell Therapy
3.2.1. PSMA
3.2.2. PSCA
3.2.3. EpCAM
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
ADT | Androgen deprivation therapy |
CRPC | castration resistant prostate cancer |
CAR | chimeric antigen receptors |
DE | dendritic cells |
EpCam | Epithelial cell adhesion molecule |
GM-CSF | macrophage colony stimulating factor |
GnRH | Gonadotropin-releasing hormone |
GCP | Good Clinical Practice |
mCRPC | metastatic castration resistant prostate cancer |
MHC | major histocompatibility complex |
nmCRPC | non-metastatic CRPC |
NK | natural killer cells |
OS | overall survival |
PAP | prostatic acid phosphatase |
PBMCs | peripheral-blood mononuclear cells |
PCa | Prostate Cancer |
PRISMA | Preferred Reporting Items for Systemic Reviews and Meta-analysis |
PSA | Prostate specific antigen |
PSMA | Prostate-specific membrane antigen |
PFS | progression free survival |
SAE | serious adverse events |
TCR | T-Cell receptors |
TREGs | regulatory T-cells |
TILs | tumor-infiltrating lymphocytes |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Prostate Cancer Foundation. Prostate Cancer Treatment. Available online: https://www.pcf.org/about-prostate-cancer/prostate-cancer-treatment/ (accessed on 1 March 2021).
- Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 2016, 15, 701–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastrationsresistentes Prostatakarzinom. Available online: https://www.urologielehrbuch.de/prostatakarzinom-kastrationsresistent-chemotherapie.html (accessed on 2 February 2021).
- Prostatakarzinom: Pathologie, Biopsie, Gleason-Score. Available online: https://www.urologielehrbuch.de/prostatakarzinom-tnm-gleason.html (accessed on 2 February 2021).
- Nader, R.; El Amm, J.; Ching, J.B.A. Role of Chemotherapy in Prostate Cancer. Asian J. Androl. 2018, 20, 221–229. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr.; Saad, F.; et al. Abiraterone and Increased Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2012, 364, 1995–2005. [Google Scholar] [CrossRef]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.-E.; Sternberg, C.N.; Miller, K.; De Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [Green Version]
- Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; Xu, Y.; Ph, D.; Frohlich, M.W.; Schellhammer, P.F. Preexposure Prophylaxis for HIV Infection among African Women. N. Engl. J. 2012, 411–422. [Google Scholar]
- Widmark, A.; Johannessen, D.C.; Hoskin, P.; Bottomley, D.; James, N.D.; Solberg, A.; Syndikus, I.; Kliment, J.; Wedel, S.; Boehmer, S.; et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N. Engl. J. 2013, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Nordquist, L.T.; Vaishampayan, N.; El Haddad, G.; Park, C.H.; Beer, T.M.; Armour, A.; Contreras, W.J.P.; Desilvio, M.; Kpamegan, E.; Gericke, G. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Cancer Research Institute. What Is Immunotherapy? Available online: https://www.cancerresearch.org/immunotherapy/what-is-immunotherapy (accessed on 5 March 2021).
- Sadeghzadeh, M.; Bornehdeli, S.; Mohahammadrezakhani, H.; Abolghasemi, M.; Poursaei, E.; Asadi, M.; Zafari, V.; Aghebati-maleki, L.; Shanehbandi, D. Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci. 2020, 254, 117580. [Google Scholar] [CrossRef]
- Taghizadeh, H.; Marhold, M. Immune Checkpoint Inhibitors in MCRPC—Rationales, Challenges and Perspectives. Oncoimmunology 2019, 8, 11. [Google Scholar] [CrossRef]
- Drake, C.G. Prostate cancer as a model for tumour immunotherapy. Nat. Rev. Immunol. 2011, 10, 580–593. [Google Scholar] [CrossRef] [PubMed]
- June, C.H.; Sadelain, M. Chimeric Antigen Receptor Therapy. N. Engl. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C. Cellular Immunotherapies for Cancer. Ir. J. Med. Sci. 2021, 190, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Handy, C.E.; Antonarakis, E.S. Sipuleucel-T for the Treatment of Prostate Cancer: Novel Insights and Future Directions. Future Oncol. 2018, 14, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Higano, C.S.; Schellhammer, P.F.; Small, E.J.; Burch, P.A. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 2009, 115, 3670–3679. [Google Scholar] [CrossRef]
