Primary Effusion Lymphoma: A Clinicopathologic Perspective
Abstract
:Simple Summary
Abstract
1. Clinical Presentation and Epidemiology
2. Pathogenesis and Association with Viral Infections and Immunosuppression (e.g., HIV, EBV, HHV8)
Immune-Evasion Mechanisms by HHV8
3. Pathology and Ancillary Tests (e.g., HHV8, CD30, EBER, etc.)
4. Differential Diagnosis (HHV8-Negative Effusion-Based Lymphoma, Pyothorax-Associated Lymphoma, Burkitt Lymphoma, Diffuse Large B-Cell Lymphoma, Not Otherwise Specified, Plasmablastic Lymphoma, Anaplastic Large-Cell Lymphoma, Poorly Differentiated Carcinoma)
5. Prognosis and Treatment
5.1. Current Treatment Options
5.2. Relapsed and Refractory PEL
5.3. HIV-Positive PEL
5.4. Overlap of PEL with Kaposi’s Sarcoma (KS) and Kaposi Sarcoma-Associated Herpesvirus Multicentric Castleman Disease (KSHV-MCD)
5.5. CAR-T Therapies in Other B-Cell Lymphoproliferative Disorders
5.6. Clinical Trials
6. Summary/Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, Y.; Rahemtullah, A.; Hochberg, E. Primary Effusion Lymphoma. Oncologist 2007, 12, 569–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanelli, M.; Sanguedolce, F.; Zizzo, M.; Palicelli, A.; Bassi, M.C.; Santandrea, G.; Martino, G.; Soriano, A.; Caprera, C.; Corsi, M.; et al. Primary effusion lymphoma occurring in the setting of transplanted patients: A systematic review of a rare, life-threatening post-transplantation occurrence. BMC Cancer 2021, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lurain, K.; Polizzotto, M.N.; Aleman, K.; Bhutani, M.; Wyvill, K.M.; Gonçalves, P.H.; Ramaswami, R.; Marshall, V.A.; Miley, W.; Steinberg, S.M.; et al. Viral, immunologic, and clinical features of primary effusion lymphoma. Blood 2019, 133, 1753–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillet, S.; Gérard, L.; Meignin, V.; Agbalika, F.; Cuccini, W.; Denis, B.; Katlama, C.; Galicier, L.; Oksenhendler, E. Classic and extracavitary primary effusion lymphoma in 51 HIV-infected patients from a single institution. Am. J. Hematol. 2016, 91, 233–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesarman, E.; Chang, Y.; Moore, P.; Said, J.W.; Knowles, D.M. Kaposi’s Sarcoma–Associated Herpesvirus-Like DNA Sequences in AIDS-Related Body-Cavity–Based Lymphomas. N. Engl. J. Med. 1995, 332, 1186–1191. [Google Scholar] [CrossRef]
- Narkhede, M.; Arora, S.; Ujjani, C. Primary effusion lymphoma: Current perspectives. Onco Targets Ther. 2018, 11, 3747–3754. [Google Scholar] [CrossRef] [Green Version]
- Carbone, A.; Cesarman, E.; Gloghini, A.; Drexler, H.G. Understanding pathogenetic aspects and clinical presentation of primary effusion lymphoma through its derived cell lines. AIDS 2010, 24, 479–490. [Google Scholar] [CrossRef] [Green Version]
- Chadburn, A.; Hyjek, E.; Mathew, S.; Cesarman, E.; Said, J.; Knowles, D.M. KSHV-Positive Solid Lymphomas Represent an Extra-Cavitary Variant of Primary Effusion Lymphoma. Am. J. Surg. Pathol. 2004, 28, 1401–1416. [Google Scholar] [CrossRef]
- Pan, Z.-G.; Zhang, Q.-Y.; Lu, Z.-B.; Quinto, T.; Rozenvald, I.B.; Liu, L.-T.; Wilson, D.; Reddy, V.; Huang, Q.; Wang, H.-Y.; et al. Extracavitary KSHV-associated Large B-Cell Lymphoma. Am. J. Surg. Pathol. 2012, 36, 1129–1140. [Google Scholar] [CrossRef]
