Thermodynamic Sensitivity of Blood Plasma Components in Patients Afflicted with Skin, Breast and Pancreatic Forms of Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Studying Blood Plasma with DSC
1.2. Breast Cancer
1.3. Pancreas Cancer and Pancreatitis
1.4. Skin Cancer
1.5. Application of Blood Plasma DSC in Diagnostics
2. Materials and Methods
2.1. Patient Population
2.2. Blood Sample Collection and Preparation
2.3. DSC Measurements
2.4. Deconvolution of DSC Thermal Curve
2.5. Calculation of Activation Energy
3. Results of Thermal Analysis
3.1. Breast Cancer Studies
3.2. Pancreas Cancer and Chronic Pancreatitis Studies
3.3. Skin Cancer Studies
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monti, M.; Wadsö, I. Microcalorimetric measurements of heat production in human eryth-rocytes I. Normal subjects and anemic patients. Scand. J. Clin. Lab. Investig. 1973, 32, 47–54. [Google Scholar] [CrossRef]
- Monti, M.; Wadsö, I. Microcalorimetric Measurements of Heat Production in Human Eryth-rocytes: II. Hyperthyroid Patients before, during and after Treatment. Act. Med. Scand. 1976, 200, 301–308. [Google Scholar] [CrossRef]
- Monti, M.; Wadsö, I. Microcalorimetric measurements of heat production in human erythro-cytes heat effect during methylene blue stimulation. Scand. J. Clin. Lab. Investig. 1976, 36, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Monti, M.; Wadsö, I. Microcalorimetric measurements of heat production in human eryth-rocytes: III. Influence of Ph, temperature, glucose concentration, and storage conditions. Scand. J. Clin. Lab. Investig. 1976, 36, 565–572. [Google Scholar] [CrossRef]
- Monti, M.; Wadsö, I. Microcalorimetric measurements of heat production in human eryth-rocytes: IV. Comparison between different calorimetric techniques, suspension media, and preparation methods. Scand. J. Clin. Lab. Investig. 1976, 36, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, A.; Rodríguez, M.C.; López-Revuelta, A.; Sánchez-Gallego, J.I.; Shnyrov, V.; Llanillo, M.; Sánchez-Yagüe, J. Alterations in erythrocyte membrane protein composition in advanced non-small cell lung cancer. Blood Cells Mol. Dis. 2006, 36, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Monaselidze, J.; Kalandadze, Y.; Topuridze, I.; Gadabadze, M. Thermodynamic properties of serum and plasma of patients sick with cancer. High Temp. Press. 1997, 29, 677–681. [Google Scholar] [CrossRef]
- Khachidze, D.G.; Monaselidze, D.R. Microcalorimetric study of human serum [Mikrokalo-rimetricheskoe issledovanie syvorotki krovi cheloveka]. Biofiz 2000, 45, 320–324. [Google Scholar]
- Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Ligand Binding Alters the Calorimetric Thermogram of Albumin. J. Clin. Lig. Ass. 2006, 29, 194–197. [Google Scholar]
- Michnik, A.; Michalik, K.; Kluczewska-Gałka, A.; Drzazga, Z. Comparative DSC study of human and bovine serum albumin. J. Therm. Anal. Calorim. 2006, 84, 113–117. [Google Scholar] [CrossRef]
- Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Calorimetric Analysis of the Plasma Proteome. Semin. Nephrol. 2007, 27, 621–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Miller, D.M.; Chaires, J.B. Interrogation of the Plasma Proteome with Differential Scanning Calorimetry. Clin. Chem. 2007, 53, 2012–2014. [Google Scholar] [CrossRef] [PubMed]
- Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Calorimetry Outside the Box: A New Window into the Plasma Proteome. Biophys. J. 2008, 94, 1377–1383. [Google Scholar] [CrossRef] [Green Version]
- Garbett, N.C.; Mekmaysy, C.S.; Helm, C.W.; Jenson, A.B.; Chaires, J.B. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp. Mol. Pathol. 2009, 86, 186–191. [Google Scholar] [CrossRef]
- Wisniewski, M.; Garbett, N.C.; Fish, D.J.; Brewood, G.P.; Miller, J.J.; Chaires, J.B.; Benight, A.S. Differential Scanning Calorimetry in Molecular Diagnostics. Vitr. Diag. Tech. 2011, 17, 29–34. [Google Scholar]
- Garbett, N.C.; Merchant, M.L.; Chaires, J.B.; Klein, J.B. Calorimetric analysis of the plasma proteome: Identification of type 1 diabetes patients with early renal function decline. Biochim. Biophys. Acta. 2013, 1830, 4675–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbett, N.C.; Merchant, M.L.; Helm, C.W.; Jenson, A.B.; Klein, J.B.; Chaires, J.B. Detection of Cervical Cancer Biomarker Patterns in Blood Plasma and Urine by Differential Scanning Calorimetry and Mass Spectrometry. PLoS ONE 2014, 9, e84710. [Google Scholar] [CrossRef]
- Garbett, N.C.; Mekmaysy, C.S.; DeLeeuw, L.; Chaires, J.B. Clinical application of plasma thermograms. Utility, practical approaches and considerations. Methods 2015, 76, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Garbett, N.C.; Brock, G.N. Differential scanning calorimetry as a complementary diagnostic tool for the evaluation of biological samples. Biochim. Biophys. Acta 2016, 1860, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Kendrick, S.K.; Zheng, Q.; Garbett, N.C.; Brock, G.N. Application and interpretation of functional data analysis techniques to differential scanning calorimetry data from lupus patients. PLoS ONE 2017, 12, e0186232. [Google Scholar] [CrossRef] [Green Version]
- Garbett, N.C.; Brock, G.N.; Chaires, J.B.; Mekmaysy, C.S.; DeLeeuw, L.; Sivils, K.L.; Harley, J.B.; Rovin, B.H.; Kulasekera, K.B.; Jarjour, W.N. Characterization and classification of lupus patients based on plasma thermograms. PLoS ONE 2017, 12, e0186398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velazquez-Campoy, A.; Vega, S.; Sanchez-Gracia, O.; Lanas, A.; Rodrigo, A.; Kaliappan, A.; Hall, M.B.; Nguyen, T.Q.; Brock, G.N.; Chesney, J.A.; et al. Thermal liquid biopsy for monitoring melanoma patients under surveillance during treatment: A pilot study. Biochim. Biophys. Acta 2018, 1862, 1701–1710. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.; Kaliappan, A.; Nguyen, T.Q.; Buscaglia, R.; Brock, G.N.; Hall, M.B.; DeSpirito, C.; Wilkey, D.W.; Merchant, M.L.; Klein, J.B.; et al. The Utility of Differential Scanning Calorimetry Curves of Blood Plasma for Diagnosis, Subtype Differentiation and Predicted Survival in Lung Cancer. Cancers 2021, 13, 5326. [Google Scholar] [CrossRef] [PubMed]
