Pharmacogenomics Testing in Phase I Oncology Clinical Trials: Constructive Criticism Is Warranted
Abstract
:Simple Summary
Abstract
1. Introduction
2. Preclinical and Early Clinical Development—Opportunities to Optimize Pharmacogenomics Testing
3. Methods
4. Phase I Study Endpoints Incorporating Pharmacogenomics Testing
4.1. Studies Incorporating Pharmacogenomics Analysis vs. Toxicity, Response, and/or Progression-Free Survival (PFS)
4.2. Studies Incorporating Pharmacogenomics Analysis vs. Pharmacokinetics
4.3. Critical Analysis of Phase I Study Designs Examining Toxicity, Response/PFS, and Pharmacokinetics
5. Genotype-Directed Dosing Studies
6. Frequently Tested Classes of Anticancer Agents
6.1. Topoisomerase Inhibitors
6.1.1. Irinotecan, SN38, and Other Formulations Thereof (PEP02, EZM-2208, NK012)
6.1.2. Other Topoisomerase Inhibitors (Anthracyclines, Batracyclin, Amino- and Nitro-Camptothecin Derivatives, TAS-103, Topotecan, TP300)
7. Antimetabolites
7.1. Capecitabine and 5-FU
7.2. Pemetrexed, Ralitrexed, and Pralatrexate
7.3. Gemcitabine and LY2334737 (Oral Gemcitabine Formulation)
7.4. Other Antimetabolites (S-1, OSI7904L)
8. Antiangiogenic Therapies
9. Critical Analysis of Phase I Studies Incorporating Frequently Tested Drug Classes vs. Pharmacogenetic Variables
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Disclaimer
References
- Soepenberg, O.; Dumez, H.; Verweij, J.; de Jong, F.A.; de Jonge, M.J.; Thomas, J.; Eskens, F.A.; van Schaik, R.H.; Selleslach, J.; Ter Steeg, J.; et al. Phase I pharmacokinetic, food effect, and pharmacogenetic study of oral irinotecan given as semisolid matrix capsules in patients with solid tumors. Clin. Cancer Res. 2005, 11, 1504–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamboni, W.C.; Ramanathan, R.K.; McLeod, H.L.; Mani, S.; Potter, D.M.; Strychor, S.; Maruca, L.J.; King, C.R.; Jung, L.L.; Parise, R.A.; et al. Disposition of 9-nitrocamptothecin and its 9-aminocamptothecin metabolite in relation to ABC transporter genotypes. Invest. New Drugs 2006, 24, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.S.; Alberti, D.B.; Schelman, W.R.; Kolesar, J.M.; Thomas, J.P.; Marnocha, R.; Eickhoff, J.C.; Ivy, S.P.; Wilding, G.; Holen, K.D. The maximum tolerated dose and biologic effects of 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) in combination with irinotecan for patients with refractory solid tumors. Cancer Chemother. Pharmacol. 2010, 66, 973–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steeghs, N.; Mathijssen, R.H.; Wessels, J.A.; de Graan, A.J.; van der Straaten, T.; Mariani, M.; Laffranchi, B.; Comis, S.; de Jonge, M.J.; Gelderblom, H.; et al. Influence of pharmacogenetic variability on the pharmacokinetics and toxicity of the aurora kinase inhibitor danusertib. Invest. New Drugs 2011, 29, 953–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Infante, J.R.; Novello, S.; Ma, W.W.; Dy, G.K.; Bendell, J.C.; Huff, A.; Wang, Q.; Suttle, A.B.; Allen, R.; Xu, C.F.; et al. Phase Ib trial of the oral angiogenesis inhibitor pazopanib administered concurrently with pemetrexed in patients with advanced solid tumors. Invest. New Drugs 2013, 31, 927–936. [Google Scholar] [CrossRef]
- Deeken, J.F.; Wang, H.; Subramaniam, D.; He, A.R.; Hwang, J.; Marshall, J.L.; Urso, C.E.; Wang, Y.; Ramos, C.; Steadman, K.; et al. A phase 1 study of cetuximab and lapatinib in patients with advanced solid tumor malignancies. Cancer 2015, 121, 1645–1653. [Google Scholar] [CrossRef] [Green Version]
- Chugh, R.; Griffith, K.A.; Davis, E.J.; Thomas, D.G.; Zavala, J.D.; Metko, G.; Brockstein, B.; Undevia, S.D.; Stadler, W.M.; Schuetze, S.M. Doxorubicin plus the IGF-1R antibody cixutumumab in soft tissue sarcoma: A phase I study using the TITE-CRM model. Ann. Oncol. 2015, 26, 1459–1464. [Google Scholar] [CrossRef]
- Deenen, M.J.; Dewit, L.; Boot, H.; Beijnen, J.H.; Schellens, J.H.; Cats, A. Simultaneous integrated boost-intensity modulated radiation therapy with concomitant capecitabine and mitomycin C for locally advanced anal carcinoma: A phase 1 study. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e201–e207. [Google Scholar] [CrossRef]
- Deenen, M.J.; Meulendijks, D.; Boot, H.; Legdeur, M.C.; Beijnen, J.H.; Schellens, J.H.; Cats, A. Phase 1a/1b and pharmacogenetic study of docetaxel, oxaliplatin and capecitabine in patients with advanced cancer of the stomach or the gastroesophageal junction. Cancer Chemother. Pharmacol. 2015, 76, 1285–1295. [Google Scholar] [CrossRef]
- Faivre, S.J.; Olszanski, A.J.; Weigang-Kohler, K.; Riess, H.; Cohen, R.B.; Wang, X.; Myrand, S.P.; Wickremsinhe, E.R.; Horn, C.L.; Ouyang, H.; et al. Phase I dose escalation and pharmacokinetic evaluation of two different schedules of LY2334737, an oral gemcitabine prodrug, in patients with advanced solid tumors. Invest. New Drugs 2015, 33, 1206–1216. [Google Scholar] [CrossRef]
- Yap, T.A.; Olmos, D.; Brunetto, A.T.; Tunariu, N.; Barriuso, J.; Riisnaes, R.; Pope, L.; Clark, J.; Futreal, A.; Germuska, M.; et al. Phase I trial of a selective c-MET inhibitor ARQ 197 incorporating proof of mechanism pharmacodynamic studies. J. Clin. Oncol. 2011, 29, 1271–1279. [Google Scholar] [CrossRef]
- Okusaka, T.; Aramaki, T.; Inaba, Y.; Nakamura, S.; Morimoto, M.; Moriguchi, M.; Sato, T.; Ikawa, Y.; Ikeda, M.; Furuse, J. Phase I study of tivantinib in Japanese patients with advanced hepatocellular carcinoma: Distinctive pharmacokinetic profiles from oTher. solid tumors. Cancer Sci. 2015, 106, 611–617. [Google Scholar] [CrossRef]
- Yamamoto, N.; Murakami, H.; Hayashi, H.; Fujisaka, Y.; Hirashima, T.; Takeda, K.; Satouchi, M.; Miyoshi, K.; Akinaga, S.; Takahashi, T.; et al. CYP2C19 genotype-based phase I studies of a c-Met inhibitor tivantinib in combination with erlotinib, in advanced/metastatic non-small cell lung cancer. Br. J. Cancer 2013, 109, 2803–2809. [Google Scholar] [CrossRef] [Green Version]
