Therapeutic Perspectives in the Systemic Treatment of Kaposi’s Sarcoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Systemic Chemotherapy
3. Anti-Herpesvirus Drugs in KS Treatment and Prevention
4. Anti-Angiogenic Therapies in KS Treatment
5. Effects of HIV Protease Inhibitors on KS
6. Immunotherapies in KS Treatment
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clifford, G.M.; Polesel, J.; Rickenbach, M.; Dal Maso, L.; Keiser, O.; Kofler, A.; Rapiti, E.; Levi, F.; Jundt, G.; Fisch, T.; et al. Swiss HIV Cohort. Cancer risk in the Swiss HIV cohort study: Associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J. Natl. Cancer Inst. 2005, 97, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Engels, E.A.; Pfeiffer, R.M.; Goedert, J.J.; Virgo, P.; McNeel, T.S.; Scoppa, S.M.; Biggar, R.J. HIV/AIDS Cancer Match Study. Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS 2006, 20, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Herida, M.; Mary-Krause, M.; Kaphan, R.; Cadranel, J.; Poizot-Martin, I.; Rabaud, C.; Plaisance, N.; Tissot-Dupont, H.; Boue, F.; Lang, J.M.; et al. Incidence of non-AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus infected patients. J. Clin. Oncol. 2003, 21, 3447–3453. [Google Scholar] [CrossRef]
- Cesarman, E.; Damania, B.; Krown, S.E.; Martin, J.; Bower, M.; Whitby, D. Kaposi Sarcoma. Nat. Rev. Dis. Primers 2019, 31, 9. [Google Scholar] [CrossRef] [PubMed]
- Mocroft, A.; Furrer, H.J.; Miro, J.M.; Reiss, P.; Mussini, C.; Kirk, O.; Abgrall, S.; Ayayi, S.; Bartmeyer, B.; Braun, D.; et al. Opportunistic Infections Working Group on behalf of the Collaboration of Observational HIV Epidemiological Research Europe (COHERE) study in EuroCOORD. The incidence of AIDS-defining illnesses at a current CD4 count ≥ 200 cells/μL in the post-combination antiretroviral therapy era. Clin. Infect Dis. 2013, 57, 1038–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohner, E.; Valeri, F.; Maskew, M.; Prozesky, H.; Rabie, H.; Garone, D.; Dickinson, D.; Chimbetete, C.; Lumano-Mulenga, P.; Sikazwe, I.; et al. Incidence rate of Kaposi sarcoma in HIV-infected patients on antiretroviral therapy in Southern Africa: A prospective multicohort study. J. Acquir. Immune. Defic. Syndr. 2014, 15, 547–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, T.; Ponte, M.; Leslie, K. HIV-Associated Kaposi’s Sarcoma with a High CD4 Count and a Low Viral Load. N. Engl. J. Med. 2007, 357, 1352–1353. [Google Scholar] [CrossRef] [PubMed]
- Mani, D.; Neil, N.; Israel, R.; Aboulafia, D.M. A Retrospective Analysis of AIDS-Associated Kaposi’s Sarcoma in Patients with Undetectable HIV Viral Loads and CD4 Counts Greater than 300 Cells/Mm(3). J. Int. Assoc. Phys. AIDS Care Chic. Ill 2002 2009, 8, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Palich, R.; Veyri, M.; Valantin, M.-A.; Marcelin, A.-G.; Guihot, A.; Pourcher, V.; Jary, A.; Solas, C.; Makinson, A.; Poizot-Martin, I.; et al. Recurrence and Occurrence of Kaposi’s Sarcoma in Patients Living With Human Immunodeficiency Virus (HIV) and on Antiretroviral Therapy, Despite Suppressed HIV Viremia. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 70, 2435–2438. [Google Scholar] [CrossRef] [PubMed]
- Unemori, P.; Leslie, K.S.; Hunt, P.W.; Sinclair, E.; Epling, L.; Mitsuyasu, R.; Effros, R.B.; Dock, J.; Dollard, S.G.; Deeks, S.G.; et al. Immunosenescence is associated with presence of Kaposi’s sarcoma in antiretroviral treated HIV infection. AIDS 2013, 27, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Lebbé, C.; Garbe, C.; Stratigos, A.J.; Harwood, C.; Peris, K.; Marmol, V.D.; Malvehy, J.; Zalaudek, I.; Hoeller, C.; Dummer, R.; et al. European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO) and the European Organisation for Research and Treatment of Cancer (EORTC). Diagnosis and treatment of Kaposi’s sarcoma: European consensus-based interdisciplinary guideline (EDF/EADO/EORTC). Eur. J. Cancer 2019, 114, 117–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benajiba, L.; Lambert, J.; La Selva, R.; Cochereau, D.; Baroudjian, B.; Roux, J.; Le Goff, J.; Pages, C.; Battistella, M.; Delyon, J.; et al. Systemic Treatment Initiation in Classical and Endemic Kaposi’s Sarcoma: Risk Factors and Global Multi-State Modelling in a Monocentric Cohort Study. Cancers 2021, 13, 2519. [Google Scholar] [CrossRef] [PubMed]
- Lebbé, C.; Legendre, C.; Francès, C. Kaposi sarcoma in transplantation. Transplant. Rev. (Orlando) 2008, 22, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Delyon, J.; Rabate, C.; Euvrard, S.; Harwood, C.A.; Proby, C.; Güleç, A.T.; Seçkin, D.; Del Marmol, V.; Bouwes-Bavinck, J.N.; Ferrándiz-Pulido, C.; et al. Management of Kaposi sarcoma after solid organ transplantation: A European retrospective study. J. Am. Acad. Dermatol. 2019, 81, 448–455. [Google Scholar] [CrossRef]
- Reid, E.; Suneja, G.; Ambinder, R.F.; Ard, K.; Baiocchi, R.; Barta, S.K.; Carchman, E.; Cohen, A.; Gupta, N.; Johung, K.L.; et al. AIDS-related Kaposi sarcoma, version 2.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc Netw. 2019, 17, 171–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Northfelt, D.W.; Dezube, B.J.; Thommes, J.A.; Miller, B.J.; Fischl, M.A.; Friedman-Kien, A.; Kaplan, L.D.; Du Mond, C.; Mamelok, R.D.; Henry, D.H. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. J. Clin. Oncol. 1998, 16, 2445–2451. [Google Scholar] [CrossRef]