- Fish, D.J.; Brewood, G.P.; Kim, J.S.; Garbett, N.C.; Chaires, J.B.; Benight, A.S. Statistical analysis of plasma thermograms measured by differential scanning calorimetry. Biophys. Chem. 2010, 152, 184–190. [Google Scholar] [CrossRef]
- Rai, S.N.; Pan, J.; Cambon, A.; Chaires, J.B.; Garbett, N.C. Group classification based on high-dimensional data: Application to differential scanning calorimetry plasma thermogram analysis of cervical cancer and control samples. Open Access Med. Stat. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kwon, A.M.; Ren, D.; Ouyang, M.; Garbett, N.C. Robust Functional Profile Identification for DSC Thermograms. In Proceedings of the 9th EAI International Conference on Bio-Inspired Information and Communications Technologies (formerly BIONETICS), New York, NY, USA, 3–5 December 2015; pp. 497–501. [Google Scholar]
- Rai, S.N.; Srivastava, S.; Pan, J.; Wu, X.; Rai, S.P.; Mekmaysy, C.S.; DeLeeuw, L.; Chaires, J.B.; Garbett, N.C. Multi-group diagnostic classification of high-dimensional data using differential scanning calorimetry plasma thermograms. PLoS ONE 2019, 14, e0220765. [Google Scholar] [CrossRef]
- Duch, K.; Michnik, A.; Pokora, I.; Sadowska-Krępa, E.; Kiełboń, A. Whole-body cryostimulation impact on blood serum thermal denaturation profiles of cross-country skiers. J. Therm. Anal. Calorim. 2019, 138, 4505–4511. [Google Scholar] [CrossRef] [Green Version]
- Michnik, A.; Duch, K.; Pokora, I.; Sadowska Krępa, E. Differences in cryostimulation and sauna effects on post-exercise changes in blood serum of athletes. Complement. Ther. Med. 2020, 511, 102453. [Google Scholar] [CrossRef]
- Michnik, A.; Sadowska-Krępa, E.; Kiełboń, A.; Duch, K.; Bańkowski, S. Blood serum denaturation profile examined by differential scanning calorimetry reflects the effort put into ultramarathon by amateur long-distance runners. J. Therm. Bio. Open 2021, 99, 103013. [Google Scholar] [CrossRef]
- Pokora, I.; Sadowska-Krępa, E.; Wolowski, Ł.; Wyderka, P.; Michnik, A.; Drzazga, Z. The Effect of Medium-Term Sauna-Based Heat Acclimation (MPHA) on Thermophysiological and Plasma Volume Responses to Exercise Performed under Temperate Conditions in Elite Cross-Country Skiers. Int. J. Environ. Res. Public Health 2021, 18, 6906. [Google Scholar] [CrossRef]
- Michnik, A.; Kiełboń, A.; Duch, K.; Sadowska-Krępa, E.; Pokora, I. Comparison of human blood serum DSC profiles in aqueous and PBS buffer solutions. J. Therm. Anal. Calorim. 2022, 147, 6739–6743. [Google Scholar] [CrossRef]
- Zapf, I.; Fekecs, T.; Ferencz, A.; Tizedes, G.; Pavlovics, G.; Kálmán, E.; Lőrinczy, D. DSC analysis of human plasma in breast cancer patients. Thermochim. Acta 2011, 524, 88–91. [Google Scholar] [CrossRef]
- Ferencz, A.; Fekecs, T.; Lőrinczy, D. Differential Scanning Calorimetry, as a new method to monitor human plasma in melanoma patients with regional limph node or distal metastases. In Skin Cancer—Book 2; Xi, L., Ed.; Intech Publischer: Rijeka, Croatia, 2011; Volume 6, pp. 141–151. ISBN 979-953-307-661-3. [Google Scholar]
