Evaluating the Role of Hepatobiliary Phase of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Predicting Treatment Impact of Lenvatinib and Atezolizumab plus Bevacizumab on Unresectable Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Treatment Protocol, Evaluation Criteria for Response, and Followup of HCC
2.3. Image Analysis
2.4. Ethical Considerations
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. HCC Image Analysis by EOB-MRI Hepatobiliary Phase
3.3. Relationship between PFS and Assessment of EOB-MRI Hepatobiliary Phase
3.4. Response Rate Stratified by Assessment of EOB-MRI Hepatobiliary Phase
3.5. Relationship between Visual Assessment and RER in EOB-MRI Hepatobiliary Phase
3.6. Prediction Ability of Response by RER
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheu, J.W.; Wong, C.C. Mechanistic Rationales Guiding Combination Hepatocellular Carcinoma Therapies Involving Immune Checkpoint Inhibitors. Hepatology 2021, 74, 2264–2276. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Martinelli, E.; on behalf of the ESMO Guidelines Committee. Updated treatment recommendations for hepatocellular carcinoma (HCC) from the ESMO Clinical Practice Guidelines. Ann. Oncol. 2021, 32, 801–805. [Google Scholar] [CrossRef]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic beta-catenin signalling prevents antitumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2015, 25, 2116–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berraondo, P.; Ochoa, M.C.; Olivera, I.; Melero, I. Immune Desertic Landscapes in Hepatocellular Carcinoma Shaped by beta-Catenin Activation. Cancer. Discov. 2019, 9, 1003–1005. [Google Scholar] [CrossRef] [Green Version]
- Morita, M.; Nishida, N.; Sakai, K.; Aoki, T.; Chishina, H.; Takita, M.; Ida, H.; Hagiwara, S.; Minami, Y.; Ueshima, K.; et al. Immunological Microenvironment Predicts the Survival of the Patients with Hepatocellular Carcinoma Treated with Anti-PD-1 Antibody. Liver Cancer 2021, 10, 380–393. [Google Scholar] [CrossRef]
- Ueno, A.; Masugi, Y.; Yamazaki, K.; Komuta, M.; Effendi, K.; Tanami, Y.; Tsujikawa, H.; Tanimoto, A.; Okuda, S.; Itano, O.; et al. OATP1B3 expression is strongly associated with Wnt/beta-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J. Hepatol. 2014, 61, 1080–1087. [Google Scholar] [CrossRef]
- Fujita, N.; Nishie, A.; Kubo, Y.; Asayama, Y.; Ushijima, Y.; Takayama, Y.; Moirta, K.; Shirabe, K.; Aishima, S.; Honda, H. Hepatocellular carcinoma: Clinical significance of signal heterogeneity in the hepatobiliary phase of gadoxetic acid-enhanced MR imaging. Eur. Radiol. 2014, 25, 211–220. [Google Scholar] [CrossRef]
- Ariizumi, S.I.; Ban, D.; Abe, Y.; Kumamoto, T.; Koizumi, S.; Tanabe, M.; Shinoda, M.; Endo, I.; Otsubo, T.; Yamamoto, M. High-signal-intensity MR Image in the Hepatobiliary Phase Predicts Long-term Survival in Patients with Hepatocellular Carcinoma. Anticancer Res. 2019, 39, 4219–4225. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; Nishida, N.; Ueshima, K.; Morita, M.; Chishina, H.; Takita, M.; Hagiwara, S.; Ida, H.; Minami, Y.; Yamada, A.; et al. Higher Enhancement Intrahepatic Nodules on the Hepatobiliary Phase of Gd-EOB-DTPA-Enhanced MRI as a Poor Responsive Marker of Anti-PD-1/PD-L1 Monotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer 2021, 10, 615–628. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) Assessment for Hepatocellular Carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuboyama, T.; Onishi, H.; Kim, T.; Akita, H.; Hori, M.; Tatsumi, M.; Nakamoto, A.; Nagano, H.; Matsuura, N.; Wakasa, K.; et al. Hepatocellular carcinoma: Hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging—Correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 2010, 255, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Kubo, A.; Suda, G.; Kimura, M.; Maehara, O.; Tokuchi, Y.; Kitagataya, T.; Ohara, M.; Yamada, R.; Shigesawa, T.; Suzuki, K.; et al. Characteristics and Lenvatinib Treatment Response of Unresectable Hepatocellular Carcinoma with Iso-High Intensity in the Hepatobiliary Phase of EOB-MRI. Cancers 2021, 13, 3633. [Google Scholar] [CrossRef]