- Gill, P.S.; Tulpule, A.; Espina, B.M.; Cabriales, S.; Bresnahan, J.; Ilaw, M.; Louie, S.; Gustafson, N.F.; Brown, M.A.; Orcutt, C.; et al. Paclitaxel is safe and effective in the treatment of advanced AIDS-related Kaposi’s sarcoma. J. Clin. Oncol. 1999, 17, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- Welles, L.; Saville, M.W.; Lietzau, J.; Pluda, J.M.; Wyvill, K.M.; Feuerstein, I.; Figg, W.D.; Lush, R.; Odom, J.; Wilson, W.H.; et al. Phase II trial with dose titration of paclitaxel for the therapy of human immunodeficiency virus-associated Kaposi’s sarcoma. J. Clin. Oncol. 1998, 16, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Tulpule, A.; Groopman, J.; Saville, M.W.; Harrington, W., Jr.; Friedman-Kien, A.; Espina, B.M.; Garces, C.; Mantelle, L.; Mettinger, K.; Scadden, D.T.; et al. Multicenter trial of low-dose paclitaxel in patients with advanced AIDS-related Kaposi sarcoma. Cancer 2002, 95, 147–154. [Google Scholar] [CrossRef]
- Brambilla, L.; Romanelli, A.; Bellinvia, M.; Ferrucci, S.; Vinci, M.; Boneschi, V.; Miedico, A.; Tedeschi, L. Weekly paclitaxel for advanced aggressive classic Kaposi sarcoma: Experience in 17 cases. Br. J. Dermatol. 2008, 158, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Cianfrocca, M.; Lee, S.; Von Roenn, J.; Tulpule, A.; Dezube, B.J.; Aboulafia, D.M.; Ambinder, R.F.; Lee, J.Y.; Krown, S.E.; Sparano, J.A. Randomized trial of paclitaxel versus pegylated liposomal doxorubicin for advanced human immunodeficiency virus-associated Kaposi sarcoma: Evidence of symptom palliation from chemotherapy. Cancer 2010, 116, 3969–3977. [Google Scholar] [CrossRef] [Green Version]
- Fortino, S.; Santoro, M.; Iuliano, E.; Luci, M.; Perricelli, A. Pomillo, Treatment of Kaposi’s Sarcoma (KS) with nab-paclitaxel. Ann. Oncol. 2016, 27. [Google Scholar] [CrossRef]
- Fardet, L.; Stoebner, P.E.; Bachelez, H.; Descamps, V.; Kerob, D.; Meunier, L.; Dandurand, M.; Morel, P.; Lebbe, C. Treatment with taxanes of refractory or lifethreatening Kaposi sarcoma not associated with human immunodeficiency virus infection. Cancer 2006, 106, 1785–1789. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.T.; Tupule, A.; Espina, B.M.; Levine, A.M. Weekly docetaxel is safe and effective in the treatment of advanced-stage acquired immunodeficiency syndrome related Kaposi sarcoma. Cancer 2005, 103, 417–421. [Google Scholar] [CrossRef]
- Busakhala, N.W.; Waako, P.J.; Strother, M.R.; Keter, A.K.; Kigen, G.K.; Asirwa, F.C.; Loehrer, P.J. Randomized Phase IIA Trial of Gemcitabine Compared With Bleomycin Plus Vincristine for Treatment of Kaposi’s Sarcoma in Patients on Combination Antiretroviral Therapy in Western Kenya. J. Glob. Oncol. 2018, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zustovich, F.; Ferro, A.; Toso, S. Gemcitabine for the treatment of classic Kaposi’s Sarcoma: A case series. Anticancer Res. 2013, 5531–5534. [Google Scholar]
- Brambilla, L.; Labianca, R.; Boneschi, V.; Fossati, S.; Dallavalle, G.; Finzi, A.F.; Luporini, G. Mediterranean Kaposi’s sarcoma in the elderly. A randomized study of oral etoposide versus vinblastine. Cancer 1994, 74, 2873–2878. [Google Scholar] [CrossRef]
- Nasti, G.; Errante, D.; Talamini, R.; Rizzardini, G.; Fasan, M.; Landonio, G.; Zeroli, C.; Chichino, G.; Nigra, E.; Vaccher, E.; et al. Vinorelbine is an effective and safe drug for AIDS-related Kaposi’s sarcoma: Results of a phase II study. Clin. Oncol. 2000, 18, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Tas, F.; Sen, F.; Keskin, S.; Kilic, L. Oral etoposide as first-line therapy in the treatment of patients with advanced classic Kaposi’s sarcoma (CKS): A single-arm trial (oral etoposide in CKS). J. Eur. Acad. Dermatol. Venereol. 2013, 27, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Krown, S.E.; Moser, C.B.; MacPhail, P.; Matining, R.M.; Godfrey, C.; Caruso, S.R.; Hosseinipour, M.C.; Samaneka, W.; Nyirenda, M.; Busakhala, N.W.; et al. A5263/AMC066 protocol team. Treatment of advanced AIDS-associated Kaposi sarcoma in resource-limited settings: A three-arm, open-label, randomised, non-inferiority trial. Lancet 2020, 395, 1195–1207. [Google Scholar] [CrossRef]
- Martin-Carbonero, L.; Barrios, A.; Saballs, P.; Sirera, G.; Santos, J.; Palacios, R.; Valencia, M.E.; Alegre, M.; Podzamczer, D.; González-Lahoz, J.; et al. Pegylated liposomal doxorubicin plus highly active antiretroviral therapy versus highly active antiretroviral therapy alone in HIV patients with Kaposi’s sarcoma. AIDS 2004, 20, 1737–1740. [Google Scholar] [CrossRef] [PubMed]
- Mosam, A.; Shaik, F.; Uldrick, T.S.; Esterhuizen, T.; Friedland, G.H.; Scadden, D.T.; Aboobaker, J.; Coovadia, H.M. A randomized controlled trial of highly active antiretroviral therapy versus highly active antiretroviral therapy and chemotherapy in therapy-naive patients with HIV-associated Kaposi sarcoma in South Africa. J. Acquir. Immun. Defic. Syndr. 2012, 60, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Mounier, N.; Katlama, C.; Costagliola, D.; Chichmanian, R.M.; Spano, J.P. Drug interactions between antineoplastic and antiretroviral therapies: Implications and management for clinical practice. Crit. Rev. Oncol. Hematol. 2009, 72, 10–20. [Google Scholar] [CrossRef] [PubMed]
- HIV Drug Interactions Liverpool. Available online: https://www.hiv-druginteractions.org (accessed on 20 August 2021).