- Fekecs, T.; Zapf, I.; Ferencz, A.; Lőrinczy, D. DSC analysis of human plasma in melanoma patients with or without regional lymph node metastases. J. Therm. Anal. Calorim. 2012, 108, 149–152. [Google Scholar] [CrossRef]
- Zapf, I.; Moezzi, M.; Fekecs, T.; Nedvig, K.; Lőrinczy, D.; Ferencz, A. Influence of oxidative injury and monitoring of blood plasma by DSC on breast cancer patients. J. Therm. Anal. Calorim. 2016, 123, 2029–2035. [Google Scholar] [CrossRef]
- Ferencz, A.; Zapf, I.; Lőrinczy, D. Harmful effect of neoadjuvant chemotherapy monitoring by DSC on breast cancer patients’ blood plasma. J. Therm. Anal. Calorim. 2016, 126, 55–59. [Google Scholar] [CrossRef]
- Ferencz, A.; Lőrinczy, D. DSC measurements of blood plasma on patients with chronic pancreatitis, operable and inoperable pancreatic adenocarcinoma. J. Therm. Anal. Calorim. 2017, 127, 1187–1192. [Google Scholar] [CrossRef]
- Lőrinczy, D. Thermal analysis in biological and medical applications. J. Therm. Anal. Calorim. 2017, 130, 1263–1280. [Google Scholar] [CrossRef]
- Lőrinczy, D.; Ferencz, A. Comparison of deconvoluted plasma DSC thermograms on patients with solid tumors. J. Therm. Anal. Calorim. 2020, 142, 1243–1248. [Google Scholar] [CrossRef] [Green Version]
- Szalai, Z.; Molnár, T.F.; Lőrinczy, D. Differential scanning calorimetry (DSC) of blood serum in chronic obstructive pulmonary disease (COPD): A new diagnostic tool ahead? J. Therm. Anal. Calorim. 2013, 113, 259–264. [Google Scholar] [CrossRef]
- Szalai, Z.; Molnár, F.T.; Lőrinczy, D. Role of differential scanning calorimetry (DSC) in the staging of COPD: A new approach to an old definition problem. J. Therm. Anal. Calorim. 2017, 127, 1231–1238. [Google Scholar] [CrossRef]
- Mehdi, M.; Fekecs, T.; Zapf, I.; Ferencz, A.; Lőrinczy, D. Differential scanning calorimetry (DSC) analysis of human plasma in different psoriasis stages. J. Therm. Anal. Calorim. 2013, 111, 1801–1804. [Google Scholar] [CrossRef]
- Moezzi, M.; Ferencz, A.; Lőrinczy, D. Evaluation of blood plasma changes by differential scanning calorimetry in psoriatic patients treated with drugs. J. Therm. Anal. Calorim. 2014, 116, 557–562. [Google Scholar] [CrossRef]
- Moezzi, M.; Zapf, I.; Fekecs, T.; Nedvig, K.; Lőrinczy, D.; Ferencz, A. Influence of oxidative injury and monitoring of blood plasma by DSC on patients with psoriasis. J. Therm. Anal. Calorim. 2016, 123, 2037–2043. [Google Scholar] [CrossRef]
- Ferencz, A.; Moezzi, M.; Lőrinczy, D. Differential scanning calorimetry (DSC) as a new diagnostic and screening method on patients with psoriasis. In Psoriasis: Epidemiology, Diagnosis and Management Strategies; Nova Science Publisher: Hauppauge, NY, USA, 2016; Volume 3, pp. 45–64. [Google Scholar]
- Lőrinczy, D.; Mehdi, M.; Ferencz, A. Deconvoluted plasma DSC thermograms on patients with psoriasis. J. Therm. Anal. Calorim. 2020, 142, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Farkas, P.; Könczöl, F.; Lőrinczy, D. Examination of the blood plasma and red blood cells in cyclophosphamide monotherapy with DSC in animal models. J. Therm. Anal. Calorim. 2017, 127, 1239–1243. [Google Scholar] [CrossRef]