- Schott, A.F.; Rae, J.M.; Griffith, K.A.; Hayes, D.F.; Sterns, V.; Baker, L.H. Combination vinorelbine and capecitabine for metastatic breast cancer using a non-body surface area dosing scheme. Cancer Chemother. Pharmacol. 2006, 58, 129–135. [Google Scholar] [CrossRef]
- Goetz, M.P.; Toft, D.; Reid, J.; Ames, M.; Stensgard, B.; Safgren, S.; Adjei, A.A.; Sloan, J.; Atherton, P.; Vasile, V.; et al. Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol. 2005, 23, 1078–1087. [Google Scholar] [CrossRef]
- Caponigro, F.; Lacombe, D.; Twelves, C.; Bauer, J.; Govaerts, A.S.; Marreaud, S.; Milano, A.; Anthoney, A. An EORTC phase I study of Bortezomib in combination with oxaliplatin, leucovorin and 5-fluorouracil in patients with advanced colorectal cancer. Eur. J. Cancer 2009, 45, 48–55. [Google Scholar] [CrossRef]
- McMichael, E.L.; Benner, B.; Atwal, L.S.; Courtney, N.B.; Mo, X.; Davis, M.E.; Campbell, A.R.; Duggan, M.C.; Williams, K.; Martin, K.; et al. A Phase I/II Trial of Cetuximab in Combination with Interleukin-12 Administered to Patients with Unresectable Primary or Recurrent Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2019, 25, 4955–4965. [Google Scholar] [CrossRef]
- Stevenson, J.P.; Redlinger, M.; Kluijtmans, L.A.; Sun, W.; Algazy, K.; Giantonio, B.; Haller, D.G.; Hardy, C.; Whitehead, A.S.; O’Dwyer, P.J. Phase I clinical and pharmacogenetic trial of irinotecan and raltitrexed administered every 21 days to patients with cancer. J. Clin. Oncol. 2001, 19, 4081–4087. [Google Scholar] [CrossRef]
- Veronese, M.L.; Stevenson, J.P.; Sun, W.; Redlinger, M.; Algazy, K.; Giantonio, B.; Hahn, S.; Vaughn, D.; Thorn, C.; Whitehead, A.S.; et al. Phase I trial of UFT/leucovorin and irinotecan in patients with advanced cancer. Eur. J. Cancer 2004, 40, 508–514. [Google Scholar] [CrossRef]
- Grem, J.L.; Kos, M.E.; Evande, R.E.; Meza, J.L.; Schwarz, J.K. A phase 1 clinical trial of sequential pralatrexate followed by a 48-h infusion of 5-fluorouracil given every oTher. week in adult patients with solid tumors. Cancer 2015, 121, 3862–3868. [Google Scholar] [CrossRef] [Green Version]
- Argiris, A.; Karamouzis, M.V.; Smith, R.; Kotsakis, A.; Gibson, M.K.; Lai, S.Y.; Kim, S.; Branstetter, B.F.; Shuai, Y.; Romkes, M.; et al. Phase I trial of pemetrexed in combination with cetuximab and concurrent radiotherapy in patients with head and neck cancer. Ann. Oncol. 2011, 22, 2482–2488. [Google Scholar] [CrossRef]
- Jalal, S.I.; Hanna, N.; Zon, R.; Masters, G.A.; Borghaei, H.; Koneru, K.; Badve, S.; Prasad, N.; Somaiah, N.; Wu, J.; et al. Phase I Study of Amrubicin and Cyclophosphamide in Patients With Advanced Solid Organ Malignancies: HOG LUN 07-130. Am. J. Clin. Oncol. 2017, 40, 329–335. [Google Scholar] [CrossRef]
- Beutel, G.; Glen, H.; Schoffski, P.; Chick, J.; Gill, S.; Cassidy, J.; Twelves, C. Phase I study of OSI-7904L, a novel liposomal thymidylate synthase inhibitor in patients with refractory solid tumors. Clin. Cancer Res. 2005, 11, 5487–5495. [Google Scholar] [CrossRef] [Green Version]
- Soo, R.A.; Syn, N.; Lee, S.C.; Wang, L.; Lim, X.Y.; Loh, M.; Tan, S.H.; Zee, Y.K.; Wong, A.L.; Chuah, B.; et al. Pharmacogenetics-Guided Phase I Study of Capecitabine on an Intermittent Schedule in Patients with Advanced or Metastatic Solid Tumours. Sci. Rep. 2016, 6, 27826. [Google Scholar] [CrossRef]
- Clamp, A.R.; Schoffski, P.; Valle, J.W.; Wilson, R.H.; Marreaud, S.; Govaerts, A.S.; Debois, M.; Lacombe, D.; Twelves, C.; Chick, J.; et al. A phase I and pharmacokinetic study of OSI-7904L, a liposomal thymidylate synthase inhibitor in combination with oxaliplatin in patients with advanced colorectal cancer. Cancer Chemother. Pharmacol. 2008, 61, 579–585. [Google Scholar] [CrossRef]
- Zhai, S.; Sausville, E.A.; Senderowicz, A.M.; Ando, Y.; Headlee, D.; Messmann, R.A.; Arbuck, S.; Murgo, A.J.; Melillo, G.; Fuse, E.; et al. Clinical pharmacology and pharmacogenetics of flavopiridol 1-h i.v. infusion in patients with refractory neoplasms. Anticancer Drugs 2003, 14, 125–135. [Google Scholar] [CrossRef]
- Font, A.; Salazar, R.; Maurel, J.; Taron, M.; Ramirez, J.L.; Tabernero, J.; Gallego, R.; Casado, E.; Manzano, J.L.; Carcereny, E.; et al. Cisplatin plus weekly CPT-11/docetaxel in advanced esophagogastric cancer: A phase I study with pharmacogenetic assessment of XPD, XRCC3 and UGT1A1 polymorphisms. Cancer Chemother. Pharmacol. 2008, 62, 1075–1083. [Google Scholar] [CrossRef]
- Denlinger, C.S.; Blanchard, R.; Xu, L.; Bernaards, C.; Litwin, S.; Spittle, C.; Berg, D.J.; McLaughlin, S.; Redlinger, M.; Dorr, A.; et al. Pharmacokinetic analysis of irinotecan plus bevacizumab in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2009, 65, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Singer, J.B.; Shou, Y.; Giles, F.; Kantarjian, H.M.; Hsu, Y.; Robeva, A.S.; Rae, P.; Weitzman, A.; Meyer, J.M.; Dugan, M.; et al. UGT1A1 promoter polymorphism increases risk of nilotinib-induced hyperbilirubinemia. Leukemia 2007, 21, 2311–2315. [Google Scholar] [CrossRef]
- DuBois, S.G.; Marachelian, A.; Fox, E.; Kudgus, R.A.; Reid, J.M.; Groshen, S.; Malvar, J.; Bagatell, R.; Wagner, L.; Maris, J.M.; et al. Phase I Study of the Aurora A Kinase Inhibitor Alisertib in Combination With Irinotecan and Temozolomide for Patients With Relapsed or Refractory Neuroblastoma: A NANT (New Approaches to Neuroblastoma Therapy) Trial. J. Clin. Oncol. 2016, 34, 1368–1375. [Google Scholar] [CrossRef] [Green Version]