- Andrei, G.; Snoeck, R. Kaposi’s sarcoma-associated herpesvirus: The role of lytic replication in targeted therapy. Curr. Opin. Infect. Dis. 2015, 28, 611–624. [Google Scholar] [CrossRef]
- Yan, L.; Majerciak, V.; Zheng, Z.-M.; Lan, K. Towards Better Understanding of KSHV Life Cycle: From Transcription and Posttranscriptional Regulations to Pathogenesis. Virol. Sin. 2019, 34, 135–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.; Lin, S.F.; Staskus, K.; Gradoville, L.; Grogan, E.; Haase, A.; Miller, G. Kinetics of Kaposi’s Sarcoma-Associated Herpesvirus Gene Expression. J. Virol. 1999, 73, 2232–2242. [Google Scholar] [CrossRef] [Green Version]
- Katano, H.; Sato, Y.; Kurata, T.; Mori, S.; Sata, T. Expression and Localization of Human Herpesvirus 8-Encoded Proteins in Primary Effusion Lymphoma, Kaposi’s Sarcoma, and Multicentric Castleman’s Disease. Virology 2000, 269, 335–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aneja, K.K.; Yuan, Y. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update. Front. Microbiol. 2017, 8, 613. [Google Scholar] [CrossRef]
- Coen, N.; Duraffour, S.; Snoeck, R.; Andrei, G. KSHV Targeted Therapy: An Update on Inhibitors of Viral Lytic Replication. Viruses 2014, 6, 4731–4759. [Google Scholar] [CrossRef] [Green Version]
- Staskus, K.A.; Zhong, W.; Gebhard, K.; Herndier, B.; Wang, H.; Renne, R.; Beneke, J.; Pudney, J.; Anderson, D.J.; Ganem, D.; et al. Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol. 1997, 71, 715–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundhoff, A.; Ganem, D. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Investig. 2004, 113, 124–136. [Google Scholar] [CrossRef]
- Murphy, C.; Hawkes, E.; Chionh, F.; Chong, G. Durable remission of both multicentric Castleman’s disease and Kaposi’s sarcoma with valganciclovir, rituximab and liposomal doxorubicin in an HHV-8-positive, HIV-negative patient. J. Clin. Pharm. Ther. 2017, 42, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Casper, C.; Krantz, E.M.; Corey, L.; Kuntz, S.R.; Wang, J.; Selke, S.; Hamilton, S.; Huang, M.L.; Wald, A. Valganciclovir for Suppression of Human Herpesvirus 8 Replication: A Randomized, Double-Blind, Placebo-Controlled, Crossover Trial. J. Infect. Dis. 2008, 198, 23–30. [Google Scholar] [CrossRef]
- Friedrichs, C.; Neyts, J.; Gaspar, G.; De Clercq, E.; Wutzler, P. Evaluation of Antiviral Activity against Human Herpesvirus 8 (HHV-8) and Epstein-Barr Virus (EBV) by a Quantitative Real-Time PCR Assay. Antiviral Res. 2004, 62, 121–123. [Google Scholar] [CrossRef]
- Kedes, D.H.; Ganem, D. Sensitivity of Kaposi’s Sarcoma-Associated Herpesvirus Replication to Antiviral Drugs. Implications for Potential Therapy. J. Clin. Investig. 1997, 99, 2082–2086. [Google Scholar] [CrossRef] [PubMed]
- Neyts, J.; De Clercq, E. Antiviral Drug Susceptibility of Human Herpesvirus 8. Antimicrob. Agents Chemother. 1997, 41, 2754–2756. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Burnette, A.; Dorjsuren, D.; Roberts, P.E.; Huleihel, M.; Shoemaker, R.H.; Marquez, V.E.; Agbaria, R.; Sei, S. Potent Antiviral Activity of North-Methanocarbathymidine against Kaposi’s Sarcoma-Associated Herpesvirus. Antimicrob. Agents Chemother. 2005, 49, 4965–4973. [Google Scholar] [CrossRef] [Green Version]
- Medveczky, M.M.; Horvath, E.; Lund, T.; Medveczky, P.G. In Vitro Antiviral Drug Sensitivity of the Kaposi’s Sarcoma-Associated Herpesvirus. AIDS Lond. Engl. 1997, 11, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.S.; Hamzeh, F.; Moore, S.; Nicholas, J.; Ambinder, R.F. Human Herpesvirus 8-Encoded Thymidine Kinase and Phosphotransferase Homologues Confer Sensitivity to Ganciclovir. J. Virol. 1999, 73, 4786–4793. [Google Scholar] [CrossRef] [Green Version]
- Gustafson, E.A.; Schinazi, R.F.; Fingeroth, J.D. Human Herpesvirus 8 Open Reading Frame 21 Is a Thymidine and Thymidylate Kinase of Narrow Substrate Specificity That Efficiently Phosphorylates Zidovudine but Not Ganciclovir. J. Virol. 2000, 74, 684–692. [Google Scholar] [CrossRef] [Green Version]
- Coen, N.; Duraffour, S.; Topalis, D.; Snoeck, R.; Andrei, G. Spectrum of Activity and Mechanisms of Resistance of Various Nucleoside Derivatives against Gammaherpesviruses. Antimicrob. Agents Chemother. 2014, 58, 7312–7323. [Google Scholar] [CrossRef] [Green Version]
- Lock, M.J.; Thorley, N.; Teo, J.; Emery, V.C. Azidodeoxythymidine and Didehydrodeoxythymidine as Inhibitors and Substrates of the Human Herpesvirus 8 Thymidine Kinase. J. Antimicrob. Chemother. 2002, 49, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Beauclair, G.; Naimo, E.; Dubich, T.; Rückert, J.; Koch, S.; Dhingra, A.; Wirth, D.; Schulz, T.F. Targeting Kaposi’s Sarcoma-Associated Herpesvirus ORF21 Tyrosine Kinase and Viral Lytic Reactivation by Tyrosine Kinase Inhibitors Approved for Clinical Use. J. Virol. 2020, 94, e01791-19. [Google Scholar] [CrossRef]
- Plachouri, K.M.; Oikonomou, C.; Sarantopoulos, A.; Koumoundourou, D.; Georgiou, S.; Spiliopoulos, T. Successful treatment and durable remission of human herpesvirus-8-induced Kaposi sarcoma and multicentric Castleman’s disease under valganciclovir in an HIV-negative patient. Dermatol. Ther. 2020, 33, e13419. [Google Scholar] [CrossRef]