- Knowles, D.M.; Inghirami, G.; Ubriaco, A.; Dalla-Favera, R. Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood 1989, 73, 792–799. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Cesarman, E.; Pessin, M.S.; Lee, F.; Culpepper, J.; Knowles, D.M.; Moore, P.S. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994, 266, 1865–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibas, M.; Antinori, A. EBV and HIV-Related Lymphoma. Mediterr. J. Hematol. Infect. Dis. 2009, 1, e2009032. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Bubman, D.; Chadburn, A.; Harrington, W.J.; Cesarman, E.; Knowles, D.M. Distinct Subsets of Primary Effusion Lymphoma Can Be Identified Based on Their Cellular Gene Expression Profile and Viral Association. J. Virol. 2005, 79, 1244–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, K.; Hayakawa, F.; Kiyoi, H. Biology and management of primary effusion lymphoma. Blood 2018, 132, 1879–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horenstein, M.G.; Nador, R.G.; Chadburn, A.; Hyjek, E.M.; Inghirami, G.; Knowles, D.M.; Cesarman, E. Epstein-Barr virus latent gene expression in primary effusion lymphomas containing Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8. Blood 1997, 90, 1186–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesarman, E. Gammaherpesviruses and Lymphoproliferative Disorders. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 349–372. [Google Scholar] [CrossRef]
- Harrington, J.W.J.; Bagasra, O.; Sosa, C.E.; Bobroski, L.E.; Baum, M.; Wen, X.L.; Cabral, L.; Byrne, G.E.; Pomerantz, R.J.; Wood, C. Human Herpesvirus Type 8 DNA Sequences in Cell-Free Plasma and Mononuclear Cells of Kaposi’s Sarcoma Patients. J. Infect. Dis. 1996, 174, 1101–1104. [Google Scholar] [CrossRef] [Green Version]
- Ballestas, M.E.; Chatis, P.A.; Kaye, K.M. Efficient Persistence of Extrachromosomal KSHV DNA Mediated by Latency-Associated Nuclear Antigen. Science 1999, 284, 641–644. [Google Scholar] [CrossRef]
- Alexanian, S.; Said, J.; Lones, M.; Pullarkat, S.T. KSHV/HHV8-negative Effusion-based Lymphoma, a Distinct Entity Associated with Fluid Overload States. Am. J. Surg. Pathol. 2013, 37, 241–249. [Google Scholar] [CrossRef]
- Woodberry, T.; Dollard, S.; Khatri, A.; Suscovich, T.J.; Henry, L.M.; Martin, J.N.; O’Connor, P.G.; Davis, J.K.; Osmond, D.; Lee, T.-H.; et al. Impact of Kaposi Sarcoma–Associated Herpesvirus (KSHV) Burden and HIV Coinfection on the Detection of T Cell Responses to KSHV ORF73 and ORF65 Proteins. J. Infect. Dis. 2005, 192, 622–629. [Google Scholar] [CrossRef]
- Bihl, F.; Narayan, M.; Chisholm, J.V.; Henry, L.M.; Suscovich, T.J.; Brown, E.E.; Welzel, T.M.; Kaufmann, D.E.; Zaman, T.M.; Dollard, S.; et al. Lytic and Latent Antigens of the Human Gammaherpesviruses Kaposi’s Sarcoma-Associated Herpesvirus and Epstein-Barr Virus Induce T-Cell Responses with Similar Functional Properties and Memory Phenotypes. J. Virol. 