- Kumar, A.; Watkins, R.; Vilgelm, A.E. Cell Therapy with TILs: Training and Taming T Cells to Fight Cancer. Front. Immunol. 2021, 12, 690499. [Google Scholar] [CrossRef]
- Ping, Y.; Liu, C.; Zhang, Y. T-Cell Receptor-Engineered T Cells for Cancer Treatment: Current Status and Future Directions. Protein Cell 2018, 9, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Li, X.; Zhou, W.; Huang, Y.; Liang, X.; Jiang, L.; Yang, X.; Sun, J.; Li, Z.; Han, W. Genetically Engineered T Cells for Cancer Immunotherapy. Signal Transduct. Target. Ther. 2019, 4, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hematol, J.; Liu, S.; Galat, V.; Galat, Y.; Kyung, Y.; Lee, A.; Wainwright, D.; Wu, J. NK Cell-Based Cancer Immunotherapy: From Basic Biology to Clinical Development. J. Hematol. Oncol. 2021, 4, 7. [Google Scholar] [CrossRef]
- Car, T.; June, C.H.; Connor, R.S.O.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T Cell Immunotherapy for Human Cancer. Science 2018, 1365, 1361–1365. [Google Scholar]
- Sadelain, M.; Riddell, S.; Kettering, S. Therapeutic T cell engineering. Nature 2017, 545, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Pan, J.; Guo, Z.; Yang, C.; Mao, L. CART Cell Therapy for Prostate Cancer: Status and Promise Antigen Recognition. Oncol. Targets Ther. 2019, 12, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Schepisi, G.; Cursano, M.C.; Casadei, C.; Menna, C.; Altavilla, A.; Lolli, C.; Cerchione, C.; Paganelli, G.; Santini, D.; Tonini, G.; et al. CAR-T Cell Therapy: A Potential New Strategy against Prostate Cancer. J. Immunother. Cancer 2019, 7, 258. [Google Scholar] [CrossRef]
- Gorchakov, A.A.; Kulemzin, S.V.; Kochneva, G.V.; Taranin, A.V.; Cooperberg, M. Challenges and Prospects of Chimeric Antigen Receptor T-Cell Therapy for Metastatic Prostate Cancer. Eur. Urol. 2019, 77, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Handa, S.; Hans, B. Immunotherapy in Prostate Cancer: Current State and Future Perspectives. Ther. Adv. Urol. 2020, 12, 1756287220951404. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves First CAR T-Cell Therapy—The Evolution of CAR T-Cell Therapy. Available online: https://cellculturedish.com/fda-approves-first-car-t-cell-therapy-the-evolution-of-car-t-cell-therapy/ (accessed on 30 June 2022).
- Rajasekaran, A.K.; Anilkumar, G.; Christiansen, J.J. Is Prostate-Specific Membrane Antigen a Multifunctional Protein? Am. J. Physiol. Physiol. 2021, 288, C975–C981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ananias, H.J.K.; Van Den Heuvel, M.C.; Helfrich, W.; Jong, I.J. De Expression of the Gastrin-Releasing Peptide Receptor, the Prostate Stem Cell Antigen and the Prostate-Specific Membrane Antigen in Lymph Node and Bone Metastases of Prostate Cancer. Prostate 2009, 69, 1101–1108. [Google Scholar] [CrossRef]
- Wüstemann, T.; Mier, W.; Haberkorn, U.; Babich, J. Targeting Prostate Cancer: Prostate-Specific Membrane Antigen Based Diagnosis and Therapy. Med. Res. Rev. 2018, 39, 40–69. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.D.; Kim, T.J. Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Metastatic Prostate Cancer: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 640. [Google Scholar] [CrossRef]
- Lu, J.; Celis, E. Recognition of Prostate Tumor Cells by Cytotoxic T Lymphocytes Specific for Prostate-Specific Membrane Antigen 1. Cancer Res. 2002, 62, 5807–5812. [Google Scholar]
- Schroers, R.; Shen, L.; Rollins, L.; Rooney, C.M.; Slawin, K.; Sonderstrup, G.; Huang, X.F.; Chen, S.Y. Human Telomerase Reverse Transcriptase-Specific T-Helper Responses Induced by Promiscuous Major Histocompatibility Complex Class II-Restricted Epitopes. Clin. Cancer Res. 2003, 9, 4743–4755. [Google Scholar] [PubMed]