- Casper, C.; Nichols, W.G.; Huang, M.L.; Corey, L.; Wald, A. Remission of HHV-8 and HIV-associated multicentric Castleman disease with ganciclovir treatment. Blood 2004, 103, 1632–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzi, R.; Parisi, S.G.; Sarmati, L.; Uccella, I.; Nicastri, E.; Carolo, G.; Gatti, F.; Concia, E.; Andreoni, M. Efficacy of cidofovir on human herpesvirus 8 viraemia and Kaposi’s sarcoma progression in two patients with AIDS. AIDS 2001, 15, 2061–2062. [Google Scholar] [CrossRef] [PubMed]
- Robles, R.; Lugo, D.; Gee, L.; Jacobson, M.A. Effect of antiviral drugs used to treat cytomegalovirus end-organ disease on subsequent course of previously diagnosed Kaposi’s sarcoma in patients with AIDS. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1999, 20, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto-Barrios, M.; Aragón-Miguel, R.; Tarragó-Asensio, D.; Lalueza, A.; Zarco-Olivo, C. Human Herpesvirus 8–Associated Inflammatory Cytokine Syndrome. JAMA Dermatol. 2018, 154, 228–230. [Google Scholar] [CrossRef] [PubMed]
- Berezne, A.; Agbalika, F.; Oksenhendler, E. Failure of cidofovir in HIV-associated multicentric Castleman disease. Blood 2004, 103, 4368–4369. [Google Scholar] [CrossRef] [Green Version]
- Little, R.F.; Merced-Galindez, F.; Staskus, K.; Whitby, D.; Aoki, Y.; Humphrey, R.; Pluda, J.M.; Marshall, V.; Walters, M.; Welles, L.; et al. A pilot study of cidofovir in patients with kaposi sarcoma. J. Infect. Dis. 2003, 187, 149–153. [Google Scholar] [CrossRef]
- Krown, S.E.; Dittmer, D.; Cesarman, E. Pilot study of oral valganciclovir therapy in patients with classic Kaposi sarcoma. J. Infect. Dis. 2011, 203, 1082–1086. [Google Scholar] [CrossRef] [PubMed]
- Glesby, M.J.; Hoover, D.R.; Weng, S.; Graham, N.M.; Phair, J.P.; Detels, R.; Ho, M.; Saah, A.J. Use of antiherpes drugs and the risk of Kaposi’s sarcoma: Data from the Multicenter AIDS Cohort Study. J. Infect. Dis. 1996, 173, 1477–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.L.; Hanson, D.L.; Dworkin, M.S.; Jaffe, H.W. Incidence and trends in Kaposi’s sarcoma in the era of effective antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 2000, 24, 270–274. [Google Scholar] [CrossRef]
- Mocroft, A.; Youle, M.; Gazzard, B.; Morcinek, J.; Halai, R.; Phillips, A.N. Anti-herpesvirus treatment and risk of Kaposi’s sarcoma in HIV infection. Royal Free/Chelsea and Westminster Hospitals Collaborative Group. AIDS 1996, 10, 1101–1105. [Google Scholar] [PubMed]
- Achenbach, C.J.; Harrington, R.D.; Dhanireddy, S.; Crane, H.M.; Casper, C.; Kitahata, M.M. Paradoxical immune reconstitution inflammatory syndrome in HIV-infected patients treated with combination antiretroviral therapy after AIDS-defining opportunistic infection. Clin. Infect. Dis. 2012, 54, 424–433. [Google Scholar] [CrossRef]
- Volkow, P.; Cesarman-Maus, G.; Garciadiego-Fossas, P.; Rojas-Marin, E.; Cornejo-Juárez, P. Clinical characteristics, predictors of immune reconstitution inflammatory syndrome and long-term prognosis in patients with Kaposi sarcoma. AIDS Res. Ther. 2017, 14, 30. [Google Scholar] [CrossRef]
- Lurain, K.; Yarchoan, R.; Uldrick, T.S. Treatment of Kaposi Sarcoma Herpesvirus-Associated Multicentric Castleman Disease. Hematol. Oncol. Clin. N. Am. 2018, 32, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Uldrick, T.S.; Polizzotto, M.N.; Aleman, K.; O’Mahony, D.; Wyvill, K.M.; Wang, V.; Marshall, V.; Pittaluga, S.; Steinberg, S.M.; Tosato, G.; et al. High-dose zidovudine plus valganciclovir for Kaposi sarcoma herpesvirus-associated multicentric Castleman disease: A pilot study of virus-activated cytotoxic therapy. Blood 2011, 117, 6977–6986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, P.; Islas Muñoz, B.D.; Chávez-Galán, L.; Ramón-Luing, L.; Cornejo Juárez, D.P.; Cruz-Velázquez, J. Impact of valganciclovir therapy on severe IRIS-Kaposi sarcoma-attributable mortality. In Proceedings of the Conference on Retrovirus and Opportunistic Infection 2020, Boston, MA, USA, 8–11 March 2020. Abstract number 67. [Google Scholar]
- Ramaswami, R.; Lurain, K.; Peer, C.J.; Serquiña, A.; Wang, V.; Widell, A.; Goncalves, P.; Steinberg, S.M.; Marshall, V.; George, J.; et al. Tocilizumab in patients with symptomatic Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Blood 2020, 135, 2316–2319. [Google Scholar] [CrossRef]
- Lee, A.; Langer, R. Shark Cartilage Contains Inhibitors of Tumor Angiogenesis. Science 1983, 221, 1185–1187. [Google Scholar] [CrossRef] [PubMed]
- Gingras, D.; Boivin, D.; Deckers, C.; Gendron, S.; Barthomeuf, C.; Béliveau, R. Neovastat—A Novel Antiangiogenic Drug for Cancer Therapy. Anticancer Drugs. 2003, 14, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Patra, D.; Sandell, L.J. Antiangiogenic and Anticancer Molecules in Cartilage. Expert. Rev. Mol. Med. 2012, 14, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillman, J.D.; Peng, A.T.; Gilliam, A.C.; Remick, S.C. Treatment of Kaposi Sarcoma with Oral Administration of Shark Cartilage in a Human Herpesvirus 8-Seropositive, Human Immunodeficiency Virus-Seronegative Homosexual Man. Arch. Dermatol. 2001, 137, 1149–1152. [Google Scholar] [CrossRef]