2007, 81, 4904–4908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djerbi, M.; Screpanti, V.; Catrina, A.I.; Bogen, B.; Biberfeld, P.; Grandien, A. The Inhibitor of Death Receptor Signaling, Flice-Inhibitory Protein Defines a New Class of Tumor Progression Factors. J. Exp. Med. 1999, 190, 1025–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, P.M.; Jasmin, A.; Eby, M.T.; Hood, L. Modulation of the NF-κB pathway by virally encoded Death Effector Domains-containing proteins. Oncogene 1999, 18, 5738–5746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guasparri, I.; Wu, H.; Cesarman, E. The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. EMBO Rep. 2006, 7, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, P.S.; Boshoff, C.; Weiss, R.A.; Chang, Y. Molecular Mimicry of Human Cytokine and Cytokine Response Pathway Genes by KSHV. Science 1996, 274, 1739–1744. [Google Scholar] [CrossRef]
- Cannon, J.S.; Nicholas, J.; Orenstein, J.M.; Mann, R.B.; Murray, P.G.; Browning, P.J.; DiGiuseppe, J.A.; Cesarman, E.; Hayward, G.S.; Ambinder, R.F. Heterogeneity of Viral IL-6 Expression in HHV-8–Associated Diseases. J. Infect. Dis. 1999, 180, 824–828. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Wang, H.; Nicholas, J. Human Herpesvirus 8 Interleukin-6 (vIL-6) Signals through gp130 but Has Structural and Receptor-Binding Properties Distinct from Those of Human IL-6. J. Virol. 1999, 73, 8268–8278. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, M.J.; Chow, D.-C.; Brevnova, E.; Martick, M.; Sandford, G.; Nicholas, J.; Garcia, K. Molecular Mechanisms for Viral Mimicry of a Human Cytokine: Activation of gp130 by HHV-8 Interleukin-6. J. Mol. Biol. 2004, 335, 641–654. [Google Scholar] [CrossRef]
- Diehl, S.; Rincón, M. The two faces of IL-6 on Th1/Th2 differentiation. Mol. Immunol. 2002, 39, 531–536. [Google Scholar] [CrossRef]
- Fielding, C.; McLoughlin, R.; Colmont, C.S.; Kovaleva, M.; Harris, D.; Rose-John, S.; Topley, N.; Jones, S.A. Viral IL-6 Blocks Neutrophil Infiltration during Acute Inflammation. J. Immunol. 2005, 175, 4024–4029. [Google Scholar] [CrossRef] [Green Version]
- Iellem, A.; Mariani, M.; Lang, R.; Recalde, H.; Panina-Bordignon, P.; Sinigaglia, F.; D’Ambrosio, D. Unique Chemotactic Response Profile and Specific Expression of Chemokine Receptors Ccr4 and Ccr8 by Cd4+Cd25+ Regulatory T Cells. J. Exp. Med. 2001, 194, 847–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster-Cuevas, M.; Wright, G.; Puklavec, M.J.; Brown, M.H.; Barclay, A.N. Human Herpesvirus 8 K14 Protein Mimics CD200 in Down-Regulating Macrophage Activation through CD200 Receptor. J. Virol. 2004, 78, 7667–7676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, C.; Barnard, S.; Blackbourn, D.J.; Davison, A.J. Transcription mapping of human herpesvirus 8 genes encoding viral interferon regulatory factors. J. Gen. Virol. 2003, 84, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Spiller, O.B.; Robinson, M.; O’Donnell, E.; Milligan, S.; Morgan, P.; Davison, A.J.; Blackbourn, D.J. Complement Regulation by Kaposi’s Sarcoma-Associated Herpesvirus ORF4 Protein. J. Virol. 2003, 77, 592–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mark, L.; Lee, W.H.; Spiller, O.B.; Proctor, D.; Blackbourn, D.J.; Villoutreix, B.O.; Blom, A.M. The Kaposi’s Sarcoma-associated Herpesvirus Complement Control Protein Mimics Human Molecular Mechanisms for Inhibition of the Complement System. J. Biol. Chem. 2004, 279, 45093–45101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coscoy, L.; Ganem, D. Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl. Acad. Sci. USA 2000, 97, 8051–8056, Erratum in Proc. Natl. Acad. Sci. USA 2001, 98, 2111. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.; Ueda, K.; Nakano, K.; Hirata, Y.; Parravicini, C.; Corbellino, M.; Yamanishi, K. Major histocompatibility complex class I molecules are down-regulated at the cell surface by the K5 protein encoded by Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8. J. Gen. Virol. 2001, 82, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Ishido, S.; Wang, C.; Lee, B.-S.; Cohen, G.B.; Jung, J.U. Downregulation of Major Histocompatibility Complex Class I Molecules by Kaposi’s Sarcoma-Associated Herpesvirus K3 and K5 Proteins. J. Virol. 2000, 74, 5300–5309. [Google Scholar] [CrossRef]
- Taylor, J.L.; Bennett, H.N.; Snyder, B.A.; Moore, P.; Chang, Y. Transcriptional Analysis of Latent and Inducible Kaposi’s Sarcoma-Associated Herpesvirus Transcripts in the K4 to K7 Region. J. Virol. 2005, 79, 15099–15106. [Google Scholar] [CrossRef] [Green Version]
- Coscoy, L.; Sanchez, D.J.; Ganem, D. A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J. Cell Biol. 2001, 155, 1265–1274. [Google Scholar] [CrossRef] [Green Version]
- Ishido, S.; Choi, J.-K.; Lee, B.-S.; Wang, C.; DeMaria, M.; Johnson, R.; Cohen, G.B.; Jung, J.U. Inhibition of Natural Killer Cell–Mediated Cytotoxicity by Kaposi’s Sarcoma–Associated Herpesvirus K5 Protein. Immunity 2000, 13, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Keller, S.A.; Schattner, E.J.; Cesarman, E. Inhibition of NF-kappaB induces apoptosis of KSHV-infected primary effusion lymphoma cells. Blood 2000, 96, 2537–2542. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Hislop, A.D.; Leung, C.S.; Sabbah, S.; Rowe, M. Kaposi’s Sarcoma-Associated Herpesvirus-Encoded Viral IRF3 Modulates Major Histocompatibility Complex Class II (MHC-II) Antigen Presentation through MHC-II Transactivator-Dependent and -Independent Mechanisms: Implications for Oncogenesis. J. Virol. 2013, 87, 5340–5350. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J. (Eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed.; IARC: Lyon, France, 2017. [Google Scholar]
- Jaffe, E.S.; Arber, D.A.; Campo, E.; Quintanilla-Martinez, L.; Orazi, A. Hematopathology, 2nd ed.; Elsevier: Philadelphia, PA, USA, 2017. [Google Scholar]
- Hu, Z.; Pan, Z.; Chen, W.; Shi, Y.; Wang, W.; Yuan, J.; Wang, E.; Zhang, S.; Kurt, H.; Mai, B.; et al. Primary Effusion Lymphoma: A Clinicopathological Study of 70 Cases. Cancers 2021, 13, 878. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, C.; Jain, T.; Kelemen, K. HHV-8-Associated Lymphoproliferative Disorders and Pathogenesis in an HIV-Positive Patient. Case Rep. Hematol. 2019, 2019, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaidano, G.; Capello, D.; Cilia, A.M.; Gloghini, A.; Perin, T.; Quattrone, S.; Migliazza, A.; Lo Coco, F.; Saglio, G.; Ascoli, V.; et al. Genetic characterization of HHV-8/KSHV-positive primary effusion lymphoma reveals frequent mutations of BCL6: Implications for disease pathogenesis and histogenesis. Genes Chromosomes Cancer 1999, 24, 16–23. [Google Scholar] [CrossRef]