- Harada, M.; Matsueda, S.; Yao, A.; Ogata, R.; Noguchi, M.; Itoh, K. Prostate-Related Antigen-Derived New Peptides Having the Capacity of Inducing Prostate Cancer-Reactive CTLs in HLA-A2+ Prostate Cancer Patients. Oncol. Rep. 2004, 12, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Omiya, R.; Sodey, B.; Yanai, M.; Oikawa, K.; Sato, K.; Kimura, S.; Senju, S.; Nishimura, Y. Identification of Naturally Processed Helper T-Cell Epitopes from Prostate-Specific Membrane Antigen Using Peptide-Based in Vitro Stimulation. Clin. Cancer Res. 2003, 9, 5386–5393. [Google Scholar] [PubMed]
- Kuroda, K.; Liu, H.; Kim, S.; Guo, M.; Navarro, V.; Bander, N.H. SaporinT Oxin-Conjugated Monoclonal Antibody Argeting Prostate-Specific Membrane Antigen Has Potent Anticancer Activity. Prostate 2010, 70, 1286–1294. [Google Scholar] [CrossRef]
- Wolf, P.; Alt, K.; Wetterauer, D.; Bühler, P.; Gierschner, D.; Katzenwadel, A.; Wetterauer, U.; Elsässer-Beile, U. Preclinical Evaluation of a Recombinant Anti-Prostate Specific Membrane Antigen Single-Chain Immunotoxin Against Prostate Cancer. J. Immunother. 2010, 33, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Wolf, P.B.P.; Schaber, D.G.I.; Swamy, W.S.U.W.M.T.M.; Elsässer-beile, W.W.A.S.U. A Bispeci W c Diabody Directed against Prostate-Speci W c Membrane Antigen and CD3 Induces T-Cell Mediated Lysis of Prostate Cancer Cells. Cancer Immunol. Immunother. 2008, 57, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Bühler, P.; Molnar, E.; Dopfer, E.P.; Wolf, P.; Gierschner, D.; Wetterauer, U.; Schamel, W.W.A.; Elsässer-Beile, U. Target-Dependent T-Cell Activation by Coligation with a PSMA×CD3 Diabody Induces Lysis of Prostate Cancer Cells. J. Immunother. 2009, 32, 565–573. [Google Scholar] [CrossRef]
- Gu, Z.; Thomas, G.; Yamashiro, J.; Shintaku, I.P.; Dorey, F.; Raitano, A.; Witte, O.N.; Said, J.W. Prostate Stem Cell Antigen (PSCA) Expression Increases with High Gleason Score, Advanced Stage and Bone Metastasis in Prostate Cancer. Oncogene 2000, 19, 1288–1296. [Google Scholar] [CrossRef] [Green Version]
- Manuscript, A. Prostate Stem Cell Antigen: A Jekyll and Hyde Molecule? Clin. Cancer Res. 2010, 16, 3533–3538. [Google Scholar] [CrossRef] [Green Version]
- Garcia-hernandez, M.D.L.; Gray, A.; Hubby, B.; Klinger, O.J.; Kast, W.M. Prostate Stem Cell Antigen Vaccination Induces a Long-Term Protective Immune Response against Prostate Cancer in the Absence of Autoimmunity. Cancer Res. 2008, 68, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Krupa, M.; Canamero, M.; Gomez, C.E.; Najera, J.L.; Gil, J.; Esteban, M. Immunization with Recombinant DNA and Modified Vaccinia Virus Ankara (MVA) Vectors Delivering PSCA and STEAP1 Antigens Inhibits Prostate Cancer Progression. Vaccine 2011, 29, 1504–1513. [Google Scholar] [CrossRef]
- Morgenroth, A.; Cartellieri, M.; Schmitz, M.; Gu, S.; Weigle, B.; Bachmann, M.; Abken, H.; Rieber, E.P.; Temme, A.; Faculty, M.; et al. Argeting of T Umor Cells Expressing the Prostate Stem Cell Antigen (PSCA) Using Genetically Engineered T-Cells. Prostate 2007, 67, 1121–1131. [Google Scholar] [CrossRef]
- Visvader, J.E.; Lindeman, G.J. Cancer Stem Cells in Solid Tumours: Accumulating Evidence and Unresolved Questions. Nat. Cancer 2008, 8, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Patriarca, C.; Macchi, R.M.; Marschner, A.K.; Mellstedt, H. Epithelial Cell Adhesion Molecule Expression (CD326) in Cancer: A Short Review. Cancer Treat. Rev. 2012, 38, 68–75. [Google Scholar] [CrossRef]