- Haibe, Y.; Kreidieh, M.; El Hajj, H.; Khalifeh, I.; Mukherji, D.; Temraz, S.; Shamseddine, A. Resistance Mechanisms to Anti-Angiogenic Therapies in Cancer. Front. Oncol. 2020, 10, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huinen, Z.R.; Huijbers, E.J.M.; van Beijnum, J.R.; Nowak-Sliwinska, P.; Griffioen, A.W. Anti-Angiogenic Agents-Overcoming Tumour Endothelial Cell Anergy and Improving Immunotherapy Outcomes. Nat. Rev. Clin. Oncol. 2021, 18, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Ohm, J.E.; Gabrilovich, D.I.; Sempowski, G.D.; Kisseleva, E.; Parman, K.S.; Nadaf, S.; Carbone, D.P. VEGF Inhibits T-Cell Development and May Contribute to Tumor-Induced Immune Suppression. Blood 2003, 101, 4878–4886. [Google Scholar] [CrossRef]
- Voron, T.; Colussi, O.; Marcheteau, E.; Pernot, S.; Nizard, M.; Pointet, A.-L.; Latreche, S.; Bergaya, S.; Benhamouda, N.; Tanchot, C.; et al. VEGF-A Modulates Expression of Inhibitory Checkpoints on CD8+ T Cells in Tumors. J. Exp. Med. 2015, 212, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Masood, R.; Cai, J.; Zheng, T.; Smith, D.L.; Naidu, Y.; Gill, P.S. Vascular Endothelial Growth Factor/Vascular Permeability Factor Is an Autocrine Growth Factor for AIDS-Kaposi Sarcoma. Proc. Natl. Acad. Sci. USA 1997, 94, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Masood, R.; Cesarman, E.; Smith, D.L.; Gill, P.S.; Flore, O. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor. Am. J. Pathol. 2002, 160, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Stürzl, M.; Brandstetter, H.; Zietz, C.; Eisenburg, B.; Raivich, G.; Gearing, D.P.; Brockmeyer, N.H.; Hofschneider, P.H. Identification of Interleukin-1 and Platelet-Derived Growth Factor-B as Major Mitogens for the Spindle Cells of Kaposi’s Sarcoma: A Combined in Vitro and in Vivo Analysis. Oncogene 1995, 10, 2007–2016. [Google Scholar]
- Bais, C.; Santomasso, B.; Coso, O.; Arvanitakis, L.; Raaka, E.G.; Gutkind, J.S.; Asch, A.S.; Cesarman, E.; Gershengorn, M.C.; Mesri, E.A.; et al. G-Protein-Coupled Receptor of Kaposi’s Sarcoma-Associated Herpesvirus Is a Viral Oncogene and Angiogenesis Activator. Nature 1998, 391, 86–89. [Google Scholar] [CrossRef]
- Aoki, Y.; Jaffe, E.S.; Chang, Y.; Jones, K.; Teruya-Feldstein, J.; Moore, P.S.; Tosato, G. Angiogenesis and Hematopoiesis Induced by Kaposi’s Sarcoma-Associated Herpesvirus-Encoded Interleukin-6. Blood 1999, 93, 4034–4043. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Payvandi, F.; Wu, L.; Zhang, L.-H.; Hariri, R.J.; Man, H.-W.; Chen, R.S.; Muller, G.W.; Hughes, C.C.W.; Stirling, D.I.; et al. The Anti-Cancer Drug Lenalidomide Inhibits Angiogenesis and Metastasis via Multiple Inhibitory Effects on Endothelial Cell Function in Normoxic and Hypoxic Conditions. Microvasc. Res. 2009, 77, 78–86. [Google Scholar] [CrossRef]
- Ramaswami, R.; Polizzotto, M.N.; Lurain, K.; Wyvill, K.M.; Widell, A.; George, J.; Goncalves, P.; Steinberg, S.M.; Whitby, D.; Uldrick, T.S.; et al. Safety, activity, and long-term outcomes of pomalidomide in the treatment of Kaposi sarcoma among individuals with or without HIV infection. Clin. Cancer Res. 2021, 3, 3364. [Google Scholar] [CrossRef] [PubMed]
- Pourcher, V.; Desnoyer, A.; Assoumou, L.; Lebbe, C.; Curjol, A.; Marcelin, A.-G.; Cardon, F.; Gibowski, S.; Salmon, D.; Chennebault, J.-M.; et al. Phase II Trial of Lenalidomide in HIV-Infected Patients with Previously Treated Kaposi’s Sarcoma: Results of the ANRS 154 Lenakap Trial. AIDS Res. Hum. Retrovir. 2017, 33, 1–10. [Google Scholar] [CrossRef]
- Uldrick, T.S.; Wyvill, K.M.; Kumar, P.; O’Mahony, D.; Bernstein, W.; Aleman, K.; Polizzotto, M.N.; Steinberg, S.M.; Pittaluga, S.; Marshall, V.; et al. Phase II Study of Bevacizumab in Patients with HIV-Associated Kaposi’s Sarcoma Receiving Antiretroviral Therapy. J. Clin. Oncol. 2012, 30, 1476–1483. [Google Scholar] [CrossRef]
- Ablanedo-Terrazas, Y.; Alvarado-de la Barrera, C.; Ormsby, C.E.; Ruiz-Cruz, M.; Reyes-Terán, G. Intralesional Bevacizumab in Patients with Human Immunodeficiency Virus-Associated Kaposi’s Sarcoma in the Upper Airway. Laryngoscope 2015, 125, E132–E137. [Google Scholar] [CrossRef]
- Harris, B.H.L.; Walsh, J.L.; Neciunaite, R.; Manders, P.; Cooper, A.; De Souza, P. Ring a Ring o’roses, a Patient with Kaposi’s? Pazopanib, Pazopanib, It Might Go Away. Mediterranean (Classic) Kaposi Sarcoma Responds to the Tyrosine Kinase Inhibitor Pazopanib after Multiple Lines of Standard Therapy. Clin. Exp. Dermatol. 2018, 43, 234–236. [Google Scholar] [CrossRef] [PubMed]
- Koon, H.B.; Krown, S.E.; Lee, J.Y.; Honda, K.; Rapisuwon, S.; Wang, Z.; Aboulafia, D.; Reid, E.G.; Rudek, M.A.; Dezube, B.J.; et al. Phase II Trial of Imatinib in AIDS-Associated Kaposi’s Sarcoma: AIDS Malignancy Consortium Protocol 042. J. Clin. Oncol. 2014, 32, 402–408. [Google Scholar] [CrossRef] [Green Version]
- Uldrick, T.S.; Gonçalves, P.H.; Wyvill, K.M.; Peer, C.J.; Bernstein, W.; Aleman, K.; Polizzotto, M.N.; Venzon, D.; Steinberg, S.M.; Marshall, V.; et al. A Phase Ib Study of Sorafenib (BAY 43-9006) in Patients with Kaposi Sarcoma. Oncologist 2017, 22, 505-e49. [Google Scholar] [CrossRef] [Green Version]
- Mourah, S.; Porcher, R.; Battistella, M.; Kerob, D.; Guillot, B.; Jouary, T.; Agbalika, F.; Morinet, F.; Furlan, V.; Teisserenc, H.M.; et al. Paradoxical Simultaneous Regression and Progression of Lesions in a Phase II Study of Everolimus in Classic Kaposi Sarcoma. Br. J. Dermatol. 2015, 173, 1284–1287. [Google Scholar] [CrossRef]