- Kaji, D.; Ota, Y.; Sato, Y.; Nagafuji, K.; Ueda, Y.; Okamoto, M.; Terasaki, Y.; Tsuyama, N.; Matsue, K.; Kinoshita, T.; et al. Primary human herpesvirus 8–negative effusion-based lymphoma: A large B-cell lymphoma with favorable prognosis. Blood Adv. 2020, 4, 4442–4450. [Google Scholar] [CrossRef]
- Nakatsuka, S.-I.; Yao, M.; Hoshida, Y.; Yamamoto, S.; Iuchi, K.; Aozasa, K. Pyothorax-Associated Lymphoma: A Review of 106 Cases. J. Clin. Oncol. 2002, 20, 4255–4260. [Google Scholar] [CrossRef] [PubMed]
- Cesarman, E.; Nador, R.G.; Aozasa, K.; Delsol, G.; Said, J.W.; Knowles, D.M. Kaposi’s sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am. J. Pathol. 1996, 149, 53–57. [Google Scholar]
- Das, D.K. Serous effusions in malignant lymphomas: A review. Diagn. Cytopathol. 2006, 34, 335–347. [Google Scholar] [CrossRef]
- Jiang, P.; Liu, M.; Liu, B.; Liu, B.; Zhou, Y.; Dong, L. Human immunodeficiency virus-negative plasmablastic lymphoma in the neck: A rare case report and literature review. Eur. J. Med Res. 2014, 19, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, J.J.; Shum, H.; Lahijani, M.; Winer, E.S.; Butera, J.N. Prognosis in primary effusion lymphoma is associated with the number of body cavities involved. Leuk. Lymphoma 2012, 53, 2378–2382. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, E.; Gérard, L.; Gabarre, J.; Molina, J.-M.; Rapp, C.; Abino, J.-F.; Cadranel, J.; Chevret, S.; Oksenhendler, E. Prognostic Factors and Outcome of Human Herpesvirus 8–Associated Primary Effusion Lymphoma in Patients With AIDS. J. Clin. Oncol. 2005, 23, 4372–4380. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Goto, H.; Yotsumoto, M. Current status of treatment for primary effusion lymphoma. Intractable Rare Dis. Res. 2014, 3, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.R.C.; Barta, S.K.; Lee, J.; Rudek, M.A.; Sparano, J.A.; Noy, A. Combination antiretroviral therapy accelerates immune recovery in patients with HIV-related lymphoma treated with EPOCH: A comparison within one prospective trial AMC034. Leuk. Lymphoma 2018, 59, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.H.; Grossbard, M.; Pittaluga, S.; Cole, D.; Pearson, D.; Drbohlav, N.; Steinberg, S.M.; Little, R.F.; Janik, J.; Gutierrez, M.; et al. Dose-adjusted EPOCH chemotherapy for untreated large B-cell lymphomas: A pharmacodynamic approach with high efficacy. Blood 2002, 99, 2685–2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birsen, R.; Boutboul, D.; Crestani, B.; Seguin-Givelet, A.; Fieschi, C.; Bertinchamp, R.; Giol, M.; Malphettes, M.; Oksenhendler, E.; Galicier, L. Talc pleurodesis allows long-term remission in HIV-unrelated Human Herpesvirus 8-associated primary effusion lymphoma. Leuk. Lymphoma 2017, 58, 1993–1998. [Google Scholar] [CrossRef]
- Medical Coverage Guideline 09-J3000-94. Available online: http://mcgs.bcbsfl.com/MCG?mcgId=09-J3000-94&pv=false (accessed on 5 September 2021).
- National Comprehensive Cancer Network. B-Cell Lymphomas (Version 5.2021). Available online: https://www.nccn.org/professionals/physician_gls/pdf/b-cell.pdf (accessed on 10 December 2021).