- Farkas, P.; Könczöl, F.; Lőrinczy, D. New possibilities of application of DSC as a new clinical diagnostic method. J. Therm. Anal. Calorim. 2017, 133, 579–589. [Google Scholar] [CrossRef]
- Todinova, S.; Krumova, S.; Gartcheva, L.; Robeerst, C.; Taneva, S.G. Microcalorimetry of Blood Serum Proteome: A Modified Interaction Network in the Multiple Myeloma Case. Anal. Chem. 2011, 83, 7992–7998. [Google Scholar] [CrossRef]
- Todinova, S.; Krumova, S.; Radoeva, R.; Gartcheva, L.; Taneva, S.G. Calorimetric Markers of Bence Jones and Nonsecretory Multiple Myeloma Serum Proteome. Anal. Chem. 2014, 86, 12355–12361. [Google Scholar] [CrossRef]
- Todinova, S.; Krumova, S.; Andreeva, T.; Dimitrova, K.; Gartcheva, L.; Taneva, L.G. Unusual thermal transition in the serum calorimetric profile of a patient diagnosed with multiple myeloma with secretion of monoclonal κ free light chains: A case report. Cancer Res. Front. 2016, 2, 416–426. [Google Scholar] [CrossRef]
- Danailova, A.; Todinova, S.; Dimitrova, K.; Petkova, K.; Guenova, M.; Mihaylov, G.; Gartcheva, L.; Krumova, S.; Taneva, S. Effect of autologous stem-cells transplantation of patients with multiple myeloma on the calorimetric markers of the serum proteome. Correlation with the immunological markers. Thermochim. Acta 2017, 655, 351–357. [Google Scholar] [CrossRef]
- Todinova, S.; Krumova, S.; Danailova, A.; Petkova, V.; Guenova, M.; Mihaylov, G.; Gartcheva, L.; Taneva, S.G. Calorimetric markers for monitoring of multiple myeloma and Waldenström’s macroglobulinemia patients. Eur. Biophys. J. 2018, 47, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Todinova, S.; Krumova, S.; Kurtev, P.; Dimitrov, V.; Djongov, L.; Dudunkov, Z.; Taneva, S.G. Calorimetry-based profiling of blood plasma from colorectal cancer patients. Biochim. Biophys. Acta 2012, 1820, 1879–1885. [Google Scholar] [CrossRef]
- Abarova, S.; Koynova, R.; Tancheva, L.; Tenchov, B. A novel DSC approach for evaluating protectant drugs efficacy against dementia. Biochim. Biophys. Acta 2017, 1863, 2934–2941. [Google Scholar] [CrossRef] [PubMed]
- Tenchov, B.; Abarova, S.; Koynova, R.; Traikov, L.; Dragomanova, S.; Tancheva, L. A new approach for investigating neurodegenerative disorders in mice based on DSC. J. Therm. Anal. Calorim. 2017, 127, 483–486. [Google Scholar] [CrossRef]
- Tenchov, B.; Abarova, S.; Koynova, R.; Traikov, L.; Tancheva, L. Low-temperature exothermic transitions in brain proteome of mice, effect of scopolamine. Thermochim. Acta 2017, 650, 26–32. [Google Scholar] [CrossRef]
- Tenchov, B.; Koynova, R.; Antonova, B.; Zaharinova, S.; Abarova, S.; Tsonchev, Z.; Komsa-Penkova, R.; Momchilova, A. Blood plasma thermal behavior and protein oxidation as indicators of multiple sclerosis clinical status and plasma exchange therapy progression. Thermochim. Acta 2019, 671, 193–199. [Google Scholar] [CrossRef]
- Koynova, R.; Antonova, B.; Sezanova, B.; Tenchov, B. Beneficial effect of sequential chemotherapy treatments of lung cancer patients revealed by calorimetric monitoring of blood plasma proteome denaturation. Thermochim. Acta 2018, 659, 1–7. [Google Scholar] [CrossRef]