- Deng, Z.; Wu, Y.; Ma, W.; Zhang, S.; Zhang, Y.-Q. Adoptive T-Cell Therapy of Prostate Cancer Targeting the Cancer Stem Cell Antigen EpCAM. BMC Immunol. 2015, 16, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higano, C.S.; Armstrong, A.J.; Sartor, A.O.; Vogelzang, N.J.; Shore, N.D.; Vacirca, J.; Concepcion, R.S.; Tutrone, R.F.; Nordquist, L.T. Real-World Outcomes of Sipuleucel-T Treatment in PROCEED, a Prospective Registry of Men with Metastatic Castration-Resistant Prostate Cancer. Cancer 2019, 125, 4172–4180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twardowski, P.; Wong, J.Y.C.; Pal, S.K.; Maughan, B.L.; Henry, P.; Franklin, K.; Junqueira, M.; Prajapati, M.R.; Nachaegari, G.; Harwood, D.; et al. Communications Randomized Phase II Trial of Sipuleucel-T Immunotherapy Preceded by Sensitizing Radiation Therapy and Sipuleucel-T Alone in Patients with Metastatic Castrate Resistant Prostate Cancer. Cancer Treat. Res. Commun. 2019, 19, 100116. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Kibel, A.S.; Yu, E.Y.; Karsh, L.I.; El, A.; Shore, N.D.; Vogelzang, N.J.; Corman, J.M.; Millard, F.E.; Maher, J.C.; et al. Sequencing of Sipuleucel-T and Androgen Deprivation Therapy in Men with Hormone- Sensitive Biochemically Recurrent Prostate Cancer: A Phase II Randomized Trial. Clin. Cancer Res. 2017, 23, 2451–2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.Gov. A Study of Sipuleucel-T with Administration of Enzalutamide in Men with Metastatic Castrate-Resistant Prostate Cancer. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01981122 (accessed on 8 March 2021).
- Scholz, M.; Yep, S.; Chancey, M.; Kelly, C.; Chau, K.; Turner, J.; Lam, R.; Drake, C.G. Phase I Clinical Trial of Sipuleucel-T Combined with Escalating Doses of Ipilimumab in Progressive Metastatic Castrate-Resistant Prostate Cancer. ImmunoTargets Ther. 2017, 6, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Sonpavde, G.; Mcmannis, J.D.; Bai, Y.; Seethammagari, M.R.; Bull, J.M.C.; Hawkins, V.; Dancsak, T.K.; Lapteva, N.; Levitt, J.M.; Moseley, A.; et al. Phase I Trial of Antigen—Targeted Autologous Dendritic Cell—Based Vaccine with in Vivo Activation of Inducible CD40 for Advanced Prostate Cancer. Cancer Immunol. Immunother. 2017, 66, 1345–1357. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 16135625, Rimiducid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Rimiducid (accessed on 3 March 2021).
- Fucikova, J.; Podrazil, M.; Jarolim, L.; Bilkova, P.; Hensler, M.; Becht, E.; Gasova, Z.; Klouckova, J.; Kayserova, J.; Horvath, R.; et al. Phase I/II Trial of Dendritic Cell - Based Active Cellular Immunotherapy with DCVAC/PCa in Patients with Rising PSA after Primary Prostatectomy or Salvage Radiotherapy for the Treatment of Prostate Cancer. Cancer Immunol. Immunother. 2017, 67, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Podrazil, M.; Horvath, R.; Becht, E.; Rozkova, D.; Sochorova, K.; Hromadkova, H.; Kayserova, J.; Lastovicka, J.; Vrabcova, P.; Kubackova, K.; et al. Phase I/II Clinical Trial of Dendritic-Cell Based Immunotherapy (DCVAC/PCa) Combined with Chemotherapy in Patients with Metastatic, Castration-Resistant Prostate Cancer. Oncotarget 2015, 6, 18192–18205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kongsted, P.; Borch, T.H.; Ellebaek, E.; Iversen, T.Z.; Andersen, R.; Met, Ö.; Hansen, M.; Lindberg, H.; Sengeløv, L.; Svane, I.M. Dendritic Cell Vaccination in Combination with Docetaxel for Patients with Metastatic Castration-Resistant Prostate Cancer: A Randomized Phase II Study. Cytotherapy 2017, 19, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Eady, R.; Yassine-Diab, B.; Favre, D.; Peretz, Y.; Landry, C. Tn-MUC1 DC Vaccination of Rhesus Macaques and a Phase I/II Trial in Patients with Nonmetastatic Castrate-Resistant Prostate Cancer. Cancer Immunol. Res. 2017, 4, 881–892. [Google Scholar] [CrossRef] [Green Version]
- Safety Evaluation of Autologous Dendritic Cell Anticancer Immune Cell Therapy (Cellgram-DC-PC). Available online: https://clinicaltrials.gov/ct2/show/record/NCT04615845 (accessed on 5 March 2021).