- Won, J.-H.; Han, S.-H.; Bae, S.-B.; Kim, C.-K.; Lee, N.-S.; Lee, K.-T.; Park, S.-K.; Hong, D.-S.; Lee, D.-W.; Park, H.-S. Successful Eradication of Relapsed Primary Effusion Lymphoma with High-Dose Chemotherapy and Autologous Stem Cell Transplantation in a Patient Seronegative for Human Immunodeficiency Virus. Int. J. Hematol. 2006, 83, 328–330. [Google Scholar] [CrossRef]
- Cassoni, A.; Ali, U.; Cave, J.; Edwards, S.G.; Ramsay, A.; Miller, R.F.; Lee, S.M. Remission After Radiotherapy for a Patient With Chemotherapy-Refractory HIV-Associated Primary Effusion Lymphoma. J. Clin. Oncol. 2008, 26, 5297–5299. [Google Scholar] [CrossRef] [Green Version]
- Goy, A.; Ramchandren, R.; Ghosh, N.; Munoz, J.; Morgan, D.S.; Dang, N.H.; Knapp, M.; Delioukina, M.; Kingsley, E.; Ping, J.; et al. Ibrutinib plus lenalidomide and rituximab has promising activity in relapsed/refractory non–germinal center B-cell–like DLBCL. Blood 2019, 134, 1024–1036. [Google Scholar] [CrossRef] [Green Version]
- Lurain, K.; Ramaswami, R.; Mangusan, R.; Widell, A.; Ekwede, I.; George, J.; Ambinder, R.; Cheever, M.; Gulley, J.L.; Goncalves, P.H.; et al. Use of pembrolizumab with or without pomalidomide in HIV-associated non-Hodgkin’s lymphoma. J. Immunother. Cancer 2021, 9, e002097. [Google Scholar] [CrossRef] [PubMed]
- Marquet, J.; Velazquez-Kennedy, K.; López, S.; Benito, A.; Blanchard, M.-J.; Garcia-Vela, J.A. Case report of a primary effusion lymphoma successfully treated with oral valganciclovir after failing chemotherapy. Hematol. Oncol. 2018, 36, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Ramaswami, R.; Lurain, K.; Polizzotto, M.N.; Ekwede, I.; Waldon, K.; Steinberg, S.M.; Mangusan, R.; Widell, A.; Rupert, A.; George, J.; et al. Characteristics and outcomes of KSHV-associated multicentric Castleman disease with or without other KSHV diseases. Blood Adv. 2021, 5, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- Uldrick, T.S.; Gonçalves, P.H.; Abdul-Hay, M.; Claeys, A.J.; Emu, B.; Ernstoff, M.S.; Fling, S.P.; Fong, L.; Kaiser, J.C.; Lacroix, A.M.; et al. Assessment of the Safety of Pembrolizumab in Patients with HIV and Advanced Cancer—A Phase 1 Study. JAMA Oncol. 2019, 5, 1332–1339. [Google Scholar] [CrossRef]
- Lurain, K.; Ramaswami, R.; Widell, A.; Ekwede, I.; George, J.; Stetler-Stevenson, M.; Raffeld, M.; Yuan, C.M.; Ziegelbauer, J.; Maldarelli, F.; et al. Phase I/II Study of Lenalidomide Combined with DA-EPOCH and Rituximab (DA-EPOCH-R2) in Primary Effusion Lymphoma in Patients with or without HIV. Blood 2019, 134 (Suppl. 1), 4096. [Google Scholar] [CrossRef]
- Nicol, S.M.; Sabbah, S.; Brulois, K.F.; Jung, J.U.; Bell, A.I.; Hislop, A.D. Primary B Lymphocytes Infected with Kaposi’s Sarcoma-Associated Herpesvirus Can Be Expanded In Vitro and Are Recognized by LANA-Specific CD4 + T Cells. J. Virol. 2016, 90, 3849–3859. [Google Scholar] [CrossRef] [Green Version]
- Vega, M.I.; Huerta-Yepaz, S.; Garban, H.; Jazirehi, A.; Emmanouilides, C.; Bonavida, B. Rituximab inhibits p38 MAPK activity in 2F7 B NHL and decreases IL-10 transcription: Pivotal role of p38 MAPK in drug resistance. Oncogene 2004, 23, 3530–3540. [Google Scholar] [CrossRef] [Green Version]