- Burris, H.A.; Infante, J.R.; Anthony Greco, F.; Thompson, D.S.; Barton, J.H.; Bendell, J.C.; Nambu, Y.; Watanabe, N.; Jones, S.F. A phase I dose escalation study of NK012, an SN-38 incorporating macromolecular polymeric micelle. Cancer Chemother. Pharmacol. 2016, 77, 1079–1086. [Google Scholar] [CrossRef]
- Federico, S.M.; Pappo, A.S.; Sahr, N.; Sykes, A.; Campagne, O.; Stewart, C.F.; Clay, M.R.; Bahrami, A.; McCarville, M.B.; Kaste, S.C.; et al. A phase I trial of talazoparib and irinotecan with and without temozolomide in children and young adults with recurrent or refractory solid malignancies. Eur. J. Cancer 2020, 137, 204–213. [Google Scholar] [CrossRef]
- Joshi, S.S.; Catenacci, D.V.T.; Karrison, T.G.; Peterson, J.D.; Zalupski, M.M.; Sehdev, A.; Wade, J.; Sadiq, A.; Picozzi, V.J.; Amico, A.; et al. Clinical Assessment of 5-Fluorouracil/Leucovorin, Nab-Paclitaxel, and Irinotecan (FOLFIRABRAX) in Untreated Patients with Gastrointestinal Cancer Using UGT1A1 Genotype-Guided Dosing. Clin. Cancer Res. 2020, 26, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Hazama, S.; Nagashima, A.; Kondo, H.; Yoshida, S.; Shimizu, R.; Araki, A.; Yoshino, S.; Okayama, N.; Hinoda, Y.; Oka, M. Phase I study of irinotecan and doxifluridine for metastatic colorectal cancer focusing on the UGT1A1*28 polymorphism. Cancer Sci. 2010, 101, 722–727. [Google Scholar] [CrossRef]
- Yamamoto, N.; Takahashi, T.; Kunikane, H.; Masuda, N.; Eguchi, K.; Shibuya, M.; Takeda, Y.; Isobe, H.; Ogura, T.; Yokoyama, A.; et al. Phase I/II pharmacokinetic and pharmacogenomic study of UGT1A1 polymorphism in elderly patients with advanced non-small cell lung cancer treated with irinotecan. Clin. Pharmacol. Ther. 2009, 85, 149–154. [Google Scholar] [CrossRef]
- Chang, T.C.; Shiah, H.S.; Yang, C.H.; Yeh, K.H.; Cheng, A.L.; Shen, B.N.; Wang, Y.W.; Yeh, C.G.; Chiang, N.J.; Chang, J.Y.; et al. Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Cancer Chemother. Pharmacol. 2015, 75, 579–586. [Google Scholar] [CrossRef]
- Chiang, N.J.; Chao, T.Y.; Hsieh, R.K.; Wang, C.H.; Wang, Y.W.; Yeh, C.G.; Chen, L.T. A phase I dose-escalation study of PEP02 (irinotecan liposome injection) in combination with 5-fluorouracil and leucovorin in advanced solid tumors. BMC Cancer 2016, 16, 907. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, H.; Saji, S.; Nomura, S.; Tanaka, S.; Ueno, T.; Onoue, M.; Iwata, H.; Yamanaka, T.; Sasaki, Y.; Toi, M. A phase I/II pharmacokinetics/pharmacodynamics study of irinotecan combined with S-1 for recurrent/metastatic breast cancer in patients with selected UGT1A1 genotypes (the JBCRG-M01 study). Cancer Med. 2017, 6, 2909–2917. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, K.; Kamiura, S.; Yokoi, T.; Nakae, R.; Fujita, M.; Takemura, M.; Adachi, K.; Wakimoto, A.; Nishizaki, T.; Shiki, Y.; et al. Combination chemotherapy with irinotecan and gemcitabine for taxane/platinum-resistant/refractory ovarian and primary peritoneal cancer: A multicenter phase I/II trial (GOGO-Ov 6). Cancer Chemother. Pharmacol. 2017, 80, 1239–1247. [Google Scholar] [CrossRef]
- Kurzrock, R.; Goel, S.; Wheler, J.; Hong, D.; Fu, S.; Rezai, K.; Morgan-Linnell, S.K.; Urien, S.; Mani, S.; Chaudhary, I.; et al. Safety, pharmacokinetics, and activity of EZN-2208, a novel conjugate of polyethylene glycol and SN38, in patients with advanced malignancies. Cancer 2012, 118, 6144–6151. [Google Scholar] [CrossRef] [Green Version]
- Doi, T.; Yoshino, T.; Fuse, N.; Boku, N.; Yamazaki, K.; Koizumi, W.; Shimada, K.; Takinishi, Y.; Ohtsu, A. Phase I study of TAS-102 and irinotecan combination therapy in Japanese patients with advanced colorectal cancer. Invest. New Drugs 2015, 33, 1068–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goey, A.K.; Sissung, T.M.; Peer, C.J.; Trepel, J.B.; Lee, M.J.; Tomita, Y.; Ehrlich, S.; Bryla, C.; Balasubramaniam, S.; Piekarz, R.; et al. Effects of UGT1A1 genotype on the pharmacokinetics, pharmacodynamics, and toxicities of belinostat administered by 48-h continuous infusion in patients with cancer. J. Clin. Pharmacol. 2016, 56, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Steeghs, N.; Gelderblom, H.; Wessels, J.; Eskens, F.A.; de Bont, N.; Nortier, J.W.; Guchelaar, H.J. Pharmacogenetics of telatinib, a VEGFR-2 and VEGFR-3 tyrosine kinase inhibitor, used in patients with solid tumors. Invest. New Drugs 2011, 29, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiorean, E.G.; Perkins, S.M.; Strother, R.M.; Younger, A.; Funke, J.M.; Shahda, S.G.; Hahn, N.M.; Sandrasegaran, K.; Jones, D.R.; Skaar, T.C.; et al. Phase I, Pharmacogenomic, Drug Interaction Study of Sorafenib and Bevacizumab in Combination with Paclitaxel in Patients with Advanced Refractory Solid Tumors. Mol. Cancer Ther. 2020, 19, 2155–2162. [Google Scholar] [CrossRef]
- Kofler, D.M.; Gawlik, B.B.; Elter, T.; Gianella-Borradori, A.; Wendtner, C.M.; Hallek, M. Phase 1b trial of atacicept, a recombinant protein binding BLyS and APRIL, in patients with chronic lymphocytic leukemia. Leukemia 2012, 26, 841–844. [Google Scholar] [CrossRef]
- Philip, P.A.; Goldman, B.; Ramanathan, R.K.; Lenz, H.J.; Lowy, A.M.; Whitehead, R.P.; Wakatsuki, T.; Iqbal, S.; Gaur, R.; Benedetti, J.K.; et al. Dual blockade of epidermal growth factor receptor and insulin-like growth factor receptor-1 signaling in metastatic pancreatic cancer: Phase Ib and randomized phase II trial of gemcitabine, erlotinib, and cixutumumab versus gemcitabine plus erlotinib (SWOG S0727). Cancer 2014, 120, 2980–2985. [Google Scholar] [CrossRef] [Green Version]
- Ramnath, N.; Daignault-Newton, S.; Dy, G.K.; Muindi, J.R.; Adjei, A.; Elingrod, V.L.; Kalemkerian, G.P.; Cease, K.B.; Stella, P.J.; Brenner, D.E.; et al. A phase I/II pharmacokinetic and pharmacogenomic study of calcitriol in combination with cisplatin and docetaxel in advanced non-small-cell lung cancer. Cancer Chemother. Pharmacol. 2013, 71, 1173–1182. [Google Scholar] [CrossRef] [Green Version]