- Natural Dendritic Cells for Immunotherapy of Chemo-Naive Metastatic Castration-Resistant Prostate Cancer Patients. Available online: https://clinicaltrials.gov/ct2/show/record/NCT02692976 (accessed on 5 March 2021).
- Phase III Study of DCVAC Added to Standard Chemotherapy for Men with Metastatic Castration Resistant Prostate Cancer (VIABLE). Available online: https://clinicaltrials.gov/ct2/show/record/NCT02111577 (accessed on 5 March 2021).
- Phase II Study of DCVAC/PCa Added to Standard Chemotherapy for Men with Metastatic Castration Resistant Prostate Cancer. Available online: https://clinicaltrials.gov/ct2/show/record/NCT02105675 (accessed on 5 March 2021).
- Safety Study of BPX-201 Dendritic Cell Vaccine Plus AP1903 in Metastatic Castrate Resistent Prostate Cancer. Available online: https://clinicaltrials.gov/ct2/show/record/NCT01823978 (accessed on 5 March 2021).
- ClinicalTrials.Gov. Concurrent vs. Sequential Sipuleucel-T & Abiraterone Treatment in Men with Metastatic Castrate Resistant Prostate Cancer. Available online: https://www.clinicaltrials.gov/ct2/show/record/NCT01487863 (accessed on 6 March 2021).
- ClinicalTrials.Gov. Immune Monitoring on Sipuleucel-T (PROVENGE). Available online: https://clinicaltrials.gov/ct2/show/NCT02237170 (accessed on 8 March 2021).
- Provenge with or without PTVG-HP DNA Booster Vaccine in Prostate Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT01706458 (accessed on 20 June 2022).
- Junghans, R.P. Role for IL2 Adjunctive Cotherapy for Suppression of a Solid Tumor with Designer T Cells: Phase I Trial Data in Prostate Cancer. J. Clin. Oncol. 2013, 31, 216. [Google Scholar] [CrossRef]
- Junghans, R.P.; Ma, Q.; Rathore, R.; Gomes, E.M.; Bais, A.J.; Lo, A.S.Y.; Abedi, M.; Davies, R.A.; Cabral, H.J.; Al-homsi, A.S.; et al. Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response. Prostate 2016, 76, 1257–1270. [Google Scholar] [CrossRef]
- Slovin, S.F.; Wang, X.; Hullings, M.; Arauz, G.; Bartido, S.; Lewis, J.S.; Schöder, H.; Zanzonico, P.; Scher, H.I.; Sadelain, M.; et al. Chimeric Antigen Receptor (CAR+) Modified T Cells Targeting Prostate-Specific Membrane Antigen (PSMA) in Patients (Pts) with Castrate Metastatic Prostate Cancer (CMPC). J. Clin. Oncol. 2013, 31, 72. [Google Scholar] [CrossRef]
- Siegel, P.M.; Massagué, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Cancer 2003, 3, 807–820. [Google Scholar] [CrossRef]
- Travis, M.A.; Sheppard, D. TGF-β Activation and Function in Immunity. Annu. Rev. Immunol. 2014, 32, 51–82. [Google Scholar] [CrossRef] [Green Version]
- Kloss, C.C.; Lee, J.; Zhang, A.; Chen, F.; Melenhorst, J.J.; Lacey, S.F.; Maus, M.V.; Fraietta, J.A.; Zhao, Y.; June, C.H. Dominant-Negative TGF-b Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication. Mol. Ther. 2018, 26, 1855–1866. [Google Scholar] [CrossRef] [Green Version]
- Antigen-specific, M. Efficacy Against Human Prostate Cancer by Prostate-specific Membrane Antigen-specific, Transforming Growth Factor-β Insensitive Genetically Targeted CD8+ T-cells Derived from Patients with Metastatic Castrate-resistant Disease. Eur. Urol. 2019, 73, 648–652. [Google Scholar] [CrossRef]
- Narayan, V.; Gladney, W.; Plesa, G.; Vapiwala, N.; Carpenter, E.L.; Maude, S.L.; Lal, P.; Lacey, S.F.; Melenhorst, J.J.; Fraietta, J.; et al. A Phase I Clinical Trial of PSMA-Directed/TGFβ-Insensitive CAR-T Cells in Metastatic Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2020, 38, TPS269. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. A Study of CART-PSMA-TGFβRDN in Patients with Metastatic Castration Resistant Prostate Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04227275 (accessed on 24 February 2021).