- Ghetie, M.-A.; Crank, M.; Kufert, S.; Pop, I.; Vitetta, E. Rituximab but not Other anti-CD20 Antibodies Reverses Multidrug Resistance in 2 B lymphoma Cell Lines, Blocks the Activity of P-glycoprotein (P-gp), and Induces P-gp to Translocate out of Lipid Rafts. J. Immunother. 2006, 29, 536–544. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Munoz, J.; Jaglowski, M.S.; McKinney, M.S.; Isufi, I.; Stiff, P.J.; Sachs, J.; Ranger, A.; Harris, M.P.; Payumo, B.F.; Akard, L.P. A Phase 1 Study of ACTR087 in Combination with Rituximab, in Subjects with Relapsed or Refractory CD20-Positive B-Cell Lymphoma. Blood 2019, 134, 244. [Google Scholar] [CrossRef]
- Abbasi, A.; Peeke, S.; Shah, N.; Mustafa, J.; Khatun, F.; Lombardo, A.; Abreu, M.; Elkind, R.; Fehn, K.; De Castro, A.; et al. Axicabtagene ciloleucel CD19 CAR-T cell therapy results in high rates of systemic and neurologic remissions in ten patients with refractory large B cell lymphoma including two with HIV and viral hepatitis. J. Hematol. Oncol. 2020, 13, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramson, J.S.; Irwin, K.E.; Frigault, M.J.; Dietrich, J.; McGree, B.; Jordan, J.T.; Yee, A.J.; Chen, Y.; Raje, N.S.; Barnes, J.A.; et al. Successful anti-CD19 CAR T-cell therapy in HIV-infected patients with refractory high-grade B-cell lymphoma. Cancer 2019, 125, 3692–3698. [Google Scholar] [CrossRef] [PubMed]
- Allred, J.; Bharucha, K.; Özütemiz, C.; He, F.; Janakiram, M.; Maakaron, J.; Carrier, C.; Grzywacz, B.; Bachanova, V. Chimeric antigen receptor T-cell therapy for HIV-associated diffuse large B-cell lymphoma: Case report and management recommendations. Bone Marrow Transplant. 2021, 56, 679–682. [Google Scholar] [CrossRef]
- Caro-Vegas, C.; Bailey, A.; Bigi, R.; Damania, B.; Dittmer, D.P. Targeting mTOR with MLN0128 Overcomes Rapamycin and Chemoresistant Primary Effusion Lymphoma. mBio 2019, 10, e02871-18. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Lin, Z.; Qiao, J.; Chen, Y.; Flemington, E.K.; Qin, Z. Ribonucleotide reductase represents a novel therapeutic target in primary effusion lymphoma. Oncogene 2017, 36, 5068–5074. [Google Scholar] [CrossRef] [Green Version]
- Sin, S.-H.; Roy, D.; Wang, L.; Staudt, M.R.; Fakhari, F.D.; Patel, D.D.; Henry, D.; Harrington, W.H., Jr.; Damania, B.A.; Dittmer, D.P. Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood 2007, 109, 2165–2173. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.; Ashlock, B.M.; Toomey, N.L.; Diaz, L.A.; Mesri, E.A.; Lossos, I.S.; Ramos, J.C. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J. Clin. Investig. 2013, 123, 2616–2628. [Google Scholar] [CrossRef]
- Bhatt, S.; Ashlock, B.M.; Natkunam, Y.; Sujoy, V.; Chapman, J.R.; Ramos, J.C.; Mesri, E.A.; Lossos, I.S. CD30 targeting with brentuximab vedotin: A novel therapeutic approach to primary effusion lymphoma. Blood 2013, 122, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.N.; Singavi, A.K.; Harrington, A. Daratumumab in Primary Effusion Lymphoma. N. Engl. J. Med. 2018, 379, 689–690. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Lenalidomide Combined with Modified DA-EPOCH and Rituximab (EPOCH-R2) in Primary Effusion Lymphoma or KSHV-Associated Large Cell Lymphoma. Available online: https://ClinicalTrials.gov/show/NCT02911142 (accessed on 29 September 2021).
- ClinicalTrials.gov. Available online: https://ClinicalTrials.gov/show/NCT04554914 (accessed on 29 September 2021).