- Fujii, Y.; Ono, A.; Hayes, C.N.; Aikata, H.; Yamauchi, M.; Uchikawa, S.; Kodama, K.; Teraoka, Y.; Fujino, H.; Nakahara, T.; et al. Identification and monitoring of mutations in circulating cell-free tumor DNA in hepatocellular carcinoma treated with lenvatinib. J. Exp. Clin. Cancer Res. 2021, 40, 215. [Google Scholar] [CrossRef]
- Yamauchi, M.; Ono, A.; Ishikawa, A.; Kodama, K.; Uchikawa, S.; Hatooka, H.; Zhang, P.; Teraoka, Y.; Morio, K.; Fujino, H.; et al. Tumor Fibroblast Growth Factor Receptor 4 Level Predicts the Efficacy of Lenvatinib in Patients with Advanced Hepatocellular Carcinoma. Clin. Transl. Gastroenterol. 2020, 11, e00179. [Google Scholar] [CrossRef]
- Kawamura, Y.; Kobayashi, M.; Shindoh, J.; Kobayashi, Y.; Kasuya, K.; Sano, T.; Fujiyama, S.; Hosaka, T.; Saitoh, S.; Sezaki, H.; et al. Pretreatment Heterogeneous Enhancement Pattern of Hepatocellular Carcinoma May Be a Useful New Predictor of Early Response to Lenvatinib and Overall Prognosis. Liver Cancer 2020, 9, 275–292. [Google Scholar] [CrossRef]
- Iwamoto, H.; Shimose, S.; Noda, Y.; Shirono, T.; Niizeki, T.; Nakano, M.; Okamura, S.; Kamachi, N.; Suzuki, H.; Sakai, M.; et al. Initial Experience of Atezolizumab Plus Bevacizumab for Unresectable Hepatocellular Carcinoma in Real-World Clinical Practice. Cancers 2021, 13, 2786. [Google Scholar] [CrossRef]
- Eso, Y.; Takeda, H.; Taura, K.; Takai, A.; Takahashi, K.; Seno, H. Pretreatment Neutrophil-to-Lymphocyte Ratio as a Predictive Marker of Response to Atezolizumab Plus Bevacizumab for Hepatocellular Carcinoma. Curr. Oncol. 2021, 28, 4157–4166. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Ryoo, B.-Y.; Hsu, C.-H.; Numata, K.; Stein, S.; Verret, W.; Hack, S.P.; Spahn, J.; Liu, B.; Abdullah, H.; et al. Atezolizumab with or without bevacizumab in unresectable hepatocellular carcinoma (GO30140): An open-label, multicentre, phase 1b study. Lancet Oncol. 2020, 21, 808–820. [Google Scholar] [CrossRef]
- Wallin, J.J.; Bendell, J.C.; Funke, R.; Sznol, M.; Korski, K.; Jones, S.; Hernandez, G.; Mier, J.; He, X.; Hodi, F.S.; et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 2016, 7, 12624. [Google Scholar] [CrossRef]
- Hegde, P.S.; Wallin, J.J.; Mancao, C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin. Cancer Biol. 2018, 52, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Changing the Treatment Paradigm for Hepatocellular Carcinoma Using Atezolizumab plus Bevacizumab Combination Therapy. Cancers 2021, 13, 5475. [Google Scholar] [CrossRef] [PubMed]
Variable | Lenvatinib (n = 33) | Atezolizumab plus Bevacizumab (n = 35) | |
---|---|---|---|
Age | Year | 75.0 (51–84) | 69.0 (48–88) |
Sex | male/female | 26/7 | 27/8 |
BMI | kg/m2 | 22.70 (16.5–35.9) | 21.80 (16.9–28.6) |
Performance status | 0/1/2 | 26/7/0 | 23/10/2 |
Child–Pugh score | A/B | 31/2 | 30/5 |
Macroscopic PV invasion | Vp3 or 4 | 5 (15.2%) | 5 (14.2%) |
Extrahepatic spread | + | 6 (18.2%) | 11 (31.4%) |
BCLC stage | B/C | 18/15 | 19/16 |
Etiology | HBV/HCV/NBNC | 7/9/17 | 6/5/24 |
Platelet count | ×104/μL | 15.70 (4.4–31.4) | 13.70 (6.7–40.5) |
T.bil | mg/dL | 0.80 (0.3–2.2) | 0.90 (0.3–2.0) |
Albumin | g/dL | 3.70 (2.7–4.7) | 3.70 (2.2–5.4) |
ALT | IU/mL | 24.0 (7–137) | 29.0 (13–87) |
AFP | ng/mL | 111.0 (2–89,533) | 12.5 (2–48,400) |
DCP | mAU/mL | 539.0 (13–75,000) | 1115.0 (14–75,000) |
NLR | Ratio | 2.60 (1.2–9.2) | 3.10 (0.9–9.3) |
Treatment period | Month | 4.90 (1.0–38.0) | 3.00 (0.7–9.9) |