- Ganjoo, K.N.; de Vos, S.; Pohlman, B.L.; Flinn, I.W.; Forero-Torres, A.; Enas, N.H.; Cronier, D.M.; Dang, N.H.; Foon, K.A.; Carpenter, S.P.; et al. Phase 1/2 study of ocaratuzumab, an Fc-engineered humanized anti-CD20 monoclonal antibody, in low-affinity FcgammaRIIIa patients with previously treated follicular lymphoma. Leuk Lymphoma 2015, 56, 42–48. [Google Scholar] [CrossRef]
- Falchook, G.S.; Moulder, S.; Naing, A.; Wheler, J.J.; Hong, D.S.; Piha-Paul, S.A.; Tsimberidou, A.M.; Fu, S.; Zinner, R.; Janku, F.; et al. A phase I trial of combination trastuzumab, lapatinib, and bevacizumab in patients with advanced cancer. Invest. New Drugs 2015, 33, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Parihar, R.; Nadella, P.; Lewis, A.; Jensen, R.; De Hoff, C.; Dierksheide, J.E.; VanBuskirk, A.M.; Magro, C.M.; Young, D.C.; Shapiro, C.L.; et al. A phase I study of interleukin 12 with trastuzumab in patients with human epidermal growth factor receptor-2-overexpressing malignancies: Analysis of sustained interferon gamma production in a subset of patients. Clin. Cancer Res. 2004, 10, 5027–5037. [Google Scholar] [CrossRef] [Green Version]
- Ricart, A.D.; Berlin, J.D.; Papadopoulos, K.P.; Syed, S.; Drolet, D.W.; Quaratino-Baker, C.; Horan, J.; Chick, J.; Vermeulen, W.; Tolcher, A.W.; et al. Phase I, pharmacokinetic and biological correlative study of OSI-7904L, a novel liposomal thymidylate synthase inhibitor, and cisplatin in patients with solid tumors. Clin. Cancer Res. 2008, 14, 7947–7955. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.S.; Chao, Y.; Bang, Y.J.; Roca, E.; Chung, H.C.; Palazzo, F.; Kim, Y.H.; Myrand, S.P.; Mullaney, B.P.; Shen, L.J.; et al. A phase I/II and pharmacogenomic study of pemetrexed and cisplatin in patients with unresectable, advanced gastric carcinoma. Anticancer Drugs 2010, 21, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Okano, N.; Naruge, D.; Kawai, K.; Kobayashi, T.; Nagashima, F.; Endou, H.; Furuse, J. First-in-human phase I study of JPH203, an L-type amino acid transporter 1 inhibitor, in patients with advanced solid tumors. Invest. New Drugs 2020, 38, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Saulnier Sholler, G.L.; Gerner, E.W.; Bergendahl, G.; MacArthur, R.B.; VanderWerff, A.; Ashikaga, T.; Bond, J.P.; Ferguson, W.; Roberts, W.; Wada, R.K.; et al. A Phase I Trial of DFMO Targeting Polyamine Addiction in Patients with Relapsed/Refractory Neuroblastoma. PLoS ONE 2015, 10, e0127246. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Hays, J.L.; Annunziata, C.M.; Noonan, A.M.; Minasian, L.; Zujewski, J.A.; Yu, M.; Gordon, N.; Ji, J.; Sissung, T.M.; et al. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J. Natl. Cancer Inst. 2014, 106, dju089. [Google Scholar] [CrossRef]
- Yee, K.W.; Hagey, A.; Verstovsek, S.; Cortes, J.; Garcia-Manero, G.; O’Brien, S.M.; Faderl, S.; Thomas, D.; Wierda, W.; Kornblau, S.; et al. Phase 1 study of ABT-751, a novel microtubule inhibitor, in patients with refractory hematologic malignancies. Clin. Cancer Res. 2005, 11, 6615–6624. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.A.; Morrison, G.; Lin, P.; Leonard, G.D.; Nguyen, D.; Guo, X.; Szabo, E.; Hopkins, J.L.; Leguizamo, J.P.; Harold, N.; et al. A phase I pharmacologic and pharmacogenetic trial of sequential 24-h infusion of irinotecan followed by leucovorin and a 48-h infusion of fluorouracil in adult patients with solid tumors. Clin. Cancer Res. 2005, 11, 4144–4150. [Google Scholar] [CrossRef] [Green Version]
- Toffoli, G.; Cecchin, E.; Gasparini, G.; D’Andrea, M.; Azzarello, G.; Basso, U.; Mini, E.; Pessa, S.; De Mattia, E.; Lo Re, G.; et al. Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. J. Clin. Oncol. 2010, 28, 866–871. [Google Scholar] [CrossRef] [Green Version]
- Falchook, G.S.; Wheler, J.J.; Naing, A.; Piha-Paul, S.A.; Fu, S.; Tsimberidou, A.M.; Hong, D.S.; Janku, F.; Zinner, R.; Jiang, Y.; et al. Dual antiangiogenic inhibition: A phase I dose escalation and expansion trial targeting VEGF-A and VEGFR in patients with advanced solid tumors. Invest. New Drugs 2015, 33, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Chiorean, E.G.; Schneider, B.P.; Akisik, F.M.; Perkins, S.M.; Anderson, S.; Johnson, C.S.; DeWitt, J.; Helft, P.; Clark, R.; Johnston, E.L.; et al. Phase 1 pharmacogenetic and pharmacodynamic study of sorafenib with concurrent radiation therapy and gemcitabine in locally advanced unresectable pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 284–291. [Google Scholar] [CrossRef]
- Sen, S.; Kato, S.; Agarwal, R.; Piha-Paul, S.; Hess, K.; Karp, D.; Janku, F.; Fu, S.; Naing, A.; Pant, S.; et al. Phase I study of nab-paclitaxel, gemcitabine, and bevacizumab in patients with advanced cancers. Br. J. Cancer 2018, 118, 1419–1424. [Google Scholar] [CrossRef]
- Gerstner, E.R.; Eichler, A.F.; Plotkin, S.R.; Drappatz, J.; Doyle, C.L.; Xu, L.; Duda, D.G.; Wen, P.Y.; Jain, R.K.; Batchelor, T.T. Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide. J. NeuroOncol. 2011, 103, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Bins, S.; Huitema, A.D.R.; Laven, P.; Bouazzaoui, S.E.; Yu, H.; van Erp, N.; van Herpen, C.; Hamberg, P.; Gelderblom, H.; Steeghs, N.; et al. Impact of CYP3A4*22 on Pazopanib Pharmacokinetics in Cancer Patients. Clin. Pharmacokinet. 2019, 58, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Thiessen, B.; Stewart, C.; Tsao, M.; Kamel-Reid, S.; Schaiquevich, P.; Mason, W.; Easaw, J.; Belanger, K.; Forsyth, P.; McIntosh, L.; et al. A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: Clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother. Pharmacol. 2010, 65, 353–361. [Google Scholar] [CrossRef]