- ClinicalTrials.Gov. PSMA-Specific CAR-T Cell Therapy. Available online: https://clinicaltrials.gov/ct2/show/NCT04429451 (accessed on 23 February 2021).
- ClinicalTrials.Org. LIGHT-PSMA-CART in Treating Patients with Castrate-Resistant Prostate Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04053062 (accessed on 23 February 2021).
- ClinicalTrials.Gov. P-PSMA-101 CAR-T Cells in the Treatment of Subjects with Metastatic Castration-Resistant Prostate Cancer (MCRPC). Available online: https://clinicaltrials.gov/ct2/show/NCT04249947 (accessed on 23 February 2021).
- ClinicalTrials.Gov. Safety and Activity Study of PSCA-Targeted CAR-T Cells (BPX-601) in Subjects with Selected Advanced Solid Tumors. Available online: https://clinicaltrials.gov/ct2/show/NCT02744287 (accessed on 23 February 2021).
- Becerra, C.R.; Hoof, P.; Paulson, A.S.; Manji, G.A.; Gardner, O.; Malankar, A.; Shaw, J.; Blass, D.; Ballard, B.; Yi, X.; et al. Ligand-Inducible, Prostate Stem Cell Antigen (PSCA)-Directed GoCAR-T Cells in Advanced Solid Tumors: Preliminary Results from a Dose Escalation. J. Clin. Oncol. 2019, 37, 283. [Google Scholar] [CrossRef]
- ClinicalTrials.Org. PSCA-CAR T Cells in Treating Patients with PSCA+ Metastatic Castration Resistant Prostate Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03873805 (accessed on 24 February 2021).
- Dorff, T.B.; Blanchard, S.; Carruth, P.; Wagner, J.; Kuhn, P.; Chaudhry, A.; Adkins, L.; Thomas, S.; Martirosyan, H.; Chu, P.; et al. A Phase I Study to Evaluate PSCA-Targeting Chimeric Antigen Receptor (CAR)-T Cells for Patients with PSCA+ Metastatic Castration-Resistant Prostate Cancer (MCRPC). J. Clin. Oncol. 2020, 38, TPS250. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. A Clinical Research of CAR T Cells Targeting EpCAM Positive Cancer (CARTEPC). Available online: https://clinicaltrials.gov/ct2/show/record/NCT03013712 (accessed on 24 February 2021).
- Gill, S.; Brudno, J.N. CAR T-Cell Therapy in Hematologic Malignancies: Clinical Role, Toxicity, and Unanswered Questions. In Hematologic Malignancies; American Society of Clinical Oncology: Alexandria, VA, USA, 2022. [Google Scholar]
- ClinicalTrial.Gov. Efficacy and Safety Study of Bb2121 versus Standard Regimens in Subjects with Relapsed and Refractory Multiple Myeloma (RRMM) (KarMMa-3). Available online: https://clinicaltrials.gov/ct2/show/NCT03651128 (accessed on 2 April 2022).
- Fong, L.; Carroll, P.; Weinberg, V.; Chan, S.; Lewis, J.; Corman, J.; Amling, C.L.; Stephenson, R.A.; Simko, J.; Sheikh, N.A.; et al. Activated Lymphocyte Recruitment into the Tumor Microenvironment Following Preoperative Sipuleucel-T for Localized Prostate Cancer. J. Natl. Cancer Inst. 2014, 106, dju268. [Google Scholar] [CrossRef]
- Hussein, M.-R.A.; AL-Assiri, M.; Musalam, A.O. Phenotypic Characterization of the Infiltrating Immune Cells in Normal Prostate, Benign Nodular Prostatic Hyperplasia and Prostatic Adenocarcinoma. Exp. Mol. Pathol. 2009, 86, 108–113. [Google Scholar] [CrossRef]
- Strasner, A.; Karin, M. Immune Infiltration and Prostate Cancer. Front. Oncol. 2015, 5, 128. [Google Scholar] [CrossRef]
- Bubendorf, L.; Schöpfer, A.; Wagner, U.; Sauter, G.; Moch, H.; Willi, N.; Gasser, T.C.; Mihatsch, M.J. Metastatic Patterns of Prostate Cancer: An Autopsy Study of 1589 Patients. Hum. Pathol. 2000, 31, 578–583. [Google Scholar] [CrossRef]