- Krown, S.E.; Roy, D.; Lee, J.Y.; Dezube, B.J.; Reid, E.G.; Venkataramanan, R.; Han, K.; Cesarman, E.; Dittmer, D.P. Rapamycin with Antiretroviral Therapy in AIDS-Associated Kaposi Sarcoma: An AIDS Malignancy Consortium Study. J. Acquir. Immune Defic. Syndr. 2012, 59, 447–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monini, P.; Sgadari, C.; Grosso, M.G.; Bellino, S.; Di Biagio, A.; Toschi, E.; Bacigalupo, I.; Sabbatucci, M.; Cencioni, G.; Salvi, E.; et al. Clinical Course of Classic Kaposi’s Sarcoma in HIV-Negative Patients Treated with the HIV Protease Inhibitor Indinavir. AIDS 2009, 23, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Eason, A.B.; Sin, S.-H.; Shah, M.; Yuan, H.; Phillips, D.J.; Droste, M.; Shamshiev, A.; Dittmer, D.P. DLX1008 (Brolucizumab), a Single-Chain Anti-VEGF-A Antibody Fragment with Low Picomolar Affinity, Leads to Tumor Involution in an in Vivo Model of Kaposi Sarcoma. PLoS ONE 2020, 15, e0233116. [Google Scholar] [CrossRef]
- Roy, D.; Sin, S.-H.; Lucas, A.; Venkataramanan, R.; Wang, L.; Eason, A.; Chavakula, V.; Hilton, I.B.; Tamburro, K.M.; Damania, B.; et al. MTOR Inhibitors Block Kaposi Sarcoma Growth by Inhibiting Essential Autocrine Growth Factors and Tumor Angiogenesis. Cancer Res. 2013, 73, 2235–2246. [Google Scholar] [CrossRef] [Green Version]
- Stallone, G.; Schena, A.; Infante, B.; Di Paolo, S.; Loverre, A.; Maggio, G.; Ranieri, E.; Gesualdo, L.; Schena, F.P.; Grandaliano, G. Sirolimus for Kaposi’s Sarcoma in Renal-Transplant Recipients. N. Engl. J. Med. 2005, 352, 1317–1323. [Google Scholar] [CrossRef]
- Lebbé, C.; Euvrard, S.; Barrou, B.; Pouteil-Noble, C.; Garnier, J.L.; Glotz, D.; Legendre, C.; Francès, C. Sirolimus Conversion for Patients with Posttransplant Kaposi’s Sarcoma. Am. J. Transplant. 2006, 6, 2164–2168. [Google Scholar] [CrossRef]
- Leitch, H.; Trudeau, M.; Routy, J.-P. Effect of Protease Inhibitor-Based Highly Active Antiretroviral Therapy on Survival in HIV-Associated Advanced Kaposi’s Sarcoma Patients Treated with Chemotherapy. HIV Clin. Trials 2003, 4, 107–114. [Google Scholar] [CrossRef]
- Gantt, S.; Carlsson, J.; Ikoma, M.; Gachelet, E.; Gray, M.; Geballe, A.P.; Corey, L.; Casper, C.; Lagunoff, M.; Vieira, J. The HIV Protease Inhibitor Nelfinavir Inhibits Kaposi’s Sarcoma-Associated Herpesvirus Replication in Vitro. Antimicrob. Agents Chemother. 2011, 55, 2696–2703. [Google Scholar] [CrossRef] [Green Version]
- Saerens, M.; Brusselaers, N.; Rottey, S.; Decruyenaere, A.; Creytens, D.; Lapeire, L. Immune Checkpoint Inhibitors in Treatment of Soft-Tissue Sarcoma: A Systematic Review and Meta-Analysis. Eur. J. Cancer Oxf. Engl. 1990 2021, 152, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Paulson, K.G.; Lahman, M.C.; Chapuis, A.G.; Brownell, I. Immunotherapy for Skin Cancer. Int. Immunol. 2019, 31, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Barrios, D.M.; Do, M.H.; Phillips, G.S.; Postow, M.A.; Akaike, T.; Nghiem, P.; Lacouture, M.E. Immune Checkpoint Inhibitors to Treat Cutaneous Malignancies. J. Am. Acad. Dermatol. 2020, 83, 1239–1253. [Google Scholar] [CrossRef] [PubMed]
- Guihot, A.; Dupin, N.; Marcelin, A.-G.; Gorin, I.; Bedin, A.-S.; Bossi, P.; Galicier, L.; Oksenhendler, E.; Autran, B.; Carcelain, G. Low T Cell Responses to Human Herpesvirus 8 in Patients with AIDS-Related and Classic Kaposi Sarcoma. J. Infect. Dis. 2006, 194, 1078–1088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy. Lancet Oncol. 2016, 17, e542–e551. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Del Valle, L.; Lin, H.-Y.; Plaisance-Bonstaff, K.; Forrest, J.C.; Post, S.R.; Qin, Z. Expression of PD-1 and PD-Ls in Kaposi’s Sarcoma and Regulation by Oncogenic Herpesvirus Lytic Reactivation. Virology 2019, 536, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Paydas, S.; Bagir, E.K.; Deveci, M.A.; Gonlusen, G. Clinical and Prognostic Significance of PD-1 and PD-L1 Expression in Sarcomas. Med. Oncol. Northwood Lond. Engl. 2016, 33, 93. [Google Scholar] [CrossRef] [PubMed]
- Mletzko, S.; Pinato, D.J.; Robey, R.C.; Dalla Pria, A.; Benson, P.; Imami, N.; Bower, M. Programmed Death Ligand 1 (PD-L1) Expression Influences the Immune-Tolerogenic Microenvironment in Antiretroviral Therapy-Refractory Kaposi’s Sarcoma: A Pilot Study. Oncoimmunology 2017, 6, e1304337. [Google Scholar] [CrossRef] [Green Version]
- Genovese, G.; Venegoni, L.; Fanoni, D.; Tourlaki, A.; Brambilla, L.; Berti, E. PD-L1 Expression in Tumour Microenvironment Supports the Rationale for Immune Checkpoint Blockade in Classic Kaposi’s Sarcoma. J. Eur. Acad. Dermatol. Venereol. JEADV 2019, 33, e269–e271. [Google Scholar] [CrossRef]
- Joest, B.; Kempf, W.; Berisha, A.; Peyk, P.; Tronnier, M.; Mitteldorf, C. Stage-related PD-L1 Expression in Kaposi Sarcoma Tumor Microenvironment. J. Cutan. Pathol. 2020, 47, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Jung, C.J.; Won, C.H.; Chang, S.E.; Lee, M.W.; Choi, J.H.; Lee, W.J. PD-1 and PD-L1 Expression in Kaposi Sarcoma: A Comparative Study According to the Pathological Stage and Clinical Characteristics. J. Cutan. Pathol. 2021, 48, 221–228. [Google Scholar] [CrossRef]
- Saller, J.; Walko, C.M.; Millis, S.Z.; Henderson-Jackson, E.; Makanji, R.; Brohl, A.S. Response to Checkpoint Inhibitor Therapy in Advanced Classic Kaposi Sarcoma: A Case Report and Immunogenomic Study. J. Natl. Compr. Cancer Netw. JNCCN 2018, 16, 797–800. [Google Scholar] [CrossRef] [Green Version]