- White-Koning, M.; Civade, E.; Geoerger, B.; Thomas, F.; Le Deley, M.C.; Hennebelle, I.; Delord, J.P.; Chatelut, E.; Vassal, G. Population analysis of erlotinib in adults and children reveals pharmacokinetic characteristics as the main factor explaining tolerance particularities in children. Clin. Cancer Res. 2011, 17, 4862–4871. [Google Scholar] [CrossRef] [Green Version]
- Veltkamp, S.A.; Rosing, H.; Huitema, A.D.; Fetell, M.R.; Nol, A.; Beijnen, J.H.; Schellens, J.H. Novel paclitaxel formulations for oral application: A phase I pharmacokinetic study in patients with solid tumours. Cancer Chemother. Pharmacol. 2007, 60, 635–642. [Google Scholar] [CrossRef]
- Otsubo, K.; Nosaki, K.; Imamura, C.K.; Ogata, H.; Fujita, A.; Sakata, S.; Hirai, F.; Toyokawa, G.; Iwama, E.; Harada, T.; et al. Phase I study of salazosulfapyridine in combination with cisplatin and pemetrexed for advanced non-small-cell lung cancer. Cancer Sci. 2017, 108, 1843–1849. [Google Scholar] [CrossRef]
- Anthoney, D.A.; Naik, J.; Macpherson, I.R.; Crawford, D.; Hartley, J.M.; Hartley, J.A.; Saito, T.; Abe, M.; Jones, K.; Miwa, M.; et al. Phase I study of TP300 in patients with advanced solid tumors with pharmacokinetic, pharmacogenetic and pharmacodynamic analyses. BMC Cancer 2012, 12, 536. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, N.; Nokihara, H.; Yamada, Y.; Uenaka, K.; Sekiguchi, R.; Makiuchi, T.; Slapak, C.A.; Benhadji, K.A.; Tamura, T. Phase I study of oral gemcitabine prodrug (LY2334737) in Japanese patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2013, 71, 1645–1655. [Google Scholar] [CrossRef]
- Park, S.R.; Hong, Y.S.; Lim, H.S.; Seong, M.W.; Kong, S.Y.; Kim, S.Y.; Park, Y.I.; Jung, K.H. Phase I clinical and pharmacokinetic/pharmacogenetic study of a triplet regimen of S-1/irinotecan/oxaliplatin in patients with metastatic colorectal or gastric cancer. Cancer Chemother. Pharmacol. 2013, 72, 953–964. [Google Scholar] [CrossRef]
- Tanii, H.; Shitara, Y.; Horie, T. Population pharmacokinetic analysis of letrozole in Japanese postmenopausal women. Eur. J. Clin. Pharmacol. 2011, 67, 1017–1025. [Google Scholar] [CrossRef]
- Yamada, Y.; Yamamoto, N.; Shimoyama, T.; Horiike, A.; Fujisaka, Y.; Takayama, K.; Sakamoto, T.; Nishioka, Y.; Yasuda, S.; Tamura, T. Phase I pharmacokinetic and pharmacogenomic study of E7070 administered once every 21 days. Cancer Sci. 2005, 96, 721–728. [Google Scholar] [CrossRef]
- Kattel, K.; Evande, R.; Tan, C.; Mondal, G.; Grem, J.L.; Mahato, R.I. Impact of CYP2C19 polymorphism on the pharmacokinetics of nelfinavir in patients with pancreatic cancer. Br. J. Clin. Pharmacol. 2015, 80, 267–275. [Google Scholar] [CrossRef] [Green Version]
- de Jong, J.; Hellemans, P.; De Wilde, S.; Patricia, D.; Masterson, T.; Manikhas, G.; Myasnikov, A.; Osmanov, D.; Cordoba, R.; Panizo, C.; et al. A drug-drug interaction study of ibrutinib with moderate/strong CYP3A inhibitors in patients with B-cell malignancies. Leuk. Lymphoma 2018, 59, 2888–2895. [Google Scholar] [CrossRef]
- Yamamoto, N.; Murakami, H.; Nishina, T.; Hirashima, T.; Sugio, K.; Muro, K.; Takahashi, T.; Naito, T.; Yasui, H.; Akinaga, S.; et al. The effect of CYP2C19 polymorphism on the safety, tolerability, and pharmacokinetics of tivantinib (ARQ 197): Results from a phase I trial in advanced solid tumors. Ann. Oncol. 2013, 24, 1653–1659. [Google Scholar] [CrossRef]
- Turner, P.K.; Hall, S.D.; Chapman, S.C.; Rehmel, J.L.; Royalty, J.E.; Guo, Y.; Kulanthaivel, P. Abemaciclib Does Not Have a Clinically Meaningful Effect on Pharmacokinetics of CYP1A2, CYP2C9, CYP2D6, and CYP3A4 Substrates in Patients with Cancer. Drug Metab. Dispos. 2020, 48, 796–803. [Google Scholar] [CrossRef]
- Hamberg, P.; Woo, M.M.; Chen, L.C.; Verweij, J.; Porro, M.G.; Zhao, L.; Li, W.; van der Biessen, D.; Sharma, S.; Hengelage, T.; et al. Effect of ketoconazole-mediated CYP3A4 inhibition on clinical pharmacokinetics of panobinostat (LBH589), an orally active histone deacetylase inhibitor. Cancer Chemother. Pharmacol. 2011, 68, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Danson, S.J.; Johnson, P.; Ward, T.H.; Dawson, M.; Denneny, O.; Dickinson, G.; Aarons, L.; Watson, A.; Jowle, D.; Cummings, J.; et al. Phase I pharmacokinetic and pharmacodynamic study of the bioreductive drug RH1. Ann. Oncol. 2011, 22, 1653–1660. [Google Scholar] [CrossRef]
- Ewesuedo, R.B.; Iyer, L.; Das, S.; Koenig, A.; Mani, S.; Vogelzang, N.J.; Schilsky, R.L.; Brenckman, W.; Ratain, M.J. Phase I clinical and pharmacogenetic study of weekly TAS-103 in patients with advanced cancer. J. Clin. Oncol. 2001, 19, 2084–2090. [Google Scholar] [CrossRef]
- Stewart, C.F.; Tagen, M.; Schwartzberg, L.S.; Blakely, L.J.; Tauer, K.W.; Smiley, L.M. Phase I dosage finding and pharmacokinetic study of intravenous topotecan and oral erlotinib in adults with refractory solid tumors. Cancer Chemother. Pharmacol. 2014, 73, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Takano, M.; Goto, T.; Hirata, J.; Furuya, K.; Horie, K.; Takahashi, M.; Yokota, H.; Kino, N.; Kudoh, K.; Kikuchi, Y. UGT1A1 genotype-specific phase I and pharmacokinetic study for combination chemotherapy with irinotecan and cisplatin: A Saitama Tumor Board study. Eur. J. Gynaecol Oncol. 2013, 34, 120–123. [Google Scholar] [PubMed]