- Muthuswamy, R.; Corman, J.M.; Dahl, K.; Chatta, G.S.; Kalinski, P. Functional Reprogramming of Human Prostate Cancer to Promote Local Attraction of Effector CD8+ T Cells. Prostate 2016, 76, 1095–1105. [Google Scholar] [CrossRef]
- Di Stasi, A.; De Angelis, B.; Rooney, C.M.; Zhang, L.; Mahendravada, A.; Foster, A.E.; Heslop, H.E.; Brenner, M.K.; Dotti, G.; Savoldo, B. T Lymphocytes Coexpressing CCR4 and a Chimeric Antigen Receptor Targeting CD30 Have Improved Homing and Antitumor Activity in a Hodgkin Tumor Model. Blood 2009, 113, 6392–6402. [Google Scholar] [CrossRef] [Green Version]
- Qian, D.Z.; Rademacher, B.L.S.; Pittsenbarger, J.; Huang, C.-Y.; Myrthue, A.; Higano, C.S.; Garzotto, M.; Nelson, P.S.; Beer, T.M. CCL2 Is Induced by Chemotherapy and Protects Prostate Cancer Cells from Docetaxel-Induced Cytotoxicity. Prostate 2010, 70, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, R.; Potluri, H.; Aluicio-Sarduy, E.; Grudzinski, J.; Massey, C.; Zahm, C.; Engle, J.; McNeel, D.; Weichert, J. Low-Dose TRT Reshapes the Microenvironment of Prostate Tumors to Potentiate Response to Immunotherapy. J. Nucl. Med. 2020, 61, 36. [Google Scholar]
- Sterner, R.C.; Sterner, R.M. CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Sukumaran, S.; Bajgain, P.; Watanabe, N.; Heslop, H.E.; Rooney, C.M.; Brenner, M.K.; Fisher, W.E.; Leen, A.M.; Vera, J.F. Improving Chimeric Antigen Receptor-Modified T Cell Function by Reversing the Immunosuppressive Tumor Microenvironment of Pancreatic Cancer. Mol. Ther. 2017, 25, 249–258. [Google Scholar] [CrossRef]
- Montagner, I.M.; Penna, A.; Fracasso, G.; Carpanese, D.; Dalla Pietà, A.; Barbieri, V.; Zuccolotto, G.; Rosato, A. Anti-PSMA CAR-engineered NK-92 Cells: An Off-the-shelf Cell Therapy for Prostate Cancer. Cells 2020, 9, 1382. [Google Scholar] [CrossRef]
- Wolf, P.; Alzubi, J.; Gratzke, C.; Cathomen, T. The Potential of CAR T Cell Therapy for Prostate Cancer. Nat. Rev. Urol. 2021, 18, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Kissick, H.T.; Sanda, M.G.; Dunn, L.K.; Pellegrini, K.L.; On, S.T.; Noel, J.K.; Arredouani, M.S. Androgens Alter T-Cell Immunity by Inhibiting T-Helper 1 Differentiation. Proc. Natl. Acad. Sci. USA 2014, 111, 9887–9892. [Google Scholar] [CrossRef] [Green Version]
- Mercader, M.; Bodner, B.K.; Moser, M.T.; Kwon, P.S.; Park, E.S.Y.; Manecke, R.G.; Ellis, T.M.; Wojcik, E.M.; Yang, D.; Flanigan, R.C.; et al. T Cell Infiltration of the Prostate Induced by Androgen withdrawal in Patients with Prostate Cancer. Proc. Natl. Acad. Sci. USA 2001, 98, 14565–14570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaacs, J.T.; Furuya, Y.; Berges, R. The Role of Androgen in the Regulation of Programmed Cell Death/Apoptosis in Normal and Malignant Prostatic Tissue. Semin. Cancer Biol. 1994, 5, 391–400. [Google Scholar]
- Owens, K.; Bozic, I. Modeling CAR T-Cell Therapy with Patient Preconditioning. Bull. Math. Biol. 2021, 83, 42. [Google Scholar] [CrossRef]
- Neelapu, S.S. CAR-T Efficacy: Is Conditioning the Key? Blood 2019, 133, 1799–1800. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.Gov. A Trial of BXCL701 and Pembrolizumab in Patients with MCRPC. 2019. Available online: https://clinicaltrials.gov/ct2/show/NCT03910660 (accessed on 8 March 2021).