- Delyon, J.; Bizot, A.; Battistella, M.; Madelaine, I.; Vercellino, L.; Lebbé, C. PD-1 Blockade with Nivolumab in Endemic Kaposi Sarcoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Delyon, J.; Resche-Rigon, M.; Renaud, M.; Le Goff, J.; Dalle, S.; Heidelberger, V.; Da Meda, L.; Allain, V.; Toullec, L.; Carcelain, G.; et al. 1077MO PD1 Blockade with Pembrolizumab in Classic and Endemic Kaposi Sarcoma: A Multicenter Phase II Study. Ann. Oncol. 2020, 31, S732. [Google Scholar] [CrossRef]
- Tabata, M.M.; Novoa, R.A.; Bui, N.Q.; Zaba, L.C. Successful Treatment of HIV-Negative Kaposi Sarcoma with Ipilimumab and Nivolumab and Concurrent Management of Baseline Psoriasis and Bullous Pemphigoid. JAAD Case Rep. 2020, 6, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Galanina, N.; Goodman, A.M.; Cohen, P.R.; Frampton, G.M.; Kurzrock, R. Successful Treatment of HIV-Associated Kaposi Sarcoma with Immune Checkpoint Blockade. Cancer Immunol. Res. 2018, 6, 1129–1135. [Google Scholar] [CrossRef] [Green Version]
- Kraehnke, J.; Bogumil, A.; Grabbe, S.; Loquai, C.; Weidenthaler-Barth, B.; Tuettenberg, A. Primary Classic Kaposi’s Sarcoma of Lymph Nodes in Ultrasound Resembling Lymphatic Metastases of a Malignant Tumor and Successful First-Line Therapy with Ipilimumab. J. Clin. Investig. Dermatol. 2019, 7, 5. [Google Scholar]
- Zer, A.; Icht, O.; Jacobi, O.; Fenig, E.; Shamai, S.; Merimsky, O.; Shapira, R.; Bernstine, H.; Weitzen, R.; Vornikova, O.; et al. A Phase II Single Arm Study of Nivolumab and Ipilimumab (Nivo/Ipi) in Previously Treated Classical Kaposi Sarcoma (CKS). Ann. Oncol. 2019, 30, ix135. [Google Scholar] [CrossRef]
- Gambichler, T.; Susok, L. PD-1 Blockade for Disseminated Kaposi Sarcoma in a Patient with Atopic Dermatitis and Chronic CD8 Lymphopenia. Immunotherapy 2020, 12, 451–457. [Google Scholar] [CrossRef]
- Cesmeci, E.; Guven, D.C.; Aktas, B.Y.; Aksoy, S. Case of Metastatic Kaposi Sarcoma Successfully Treated with Anti-PD-1 Immunotherapy. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2021, 27. [Google Scholar] [CrossRef]
- Uldrick, T.S.; Gonçalves, P.H.; Abdul-Hay, M.; Claeys, A.J.; Emu, B.; Ernstoff, M.S.; Fling, S.P.; Fong, L.; Kaiser, J.C.; Lacroix, A.M.; et al. Assessment of the Safety of Pembrolizumab in Patients With HIV and Advanced Cancer-A Phase 1 Study. JAMA Oncol. 2019, 5, 1332–1339. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [Green Version]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Puronen, C.E.; Ford, E.S.; Uldrick, T.S. Immunotherapy in People With HIV and Cancer. Front. Immunol. 2019, 10, 2060. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.R.; Kim, C. Safety and Efficacy of Immune Checkpoint Inhibitor Therapy in Patients With HIV Infection and Advanced-Stage Cancer: A Systematic Review. JAMA Oncol. 2019, 5, 1049–1054. [Google Scholar] [CrossRef]
- Spano, J.-P.; Veyri, M.; Gobert, A.; Guihot, A.; Perré, P.; Kerjouan, M.; Brosseau, S.; Cloarec, N.; Montaudié, H.; Helissey, C.; et al. Immunotherapy for Cancer in People Living with HIV: Safety with an Efficacy Signal from the Series in Real Life Experience. AIDS Lond. Engl. 2019, 33, F13–F19. [Google Scholar] [CrossRef] [PubMed]
- Guihot, A.; Marcelin, A.-G.; Massiani, M.-A.; Samri, A.; Soulié, C.; Autran, B.; Spano, J.-P. Drastic Decrease of the HIV Reservoir in a Patient Treated with Nivolumab for Lung Cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2018, 29, 517–518. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, N.; Flamand, L. Kaposi Sarcoma-associated Herpesvirus Latency-associated Nuclear Antigen Inhibits Interferon (IFN) beta Expression by Competing with IFN Regulatory Factor-3 for Binding to IFNB Promoter. J. Biol. Chem. 2010, 285, 7208–7221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Renne, R.; Dittmer, D.; Ganem, D. Inflammatory Cytokines and the Reactivation of Kaposi’s Sarcoma-Associated Herpesvirus Lytic Replication. Virology 2000, 266, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Volberding, P.A.; Mitsuyasu, R.T.; Golando, J.P.; Spiegel, R.J. Treatment of Kaposi’s sarcoma with interferon alfa-2b (Intron® A). Cancer 1987, 59 (Suppl. S3), 620–625. [Google Scholar] [CrossRef]
- Rokx, C.; van der Ende, M.E.; Verbon, A.; Rijnders, B.J. Peginterferon Alfa-2a for AIDS-Associated Kaposi Sarcoma: Experience with 10 Patients. Clin. Infect. Dis. 2013, 57, 1497–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study | Study Design | KS Type | Cases (n) | Previous Treatments | Clinical Presentation | Anti-Angiogenic Drug | Outcomes |
---|---|---|---|---|---|---|---|
Ramaswami [86], 2021 | Open-label single-arm phase I/II | AIDS-KS Classic KS | 18 10 | Chemotherapy (75% of patients) | Advanced cutaneous KS, exclusion of patients with visceral involvement | Pomalidomide | AIDS-KS: Complete/partial response in 67% of patients at 12.5 months Classic KS: Complete/partial response in 80% of patients at 10.5 months |
Pourcher [87], 2018 | Open-label, single-arm, phase II | AIDS-KS | 12 | Chemotherapy | Cutaneous KS, one patient with visceral involvement | Lenalidomide | Complete/partial response in 40% of patients at 48 weeks |