- Kummar, S.; Gutierrez, M.E.; Anderson, L.W.; Klecker, R.W., Jr.; Chen, A.; Murgo, A.J.; Doroshow, J.H.; Collins, J.M. Pharmacogenetically driven patient selection for a first-in-human phase I trial of batracylin in patients with advanced solid tumors and lymphomas. Cancer Chemother. Pharmacol. 2013, 72, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Kendra, K.L.; Plummer, R.; Salgia, R.; O’Brien, M.E.; Paul, E.M.; Suttle, A.B.; Compton, N.; Xu, C.F.; Ottesen, L.H.; Villalona-Calero, M.A. A multicenter phase I study of pazopanib in combination with paclitaxel in first-line treatment of patients with advanced solid tumors. Mol. Cancer Ther. 2015, 14, 461–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertino, E.M.; McMichael, E.L.; Mo, X.; Trikha, P.; Davis, M.; Paul, B.; Grever, M.; Carson, W.E.; Otterson, G.A. A Phase I Trial to Evaluate Antibody-Dependent Cellular Cytotoxicity of Cetuximab and Lenalidomide in Advanced Colorectal and Head and Neck Cancer. Mol. Cancer Ther. 2016, 15, 2244–2250. [Google Scholar] [CrossRef] [Green Version]
- Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009–2018. JAMA 2020, 323, 844–853. [Google Scholar] [CrossRef]
Study Endpoints vs. Genotype | n = | % | |
---|---|---|---|
Toxicity | 42 | 50.0 | |
Pharmacokinetics | 40 | 47.6 | |
Response | 24 | 28.6 | |
Progression-free survival | 16 | 19.0 | |
Genotype-directed dosing | 7 | 8.3 | |
Overall survival | 5 | 6.0 | |
Surrogate marker | 5 | 6.0 | |
Dose | 4 | 4.8 | |
Drug interaction | 3 | 3.6 | |
Radiation | 1 | 1.2 | |
Disease | |||
Solid tumors | 48 | 57.1 | |
Gastrointestinal | 7 | 8.3 | |
Colorectal | 6 | 7.1 | |
Breast | 3 | 3.6 | |
NSCLC | 3 | 3.6 | |
Pancreatic | 3 | 3.6 | |
Glioblastoma | 2 | 2.4 | |
Head and Neck | 2 | 2.4 | |
Adrenal | 1 | 1.2 | |
Acute lymophoblastic leukemia | 1 | 1.2 | |
Acute myelogenous leukemia | 1 | 1.2 | |
Anal | 1 | 1.2 | |
Chronic lymphocytic leukemia | 1 | 1.2 | |
Follicular Lymphoma | 1 | 1.2 | |
Hepatocellular Carcinoma | 1 | 1.2 | |
Hematologic | 1 | 1.2 | |
Neuroblastoma | 1 | 1.2 | |
Soft Tissue Sarcoma | 1 | 1.2 | |
Number of drugs administered | |||
1 | 36 | 42.9 | |
2 | 29 | 34.5 | |
3 | 19 | 22.6 |
Gene–Drug Pair | Number of Tested Variants | Number of Patients | Number of Dose Levels | Formal Statistical Comparison? | Association? | Reference | |
---|---|---|---|---|---|---|---|
Studies Including Toxicity (n = 115 Gene Comparisons, n = 42 Studies) | |||||||
ABCB1 | |||||||
irinotecan | 1 | 23 | 2 | Y | N | Soepenberg et al. (2005) [1] | |
9-aminocamptothecin | 3 | 30 | 3 | Y | N | Zamboni et al. (2006) [2] | |
9-nitrocamptothecin | 3 | 30 | 3 | Y | N | Zamboni et al. (2006) [2] | |
3-AP | 3 | 19 | 5 | Y | Y | Choi et al. (2010) [3] | |
danusertib | 3 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
pazopanib | 3 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
lapatinib | 3 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
ABCB4 | |||||||
doxorubicin | 1 | 20 | 1 | N | N/A | Chugh et al. (2015) [7] | |
ABCC1 | |||||||
doxorubicin | 1 | 20 | 1 | N | N/A | Chugh et al. (2015) [7] | |
ABCC2 | |||||||
9-aminocamptothecin | 1 | 33 | 3 | Y | N | Zamboni et al. (2006) [2] | |
9-nitrocamptothecin | 1 | 33 | 3 | Y | N | Zamboni et al. (2006) [2] | |
ABCG2 | |||||||
9-aminocamptothecin | 1 | 28 | 3 | Y | N | Zamboni et al. (2006) [2] | |
9-nitrocamptothecin | 1 | 28 | 3 | Y | N | Zamboni et al. (2006) [2] | |
pazopanib | 1 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
danusertib | 2 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
AURKA | |||||||
danusertib | 2 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
AURKB | |||||||
danusertib | 1 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
CBR1 | |||||||
doxorubicin | 1 | 20 | 1 | N | N/A | Chugh et al. (2015) [7] | |
CBR3 | |||||||
doxorubicin | 1 | 20 | 1 | N | N/A | Chugh et al. (2015) [7] | |
CDA | |||||||
capecitabine | 1 | 18 | 3 | Y | Y | Deenen et al. (2013) [8] | |
capecitabine | 1 | 34 | 3 | Y | Y | Deenen et al. (2015) [9] | |
gemcitabine | 1 | 73 | 7 | Y | Y | Faivre et al. (2015) [10] | |
CES2 | |||||||
gemcitabine | 1 | 73 | 7 | Y | N | Faivre et al. (2015) [10] | |
Cyclin D1 | |||||||
cetuximab | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
CYP2C8 | |||||||
pazopanib | 2 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
CYP2C19 | |||||||
tivantinib | 2 | 51 | 5 | Y | Y | Yap et al. (2011) [11] | |
tivantinib | 2 | 28 | 4 | N | N/A | Okusaka et al. (2015) [12] | |
tivantinib | undisclosed | 25 | 4 | N | N/A | Yamamoto et al. (2013) [13] | |
CYP3A4 | |||||||
pazopanib | 1 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
irinotecan | 3 | 23 | 2 | Y | N | Soepenberg et al. (2005) [1] | |
CYP3A5 | |||||||
vinorelbine | 1 | 24 | 5 | N | N/A | Schott et al. (2006) [14] | |
irinotecan | 1 | 23 | 2 | Y | N | Soepenberg et al. (2005) [1] | |
17-AAG | 1 | 21 | 11 | N | N/A | Goetz et al. (2005) [15] | |
pazopanib | 1 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
lapatinib | 3 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
DPYD | |||||||
capeciitabine | 2 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
capeciitabine | 3 | 18 | 3 | Y | N | Deenen et al. (2013) [8] | |
EGF | |||||||
cetuximab | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
EGFR | |||||||
cetuximab | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
ENOSF1 | |||||||
capeciitabine | 1 | 34 | 3 | Y | Y | Deenen et al. (2015) [9] | |
ERBB2 | |||||||
lapatinib | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
ERCC1 | |||||||
oxaliplatin | 1 | 34 | 3 | Y | Y | Deenen et al. (2015) [9] | |
oxaliplatin | undisclosed | 16 | 1 | Y | N | Caponigro et al. (2009) [16] | |
ERCC2 | |||||||
oxaliplatin | 1 | 34 | 3 | Y | Y | Deenen et al. (2015) [9] | |
FcgRIIa | |||||||
cetuximab | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
FcgRIIIa | |||||||
cetuximab | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
cetuximab | 1 | 23 | 3 | Y | N | McMichael et al. (2019) [17] | |
FLT3 | |||||||
danusertib | 1 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
FLT4 | |||||||
danusertib | 1 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
FMAO2 | |||||||