Identifier | Trial Name | Phase/Status | Endpoints |
---|---|---|---|
NCT04615845 [62] | Safety Evaluation of Autologous Dendritic Cell Anticancer Immune Cell Therapy (Cellgram-DC-PC) | phase I recruiting, n = 10 mCRPC | primary: measure CTCAE safety secondary: immune response, PSA effect |
NCT02692976 [63] | Natural Dendritic Cells for Immunotherapy of Chemo-naive Metastatic Castration-resistant Prostate Cancer Patients | phase I n = 21 mCRPC | primary: immunogenicity of tumor-peptide loaded natural blood DCs Secondary: AE, PFS, QoL, PSA progression, OS, Time to opiate use, time to skeletal related events, ECOG, time to CHT, Radiographic PFS, feasibility |
NCT02111577 [64] | Phase III Study of DCVAC Added to Standard Chemotherapy for Men with Metastatic Castration Resistant Prostate Cancer (VIABLE) | phase III completed, n = 1182 mCRPC | primary: OS secondary: PFS, PSA progression, duration of sceletal related events |
NCT02105675 [65] | Phase II Study of DCVAC/PCa Added to Standard Chemotherapy for Men with Metastatic Castration Resistant Prostate Cancer | phase II completed, n = 60 mCRPC | primary: OS secondary: rPFS, duration of PSA progression, QoL, pain assessment |
NCT01823978 [66] | Safety Study of BPX-201 Dendritic Cell Vaccine Plus AP1903 in Metastatic Castrate Vaccine Plus AP1903 in Metastatic Castrate | phase I completed, n = 19 mCRPC | primary: AE secondary: PSA, PFS, response to CHT after Immunotherapy, Reduction in circulating Tumor cells |
NCT01487863 [67] | Concurrent vs. Sequential Sipuleucel-T & Abiraterone Treatment in Men with Metastatic Castrate Resistant Prostate Cancer | phase II completed, n = 69 mCRPC | primary: CD54 upregul. secondary: safety, immune response, Sipuleucel parameter |
NCT02237170 [68] | Immune Monitoring on Sipuleucel-T (PROVENGE) | observational completed n = 36, PCa | primary: change in TREGsSecondary: changes in APC, cytokines, PSA- Specific immune resp. RNA transcript.-based sign. |
NCT01706458 [69] | Provenge with or without pTVG-HP DNA Booster Vaccine in Prostate Cancer | phase II completed, p = 18, PCa | primary: OS secondary: number of circulating tumor cells, PAP-specific Antibody and T-cell Immune Responses |
Identifier | Trial Name | Phase/Status | Endpoints |
---|---|---|---|
NCT04429451 [79] | Phase I/II Clinical Trial of 4SCAR-PSMA T Cell Therapy Targeting PSMA Positive Malignancies | Phase I/II enrolling, n = 100 PSMA positive tumors | primary: toxicity, adverse events, secondary: ORR, OS, expansion/persistence of 4SCAR-PSMA T cells |
NCT04053062 [80] | A Phase I Study to Evaluate the Safety and Efficacy of PSMA-CART Co-expressing LIGHT in Treating Patients with Castrate-Resistant Prostate Cancer (CRPC) | Phase I recruiting, n = 12 CRPC | primary: toxicity, safety secondary: PSA radiographic response, duration time of CAR-T cells in-vivo |
NCT04249947 [81] | A Phase 1 Dose Escalation and Expanded Cohort Study of P-PSMA-101 in Subjects with Metastatic Castration-Resistant Prostate Cancer (mCRPC) | Phase I recruiting, n = 40 mCRPC | primary: safety, dose finding, ORR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinbach, C.; Merchant, A.; Zaharie, A.-T.; Horak, P.; Marhold, M.; Krainer, M. Current Developments in Cellular Therapy for Castration Resistant Prostate Cancer: A Systematic Review of Clinical Studies. Cancers 2022, 14, 5719. https://doi.org/10.3390/cancers14225719
Steinbach C, Merchant A, Zaharie A-T, Horak P, Marhold M, Krainer M. Current Developments in Cellular Therapy for Castration Resistant Prostate Cancer: A Systematic Review of Clinical Studies. Cancers. 2022; 14(22):5719. https://doi.org/10.3390/cancers14225719
Chicago/Turabian StyleSteinbach, Christina, Almas Merchant, Alexandru-Teodor Zaharie, Peter Horak, Maximilian Marhold, and Michael Krainer. 2022. "Current Developments in Cellular Therapy for Castration Resistant Prostate Cancer: A Systematic Review of Clinical Studies" Cancers 14, no. 22: 5719. https://doi.org/10.3390/cancers14225719
APA StyleSteinbach, C., Merchant, A., Zaharie, A. -T., Horak, P., Marhold, M., & Krainer, M. (2022). Current Developments in Cellular Therapy for Castration Resistant Prostate Cancer: A Systematic Review of Clinical Studies. Cancers, 14(22), 5719. https://doi.org/10.3390/cancers14225719