Uldrick [88], 2012 | Open-label, single-arm, phase II | AIDS-KS | 17 | Chemotherapy (76%) Immunotherapy (65%) Radiation (29%) | Advanced cutaneous KS, exclusion of patients with visceral involvement | Bevacizumab | Complete/partial response in 31% of patients at 8 months |
Ablanedo-Terrazas [89], 2014 | Randomized, open-label, phase II | AIDS-KS | 14: 7 treated/ 7 controls | - | KS lesions of the upper airway in the T0 stage | Intralesional bevacizumab | Complete/partial response in 43% of patients at 14 weeks, no difference between treated and control groups |
Harris [90], 2018 | Case report | Classic KS | 1 | Chemotherapy Radiation | Cutaneous KS | Brolucizumab | Complete regression of all lesions at 6 months |
Koon [91], 2013 | Open-label, single-arm, phase II | AIDS-KS | 30 | Chemotherapy (57%) | Cutaneous KS, exclusion of patients with visceral involvement | Imatinib | Partial response in 33% of patients, median time to response was 21 weeks |
Uldrick [92], 2017 | Open-label, single-arm, phase Ib | AIDS-KSClassic KS | 10 | Chemotherapy | Any stage | Sorafenib | Partial response in 3/7 patients (28%), poorly tolerated |
Mourah [93], 2015 | Open-label, single-arm, phase II | Classic KS | 11 | Chemotherapy (64%) | Cutaneous KS | Everolimus | Only 1 patient with partial response, progression in 8/11 patients |
Krown [94], 2012 | Open-label, single-arm, phase II | AIDS-KS | 7 | Chemotherapy | Cutaneous KS | Sirolimus | Partial response in 3/7 patients |
Monini [95], 2016 | Open-label, single-arm, phase II | Classic KS | 28 | Chemotherapy | Cutaneous KS | Indinavir | Complete remission in 1/26 patient, partial regression in 2/26 patients, improved disease in 5/26 patients, stabilization of disease in 8/26 patients |
Study | Type of KS | Cases (n) | Previous Treatments | Clinical Presentation | Immunotherapy | Outcomes |
---|---|---|---|---|---|---|
Saller [113] 2018 | Classic KS | 1 | Chemotherapy | Soft tissues and lymph node involvement | Pembrolizumab | At week 30: partial response |
Delyon [114], 2018 | Endemic KS | 2 | Chemotherapy + radiotherapy | Cutaneous involvement + muscular, bone, and lymph node extension | Nivolumab | At month 6: 2 partial responses |
Delyon [115], 2020 (abstract) | Classic KS (8 patients) and endemic KS (9 patients) | 17 | Chemotherapy (12 patients), no treatment (5 patients) | Cutaneous involvement ± lymph node extension (6 patients) | Pembrolizumab | A month 6: 10 partial responses, 2 complete remissions, and 4 stable diseases (1 treatment stopping for adverse event) |
Tabata [116], 2020 | Classical KS | 1 | Chemotherapy + radiotherapy + surgery | Cutaneous, gastric, and lung involvement + soft tissues extension | Nivolumab + ipilimumab | At month 3: complete remission |
Galanina [117], 2018 | AIDS-associated KS | 9 | Chemotherapy (4 patients), bortezomib (3 patients), lenalidomide (3 patients), no treatment (3 patients) + antiretroviral therapy | Cutaneous, gastric, and lymph node involvement | Nivolumab (8 patients) or pembrolizumab (1 patient) | At month 2–6: 5 partial responses, 1 complete remission, 3 stable diseases |
Kraehnke [118], 2019 | Classic KS | 1 | - | Lymph node involvement | Ipilimumab | At month 3: complete remission |
Zer [119], 2019 (abstract) | Classical KS | 13 | Progressive disease despite >1 line of systemic chemotherapy | Measurable disease by PET/CT and/or physical exam | Nivolumab + ipilimumab | At month 6: 4 partial responses, 1 complete remission, 6 stable diseases (1 non evaluable patient) |
Gambichler [120], 2020 | Classic KS | 1 | Chemotherapy | Soft tissues and lymph node involvement | Pembrolizumab | At month 6: partial response |
Cesmeci [121], 2021 | Classical KS | 1 | - | Cutaneous, gastric, bone, and lymph node involvement | Nivolumab | At month 6: complete remission |
Uldrick [122], 2019 | AIDS-associated KS | 30, 6 KS, 5 NHL,19 non-AIDS-defining cancers. | Chemotherapy | Pembrolizumab | Over 183 cycles: grade 1 or 2 (n = 22), and 20% (n = 6) grade 3, 1 death. Complete response (lung, 1 patient), partial response (NHL, 2 patients), stable disease for 24 weeks or more (KS, 2 patients), stable disease for less than 24 weeks (15 patients), and progressive disease (8 patients). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valantin, M.-A.; Royston, L.; Hentzien, M.; Jary, A.; Makinson, A.; Veyri, M.; Ronot-Bregigeon, S.; Isnard, S.; Palich, R.; Routy, J.-P. Therapeutic Perspectives in the Systemic Treatment of Kaposi’s Sarcoma. Cancers 2022, 14, 484. https://doi.org/10.3390/cancers14030484
Valantin M-A, Royston L, Hentzien M, Jary A, Makinson A, Veyri M, Ronot-Bregigeon S, Isnard S, Palich R, Routy J-P. Therapeutic Perspectives in the Systemic Treatment of Kaposi’s Sarcoma. Cancers. 2022; 14(3):484. https://doi.org/10.3390/cancers14030484
Chicago/Turabian StyleValantin, Marc-Antoine, Léna Royston, Maxime Hentzien, Aude Jary, Alain Makinson, Marianne Veyri, Sylvie Ronot-Bregigeon, Stéphane Isnard, Romain Palich, and Jean-Pierre Routy. 2022. "Therapeutic Perspectives in the Systemic Treatment of Kaposi’s Sarcoma" Cancers 14, no. 3: 484. https://doi.org/10.3390/cancers14030484
APA StyleValantin, M.-A., Royston, L., Hentzien, M., Jary, A., Makinson, A., Veyri, M., Ronot-Bregigeon, S., Isnard, S., Palich, R., & Routy, J.-P. (2022). Therapeutic Perspectives in the Systemic Treatment of Kaposi’s Sarcoma. Cancers, 14(3), 484. https://doi.org/10.3390/cancers14030484