- Key, T.J.; Verkasalo, P.K.; Banks, E. Epidemiology of breast cancer. Lancet Oncol. 2001, 2, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Héry, C.; Ferlay, J.; Boniol, M.; Autier, P. Changes in breast cancer incidence and mortality in middle-aged and elderly women in 28 countries with Caucasian majority populations. Ann. Oncol. 2008, 19, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Sasieni, P.D.; Shelton, J.; Ormiston-Smith, N.J.; Thomson, C.S.; Silcocks, P.B. What is the lifetime risk of developing cancer? The effect of adjusting for multiple primaries. Br. J. Cancer 2011, 105, 460–465. [Google Scholar] [CrossRef] [Green Version]
- Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rutgers, E.; Zackrisson, S.; Cardoso, F.; ESMO Guidelines Committee. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, 8–30. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.J.; Lawler, L.; Miller, M.R. Chronic pancreatitis. Am. Fam. Physician 2007, 76, 1679–1688. [Google Scholar] [PubMed]
- Yadav, D.; Lowenfels, A.B. The Epidemiology of Pancreatitis and Pancreatic Cancer. Gastroenterology 2013, 144, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Clancy, T.E. Surgery for pancreatic cancer. Hematol. Oncol. Clin. N. Am. 2015, 29, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Forsmark, C.E. Management of chronic pancreatitis. Gastroenterology 2013, 144, 1282–1291. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente-García, A.; Ocampo-Candiani, J. Cutaneous melanoma. Gac. Med. Mex. 2010, 146, 126–135. [Google Scholar]
- Neagu, M.; Constantin, C.; Tanase, C. Immune-related biomarkers for diagnosis/prognosis and therapy monitoring of cutaneous melanoma. Expert Rev. Mol. Diagn. 2010, 10, 897–919. [Google Scholar] [CrossRef]
- Autier, P.; Doré, J.-F.; Eggermont, A.M.; Coebergh, J.W. Epidemiological evidence that UVA radiation is involved in the genesis of cutaneous melanoma. Curr. Opin. Oncol. 2011, 23, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Neila, J.; Soyer, H.P. Key points in dermoscopy for diagnosis of melanomas, including difficult to diagnose melanomas, on the trunk and extremities. J. Dermatol. 2011, 38, 3–9. [Google Scholar] [CrossRef]
- Clark, W.H., Jr.; From, L.; Bernardino, E.A.; Mihm, M.C. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res. 1969, 29, 705–727. [Google Scholar]
- Breslow, A.; Macht, S.D. Optimal size of resection margin for thin cutaneous melanoma. Surg. Gynecol. Obstet. 1977, 145, 691–692. [Google Scholar] [PubMed]
- Wat, H.; Senthilselvan, A.; Salopek, T.G. A retrospective, multicenter analysis of the predictive value of mitotic rate for sentinel lymph node (SLN) positivity in thin melanomas. J. Am. Acad. Dermatol. 2016, 74, 94–101. [Google Scholar] [CrossRef]