doxorubicin | 1 | 20 | 1 | N | N/A | Chugh et al. (2015) [7] | |
FMO3 | |||||||
danusertib | 3 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
FPGS | |||||||
pemetrexed | 1 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
GGH | |||||||
pemetrexed | 2 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
GIF | |||||||
pemetrexed | 1 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
GSTP1 | |||||||
capeciitabine | 1 | 18 | 3 | Y | N | Deenen et al. (2013) [8] | |
oxaliplatin | 1 | 34 | 3 | Y | Y | Deenen et al. (2015) [9] | |
GSTT1 | |||||||
oxaliplatin | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
HLA | |||||||
gemcitabine | 1 | 73 | 13 | Y | N | Faivre et al. (2015) [10] | |
HNMT | |||||||
doxorubicin | 1 | 20 | 1 | N | N/A | Chugh et al. (2015) [7] | |
MTHFR | |||||||
ralitrexed | 1 | 33 | 9 | Y | Y | Stevenson et al. (2001) [18] | |
5-FU | 1 | 24 | 5 | N | N/A | Veronese et al. (2004) [19] | |
capeciitabine | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
pemetrexed | 2 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
pralatrexate | 2 | 27 | 5 | Y | N | Grem et al. (2015) [20] | |
pemetrexed | 3 | 32 | 3 | Y | N | Argiris et al. (2011) [21] | |
NQO1 | |||||||
17-AAG | 1 | 21 | 11 | N | N/A | Goetz et al. (2005) [15] | |
amrubicin | 1 | 36 | 4 | Y | N | Jalal et al. (2017) [22] | |
SLC10A2 | |||||||
doxorubicin | 1 | 20 | 1 | N | N/A | Chugh et al. (2015) [7] | |
SLC19A1 | |||||||
pemetrexed | 1 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
SLC28A1 | |||||||
gemcitabine | 1 | 73 | 7 | Y | N | Faivre et al. (2015) [10] | |
SLC28A3 | |||||||
doxorubicin | 1 | 20 | 1 | N | N/A | Chugh et al. (2015) [7] | |
RET | |||||||
danusertib | 2 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
TYMS | |||||||
OSI-7904L | 1 | 31 | 8 | Y | N | Beutel et al. (2005) [23] | |
capeciitabine | 1 | 34 | 3 | Y | Y | Deenen et al. (2015) [9] | |
pralatrexate | 1 | 27 | 5 | Y | N | Grem et al. (2015) [20] | |
Capeciitabine * | 1 | 23 | 4 | Y | N | Soo et al. (2016) [24] | |
OSI-7904L | 2 | 15 | 3 | Y | N | Clamp et al. (2008) [25] | |
pemetrexed | 2 | 32 | 3 | Y | N | Argiris et al. (2011) [21] | |
capeciitabine | 2 | 18 | 3 | Y | N | Deenen et al. (2013) [8] | |
pemetrexed | 2 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
UGT1A1 | |||||||
flavopiridol | 1 | 49 | 9 | Y | N | Zhai et al. (2003) [26] | |
irinotecan | 1 | 23 | 2 | Y | N | Soepenberg et al. (2005) [1] | |
irinotecan | 1 | 28 | 3 | Y | N | Font et al. (2008) [27] | |
irinotecan | 1 | 45 | 1 | Y | N | Denlinger et al. (2009) [28] | |
3-AP | 1 | 19 | 5 | N | N/A | Choi et al. (2010) [3] | |
nilotinib | 1 | 111 | 9 | Y | Y | Singer et al. (2007) [29] | |
pazopanib | 1 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
gemcitabine | 1 | 73 | 13 | Y | N | Faivre et al. (2015) [10] | |
alisertib | 1 | 22 | 1 | Y | N/A | DuBois et al. (2016) [30] | |
irinotecan | 1 | 22 | 1 | Y | N/A | DuBois et al. (2016) [30] | |
SN-38 * | 1 | 39 | 7 | N | N/A | Burris et al. (2016) [31] | |
irinotecan | 1 | 31 | 2 | Y | Y | Federico et al. (2020) [32] | |
irinotecan * | 1 | 50 | 3 | N | N/A | Joshi et al. (2020) [33] | |
irinotecan * | 2 | 27 | 4,2 | Y | Y | Hazama et al. (2010) [34] | |
irinotecan | 2 | 37 | 3 | Y | Y | Yamamoto et al. (2009) [35] | |
irinotecan | 2 | 11 | 3 | N | N/A | Chang et al. (2015) [36] | |
irinotecan | 2 | 16 | 4 | N | N/A | Chiang et al. (2016) [37] | |
irinotecan | 2 | 35 | 2 | Y | N | Ishiguro et al. (2017) [38] | |
irinotecan | 2 | 35 | 2 | N | N/A | Yoshino et al. (2017) [39] | |
SN-38 | 3 | 39 | 6 | N | N/A | Kurzrock et al. (2012) [40] | |
irinotecan | 3 | 10 | 2 | N | N/A | Doi et al. (2015) [41] | |
belinostat | 3 | 25 | 4 | Y | Y | Goey et al. (2016) [42] | |
bortezomib | undisclosed | 16 | N/A | Y | N | Caponigro et al. (2009) [16] | |
UGT1A6 | |||||||
doxorubicin | 1 | 20 | 1 | N | N/A | Chugh et al. (2015) [7] | |
irinotecan | 3 | 45 | 1 | Y | Y | Denlinger et al. (2009) [28] | |
UGT1A7 | |||||||
irinotecan | 4 | 45 | 1 | Y | N | Denlinger et al. (2009) [28] | |
UGT1A9 | |||||||
irinotecan | 1 | 45 | 1 | Y | N | Denlinger et al. (2009) [28] | |
VEGFA | |||||||
pazopanib | 2 | 16 | 2 | Y | Y | Infante et al. (2011) [5] | |
teletanib | 3 | 33 | 7 | Y | N | Steeghs et al. (2011) [43] | |
VEGFR2 | |||||||
pazopanib | 2 | 16 | 2 | Y | N | Infante et al. (2011) [5] | |
danusertib | 5 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
XPD | |||||||
oxaliplatin | 1 | 15 | 3 | Y | N | Clamp et al. (2008) [25] | |
cisplatin | 2 | 28 | 3 | Y | N | Font et al. (2008) [27] | |
XRCC1 | |||||||
oxaliplatin | undisclosed | 16 | 1 | Y | N | Caponigro et al. (2009) [16] | |
XRCC3 | |||||||
cisplatin | 2 | 28 | 3 | Y | N | Font et al. (2008) [27] | |
Studies Including Response or Progression-Free Survival (n = 76 Gene Comparisons, n = 32 Studies) | |||||||
ABCB1 | |||||||
lapatinib | 3 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
paclitaxel | 3 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
APRIL | |||||||
atacicept | 3 | 19 | 6 | Y | Y | Kofler et al. (2012) [45] | |
BCMA | |||||||
atacicept | 2 | 19 | 6 | Y | N | Kofler et al. (2012) [45] | |
Cyclin D1 | |||||||
cetuximab | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
CDA | |||||||
capecitabine | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
gemcitabine | undisclosed | 89 | 1 | Y | N | Philip et al. (2014) [46] | |
CYP2C8 | |||||||
paclitaxel | 1 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
CYP24A1 | |||||||
calcitriol | 28 | 20 | 4 | Y | Y | Ramnath et al. (2013) [47] | |
CYP3A4 | |||||||
paclitaxel | 1 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
CYP3A5 | |||||||
lapatinib | 3 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
paclitaxel | 3 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