Primary Effusion Lymphoma | HHV8-Negative Effusion-Based Lymphoma | Pyothorax-Associated Lymphoma | Plasmablastic Lymphoma | Burkitt Lymphoma | Diffuse Large B-Cell Lymphoma * | |
---|---|---|---|---|---|---|
Clinical presentation | Pleural, peritoneal, or pericardial effusion +/− nodal/extranodal mass B symptoms | Pleural, peritoneal, or pericardial effusion Fluid overload | Chest pain, fever, cough, dyspnea, chest wall mass History of TB related pyothorax | Extranodal tumor of head and neck or other extranodal sites +/− nodal disease B symptoms, variable based on immunologic status | Facial, abdominal, or other extranodal mass +/− nodal diseaseRapid tumor growth | Nodal or extranodal mass B symptoms in one-third |
Morphology | Large, pleomorphic immunoblastic, plasmablastic or anaplastic cells | Large, pleomorphic immunoblastic or plasmablastic cells | Diffuse proliferation of centroblastic or immunoblastic cells, may show plasmacytoid differentiation | Diffuse proliferation of large, immunoblastic or plasmablastic cells | Medium-sized, monotonous cells with frequent cytoplasmic vacuoles; rarely resemble small, plasmacytoid immunoblasts | Diffuse proliferation of large immunoblastic cells (round nuclei and a single prominent nucleolus), may include cells with plasmacytoid features |
EBV positivity | 70% | 30% | 70% | 60–75% | 20–40% (100% in endemic form) | 9–15% |
HHV8 status | + | - | - | - | - | - |
Phenotype | CD45+ CD20− CD19− CD79a− PAX5− IRF4/MUM1+/− CD38+/− CD138+/− CD30+/− Ig light chain−/+ | CD45+/− CD20+/− CD19+/− CD79a+/− PAX5+/− IRF4/MUM1+/− CD38−/+ CD138−/+ CD30−/+ Ig light chain+/− | CD45+ CD20+/− CD19+ CD79a+/− PAX5+ IRF4/MUM1+ CD138−/+ CD30+/− Ig light chain+/− | CD45−/+ CD20− CD19− CD79a−/+ PAX5− IRF4/MUM1+ CD38+ CD138+ CD30−/+ Ig light chain+ | CD45+ CD20+ CD19+ CD79a+ PAX5+ IRF4/MUM1−/+ CD38+ CD138− MYC+ CD10+ | CD45+ CD20+ CD19+ CD79a+ PAX5+ IRF4/MUM1+/− CD38−/+ CD138−/+ CD30−/+ |
Cellular origin | Post-GC B cell with plasmablastic differentiation | GC or post-GC B cell | Post-GC B cell | Plasmablast | GC B cell | GC or post-GC B cell |
HIV status | +++/− | −−−/+ | - | ++/− | −−/+ | −−−/+ |
Other associations | Organ transplant; elderly | Fluid overload | Long-standing pyothorax | Organ transplant; other iatrogenic immunodeficiency; elderly | Malaria (endemic form); organ transplant; primary immune disorders | Organ transplant; other iatrogenic immunodeficiency; primary immune disorders |
Prognosis | Median survival < 2 yr | 2-yr survival 85% | 5-yr survival 20–35% | Median survival <1 yr | Variable 5-yr survival ≥70% | Variable 5-yr survival >60% |
Anatomic site | Body cavities (rare extracavitary) | Body cavities | Thoracic cavity | Extranodal (<10% nodal) | Extranodal (less frequent nodal) | Nodal or extranodal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gathers, D.A.; Galloway, E.; Kelemen, K.; Rosenthal, A.; Gibson, S.E.; Munoz, J. Primary Effusion Lymphoma: A Clinicopathologic Perspective. Cancers 2022, 14, 722. https://doi.org/10.3390/cancers14030722
Gathers DA, Galloway E, Kelemen K, Rosenthal A, Gibson SE, Munoz J. Primary Effusion Lymphoma: A Clinicopathologic Perspective. Cancers. 2022; 14(3):722. https://doi.org/10.3390/cancers14030722
Chicago/Turabian StyleGathers, Diamone A., Emily Galloway, Katalin Kelemen, Allison Rosenthal, Sarah E. Gibson, and Javier Munoz. 2022. "Primary Effusion Lymphoma: A Clinicopathologic Perspective" Cancers 14, no. 3: 722. https://doi.org/10.3390/cancers14030722
APA StyleGathers, D. A., Galloway, E., Kelemen, K., Rosenthal, A., Gibson, S. E., & Munoz, J. (2022). Primary Effusion Lymphoma: A Clinicopathologic Perspective. Cancers, 14(3), 722. https://doi.org/10.3390/cancers14030722