Period until dose reduction | Month | 1.40 (0.2–14.4) | 2.30 (0.7–9.9) |
Factors | Lenvatinib (n = 33) | Atezolizumab plus Bevacizumab (n = 35) | |
---|---|---|---|
Tumor size | cm | 3.20 (1.1–12.8) | 4.00 (1.0–19.0) |
Visual assessment | Homogenous type | 21 (63.6%) | 19 (54.3%) |
Heterogenous type | 12 (36.4%) | 16 (45.7%) | |
RER | Value | 0.79 (0.56–1.38) | 0.76 (0.50–1.18) |
Hypointensity type (RER <0.9) | 27 (81.8%) | 28 (80.0%) | |
Hyperintensity type (RER ≥0.9) | 6 (18.2%) | 7 (20.0%) |
Lenvatinib (n = 33) | Homogenous Type (n = 21) | Heterogenous Type (n = 12) | ||
---|---|---|---|---|
Response category | mRECIST | RECIST | mRECIST | RECIST |
CR/PR/SD/PD | 1/7/7/6 | 0/2/13/6 | 0/5/4/3 | 0/1/7/4 |
ORR | 8 (38.1%) | 2 (9.5%) | 5 (41.7%) | 1 (8.3%) |
DCR | 15 (71.4%) | 15 (71.4%) | 9 (75.0%) | 8 (66.7%) |
Atezolizumab Plus Bevacizumab (n = 35) | Homogenous type (n = 19) | Heterogenous type (n = 16) | ||
Response category | mRECIST | RECIST | mRECIST | RECIST |
CR/PR/SD/PD | 0/8/9/2 | 0/4/13/2 | 0/4/6/6 | 0/1/9/6 |
ORR | 8 (42.1%) | 4 (21.1%) | 4 (25.0%) | 1 (6.3%) |
DCR | 17 (89.5%) | 17 (89.5%) | 10 (62.5%) | 10 (62.5%) |
Lenvatinib (n = 33) | Hypointensity type (n = 27) | Hyperintensity type (n = 6) | ||
Response category | mRECIST | RECIST | mRECIST | RECIST |
CR/PR/SD/PD | 1/10/9/7 | 0/2/17/8 | 0/2/2/2 | 0/1/3/2 |
ORR | 11 (40.7%) | 2 (7.4%) | 2 (33.3%) | 1 (16.7%) |
DCR | 20 (74.1%) | 19 (70.4%) | 4 (66.7%) | 4 (66.7%) |
Atezolizumab Plus Bevacizumab (n = 35) | Hypointensity type (n = 28) | Hyperintensity type (n = 7) | ||
Response category | mRECIST | RECIST | mRECIST | RECIST |
CR/PR/SD/PD | 0/10/14/4 | 0/4/20/4 | 0/2/1/4 | 0/1/2/4 |
ORR | 10 (35.7%) | 4 (14.3%) | 2 (28.6%) | 1 (14.3%) |
DCR | 24 (85.7%) | 24 (85.7%) | 3 (42.9%) | 3 (42.9%) |
Visual Assessment | |||
---|---|---|---|
Homogenous Type (n = 40) | Heterogenous Type (n = 28) | ||
RER | Hypointensity type (RER < 0.9) (n = 55) | 39 | 16 |
Hyperintensity type (RER ≥ 0.9) (n = 13) | 1 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasaki, R.; Nagata, K.; Fukushima, M.; Haraguchi, M.; Miuma, S.; Miyaaki, H.; Soyama, A.; Hidaka, M.; Eguchi, S.; Shigeno, M.; et al. Evaluating the Role of Hepatobiliary Phase of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Predicting Treatment Impact of Lenvatinib and Atezolizumab plus Bevacizumab on Unresectable Hepatocellular Carcinoma. Cancers 2022, 14, 827. https://doi.org/10.3390/cancers14030827
Sasaki R, Nagata K, Fukushima M, Haraguchi M, Miuma S, Miyaaki H, Soyama A, Hidaka M, Eguchi S, Shigeno M, et al. Evaluating the Role of Hepatobiliary Phase of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Predicting Treatment Impact of Lenvatinib and Atezolizumab plus Bevacizumab on Unresectable Hepatocellular Carcinoma. Cancers. 2022; 14(3):827. https://doi.org/10.3390/cancers14030827
Chicago/Turabian StyleSasaki, Ryu, Kazuyoshi Nagata, Masanori Fukushima, Masafumi Haraguchi, Satoshi Miuma, Hisamitsu Miyaaki, Akihiko Soyama, Masaaki Hidaka, Susumu Eguchi, Masaya Shigeno, and et al. 2022. "Evaluating the Role of Hepatobiliary Phase of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Predicting Treatment Impact of Lenvatinib and Atezolizumab plus Bevacizumab on Unresectable Hepatocellular Carcinoma" Cancers 14, no. 3: 827. https://doi.org/10.3390/cancers14030827
APA StyleSasaki, R., Nagata, K., Fukushima, M., Haraguchi, M., Miuma, S., Miyaaki, H., Soyama, A., Hidaka, M., Eguchi, S., Shigeno, M., Yamashima, M., Yamamichi, S., Ichikawa, T., Kugiyama, Y., Yatsuhashi, H., & Nakao, K. (2022). Evaluating the Role of Hepatobiliary Phase of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Predicting Treatment Impact of Lenvatinib and Atezolizumab plus Bevacizumab on Unresectable Hepatocellular Carcinoma. Cancers, 14(3), 827. https://doi.org/10.3390/cancers14030827