- Wong, S.L.; Faries, M.B.; Kennedy, E.B.; Agarwala, S.S.; Akhurst, T.J.; Ariyan, C.; Balch, C.M.; Berman, B.S.; Cochran, A.; Delman, K.A.; et al. Sentinel Lymph Node Biopsy and Management of Regional Lymph Nodes in Melanoma: American Society of Clinical Oncology and Society of Surgical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Lumry, R.; Eyring, H. Conformation changes of proteins. J. Phys. Chem. 1954, 58, 110–120. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, J.M.; López-Lacomba, J.L.; Cortijo, M.; Mateo, P.L. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 1988, 27, 1648–1652. [Google Scholar] [CrossRef] [PubMed]
- Conjero-Lara, F.; Mateo, P.L.; Aviles, F.X.; Sanchez-Ruiz, J.M. Effect of Zn2+ on the thermal denaturation of carboxypepdidase B. Biochemistry 1991, 30, 2067–2072. [Google Scholar] [CrossRef]
- Thórólfsson, M.; Ibarra-Molero, B.; Fojan, P.; Petersen, S.B.; Sanchez-Ruiz, J.M.; Martínez, A. l-Phenylalanine Binding and Domain Organization in Human Phenylalanine Hydroxylase: A Differential Scanning Calorimetry Study. Biochemistry 2002, 41, 7573–7585. [Google Scholar] [CrossRef]
- Vogl, T.; Jatzke, A.C.; Hinz, H.-J.; Benz, J.; Huber, R. Thermodynamic Stability of Annexin V E17G: Equilibrium Parameters from an Irreversible Unfolding Reaction. Biochemistry 1997, 36, 1657–1668. [Google Scholar] [CrossRef]
- Michnik, A. Thermal stability of bovine serum albumin DSC study. J. Therm. Anal. Calorim. 2003, 71, 509–519. [Google Scholar] [CrossRef]
- Briere, L.-A.K.; Brandt, J.-M.; Medley, J.B. Measurement of protein denaturation in human synovial fluid and its analogs using differential scanning calorimetry. J. Therm. Anal. Calorim. 2010, 102, 99–106. [Google Scholar] [CrossRef]
- Enroth, S. Plasma Proteins and Cancer. Cancers 2021, 13, 1062. [Google Scholar] [CrossRef] [PubMed]
- Faroongsarng, D.; Sunpaweravong, S.; Raksawong, A. Thermally Induced Denaturing Energetics of Human Blood Plasma Albumin by Differential Scanning Calorimetry (DSC) as an Indicator for Breast Cancer Diagnosis in Female Patients. AAPS Pharm. Sci. Tech. 2019, 20, 146–156. [Google Scholar] [CrossRef] [PubMed]
Sample | ΔHcal (J/g) | Tm (°C) (%) | Tm (°C)(%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) |
---|---|---|---|---|---|---|---|
control | 1.41 | 62.8 (64.4) | 68.1 (14.9) | 71.9 (11.7) | 77.6 (5.1) | ||
GroupA | 1.19 | 55.5 (6.6) | 61.7 (11.6) | 66.9 (50.6) | 71.9 (17.7) | 76.5 (10.5) | |
GroupB | 0.88 | 56 (5.1) | 60.7 (7.1) | 67.7 (52) | 71.7 (23.5) | 76.5 (11.7) | |
GroupC | 1.05 | 55.7 (5) | 60.2 (8.7) | 68.8 (39.5) | 71.2 (15.6) | 73.9 (28.2) |
Sample | Ea Total (kJ/mol) | Ea (kJ/mol) ΔT (55–57) | Ea (kJ/mol) ΔT (60–63) | Ea (kJ/mol) ΔT (66–69) | Ea (kJ/mol) ΔT (70–72) | Ea (kJ/mol) ΔT (73–75) | Ea (kJ/mol) ΔT (76–79) |
---|---|---|---|---|---|---|---|
control | 3859.3 | 703.1 | 182.3 | 1845.7 | 1128.2 | ||
GroupA | 3646.9 | 1162 | 877.4 | 1058.4 | 549.1 | ||
GroupB | 2856.5 | 1025.1 | 932.9 | 447.2 | 451.3 | ||
GroupC | 4007.2 | 1290.1 | 806.7 | 443.3 | 1467.1 |
Sample | ΔHcal (J/g) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) |
---|---|---|---|---|---|---|
control | 1.41 | 62.8 (64.4) | 68.1 (14.9) | 71.9 (11.7) | 77.6 (5.1) | |
Group2 | 1.26 | 61.5 (6.1) | 66.4 (54.3) | 71.1 (12.1) | 73.8 (13) | 78.6 (5.4) |
Group4 | 1.17 | 66.3 (52.9) | 71.6 (12.1) | 78.3 (27.5) |
Sample | Ea Total (kJ/mol) | Ea (kJ/mol) ΔT (60–63) | Ea (kJ/mol) ΔT (66–69) | Ea (kJ/mol) ΔT (70–72) | Ea (kJ/mol) ΔT (73–75) | Ea (kJ/mol) ΔT (76–79) |
---|---|---|---|---|---|---|
control | 3175.3 | 951.4 | 674.2 | 206.3 | 1343.4 | |
Group2 | 4336.7 | 993.9 | 975.3 | 1706.5 | 184.9 | 476.1 |
Group4 | 2686.9 | 888.1 | 864.2 | 934.5 |
Sample | ΔHcal (J/g) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) |
---|---|---|---|---|---|---|---|
control | 1.12 | 62.5 (73.4) | 70.5 (14.1) | 76.3 (7.2) | |||
chronic | 1.54 | 48 (5.4) | 61.7 (51.1) | 66.1 (14.6) | 69.7 (11.9) | 73.5 (9.6) | |
operable | 1.47 | 61.4 (61.4) | 68.31 (27.8) | ||||
inoperable | 0.85 | 61.5 (14.3) | 68.1 (61.4) | 74.7 (13.7) |
Sample | Ea Total (kJ/mol) | Ea (kJ/mol) ΔT (55–57) | Ea (kJ/mol) ΔT (60–63) | Ea (kJ/mol) ΔT (66–69) | Ea (kJ/mol) ΔT (70–72) | Ea (kJ/mol) ΔT (73–75) | Ea (kJ/mol) ΔT (76–79) |
---|---|---|---|---|---|---|---|
control | 3745.8 | 970.4 | 1440.3 | 1335.1 | |||
chronic | 5265.2 | 848.8 | 941.9 | 1530.7 | 579.9 | 1363.9 | |
operable | 1613.3 | 927.6 | 685.7 | ||||
inoperable | 2374.9 | 944 | 501.3 | 929.6 |
Sample | ΔHcal (J/g) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) | Tm (°C) (%) |
---|---|---|---|---|---|---|---|---|---|
control | 1.51 | 63 (56.8) | 67.6 (13.4) | 71.2 (10.5) | 75.1 (7.2) | ||||
melanoma | 1.14 | 63 (73.6) | 70.7 (11.3) | 75.3 (8.2) | |||||
local | 1.11 | 60.7 (7.5) | 64.3 (59) | 70.9 (16.2) | 77.1 (6.8) | 82.5 (5.4) | |||
distant | 0.92 | 55.7 (5) | 61.2 (6.4) | 67.4 (46.6) | 71.3 (27.7) | 78.1 (8.1) | 83 (5.8) |
Sample | Ea Total (kJ/mol) | Ea (kJ/mol) ΔT (55–57) | Ea (kJ/mol) ΔT (60–63) | Ea (kJ/mol) ΔT (64–65) | Ea (kJ/mol) ΔT (66–69) | Ea (kJ/mol) ΔT (70–72) | Ea (kJ/mol) ΔT (73–75) | Ea (kJ/mol) ΔT (76–79) | Ea (kJ/mol) ΔT (80–84) |
---|---|---|---|---|---|---|---|---|---|
control | 5366.7 | 1320.9 | 2209.1 | 1492.9 | 206.4 | ||||
melanoma | 3270.3 | 893.9 | 2105.2 | 271.2 | |||||
local | 6595.3 | 1507.7 | 1133.5 | 1818.8 | 1475.9 | 658.4 | |||
distant | 5108.1 | 1357.8 | 979.8 | 682.4 | 692.7 | 724.6 | 670.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferencz, A.; Szatmári, D.; Lőrinczy, D. Thermodynamic Sensitivity of Blood Plasma Components in Patients Afflicted with Skin, Breast and Pancreatic Forms of Cancer. Cancers 2022, 14, 6147. https://doi.org/10.3390/cancers14246147
Ferencz A, Szatmári D, Lőrinczy D. Thermodynamic Sensitivity of Blood Plasma Components in Patients Afflicted with Skin, Breast and Pancreatic Forms of Cancer. Cancers. 2022; 14(24):6147. https://doi.org/10.3390/cancers14246147
Chicago/Turabian StyleFerencz, Andrea, Dávid Szatmári, and Dénes Lőrinczy. 2022. "Thermodynamic Sensitivity of Blood Plasma Components in Patients Afflicted with Skin, Breast and Pancreatic Forms of Cancer" Cancers 14, no. 24: 6147. https://doi.org/10.3390/cancers14246147
APA StyleFerencz, A., Szatmári, D., & Lőrinczy, D. (2022). Thermodynamic Sensitivity of Blood Plasma Components in Patients Afflicted with Skin, Breast and Pancreatic Forms of Cancer. Cancers, 14(24), 6147. https://doi.org/10.3390/cancers14246147