DPYD | |||||||
capeciitabine | 2 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
EGF | |||||||
cetuximab | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
erlotinib | undisclosed | 89 | 1 | Y | N | Philip et al. (2014) [46] | |
EGFR | |||||||
cetuximab | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
erlotinib | undisclosed | 89 | 1 | Y | N | Philip et al. (2014) [46] | |
ENOSF1 | |||||||
capeciitabine | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
ERBB2 | |||||||
lapatinib | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
ERCC1 | |||||||
oxaliplatin | undisclosed | 16 | 1 | Y | N | Caponigro et al. (2009) [16] | |
oxaliplatin | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
ERCC2 | |||||||
oxaliplatin | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
FcgRIIa | |||||||
cetuximab | 1 | 22 | 3 | Y | Y | Deeken et al. (2015) [6] | |
erlotinib | undisclosed | 89 | 1 | Y | N | Philip et al. (2014) [46] | |
FcgRIIIa | |||||||
cetuximab | 1 | 22 | 3 | Y | N | Deeken et al. (2015) [6] | |
cetuximab | 1 | 23 | 3 | Y | N | McMichael et al. (2019) [17] | |
octratuzumab * | 1 | 50 | 5 | Y | Y | Ganjoo et al. (2015) [48] | |
erlotinib | undisclosed | 89 | 1 | Y | N | Philip et al. (2014) [46] | |
FLT1 | |||||||
sorafenib | 1 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
GSTP1 | |||||||
oxaliplatin | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
GSTT1 | |||||||
oxaliplatin | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
HER2 | |||||||
trastuzumab | 5 | 56 | 12 | N | N/A | Falchook et al. (2015) [49] | |
IFNgamma | |||||||
trastuzumab, IL12 | 1 | 15 | 5 | N | N/A | Parihar et al. (2004) [50] | |
IGF1 | |||||||
erlotinib | undisclosed | 89 | 1 | Y | Y | Philip et al. (2014) [46] | |
IL6 | |||||||
trastuzumab, IL12 | 2 | 15 | 5 | N | N/A | Parihar et al. (2004) [50] | |
IL8 | |||||||
erlotinib | undisclosed | 89 | 1 | Y | N | Philip et al. (2014) [46] | |
IL10 | |||||||
trastuzumab, IL12 | 3 | 15 | 5 | N | N/A | Parihar et al. (2004) [50] | |
MTHFR | |||||||
capeciitabine | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
OSI-7904L | 1 | 30 | 4 | N | N/A | Ricart et al. (2008) [51] | |
pemetrexed | 2 | 89 | 3 | Y | N | Chen et al. (2010) [52] | |
pemetrexed | 3 | 32 | 3 | Y | N | Argiris et al. (2011) [21] | |
NAT2 | |||||||
JPH203 | 10 | 17 | 5 | N | N/A | Okano et al. (2020) [53] | |
NQO1 | |||||||
amrubicin | 1 | 36 | 4 | Y | N | Jalal et al. (2017) [22] | |
ODC | |||||||
DFMO | 2 | 21 | 4 | Y | N | Saulnier Sholler et al. (2015) [54] | |
PARP1 | |||||||
olaparib | 1 | 45 | 6 | N | N/A | Lee et al. (2014) [55] | |
RRM1 | |||||||
gemcitabine | undisclosed | 89 | 1 | Y | N | Philip et al. (2014) [46] | |
TACI | |||||||
atacicept | 5 | 19 | 6 | Y | Y | Kofler et al. (2012) [45] | |
TGFB | |||||||
trastuzumab, IL12 | 2 | 15 | 5 | N | N/A | Parihar et al. (2004) [50] | |
TNFalpha | |||||||
trastuzumab, IL12 | 1 | 15 | 5 | N | N/A | Parihar et al. (2004) [50] | |
TUBB | |||||||
ABT-571 | 8 | 32 | 6 | N | N/A | Yee et al. (2005) [56] | |
TYMS | |||||||
5-FU | 1 | 28 | 4 | N | N/A | Wright et al. (2005) [57] | |
OSI-7904L | 1 | 31 | 8 | Y | N | Beutel et al. (2005) [23] | |
capeciitabine * | 1 | 23 | 4 | Y | N | Soo et al. (2016) [24] | |
capeciitabine | 1 | 34 | 3 | Y | N | Deenen et al. (2015) [9] | |
OSI-7904L | 2 | 15 | 3 | Y | N | Clamp et al. (2008) [25] | |
OSI-7904L | 2 | 30 | 4 | N | N/A | Ricart et al. (2008) [51] | |
pemetrexed | 2 | 32 | 3 | Y | N | Argiris et al. (2011) [21] | |
UGT1A1 | |||||||
irinotecan | 1 | 30 | 4 | Y | N | Wright et al. (2005) [57] | |
irinotecan | 1 | 28 | 3 | Y | N | Font et al. (2008) [27] | |
irinotecan * | 1 | 44 | 5,4 | Y | Y | Toffoli et al. (2010) [58] | |
SN-38 * | 1 | 39 | 7 | N | N/A | Burris et al. (2016) [31] | |
irinotecan * | 1 | 50 | 3 | N | N/A | Joshi et al. (2020) [33] | |
bortezomib | undisclosed | 16 | N/A | Y | N | Caponigro et al. (2009) [16] | |
irinotecan | 2 | 35 | 2 | Y | N | Ishiguro et al. (2017) [38] | |
VEGFA | |||||||
sorafenib, bevacizumab | 4 | 115 | 4 | N | N/A | Falchook et al. (2015) [59] | |
sorafenib | 4 | 27 | 3 | Y | N | Chiorean et al. (2014) [60] | |
sorafenib | 7 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
bevacizumab | 9 | 110 | 3 | Y | Y | Sen et al. (2014) [61] | |
VEGFR2 | |||||||
sorafenib | 3 | 27 | 3 | Y | Y | Chiorean et al. (2014) [60] | |
vatalanib | 30 | 10 | 4 | N | N/A | Gerstner et al. (2011) [62] | |
XPD | |||||||
oxaliplatin | 1 | 15 | 3 | Y | N | Clamp et al. (2008) [25] | |
oxaliplatin | 1 | 30 | 2 | N | N/A | Ricart et al. (2008) [51] | |
cisplatin | 2 | 28 | 3 | Y | N | Font et al. (2008) [27] | |
XRCC1 | |||||||
carboplatin | 2 | 45 | 6 | N | N/A | Lee et al. (2014) [55] | |
oxaliplatin | undisclosed | 16 | 1 | Y | N | Caponigro et al. (2009) [16] | |
XRCC3 | |||||||
cisplatin | 2 | 28 | 3 | Y | Y | Font et al. (2008) [27] | |
Studies Including Pharmacokinetics (n = 90 Gene Comparisons, n = 40 Studies) | |||||||
ABCB1 | |||||||
irinotecan | 1 | 23 | 2 | Y | N | Soepenberg et al. (2005) [1] | |
pazopanib | 1 | 94 | 5 | Y | N | Bins et al. (2019) [63] | |
lapatinib | 2 | 24 | 3 | Y | N | Thiessen et al. (2010) [64] | |
erlotinb | 2 | 88 | 2 | Y | Y | White-Koning et al. (2011) [65] | |
9-aminocamptothecin | 3 | 30 | 3 | Y | N | Zamboni et al. (2006) [2] | |
9-nitrocamptothecin | 3 | 30 | 3 | Y | N | Zamboni et al. (2006) [2] | |
paclitaxel | 3 | 10 | 3 | N | N/A | Veltkamp et al. (2007) [66] | |
danusertib | 3 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
paclitaxel | 3 | 27 | 3 | N | N/A | Chiorean et al. (2020) [44] | |
teletanib | 4 | 33 | 7 | Y | N | Steeghs et al. (2011) [43] | |
ABCC1 | |||||||
teletanib | 4 | 33 | 7 | Y | N | Steeghs et al. (2011) [43] | |
ABCC2 | |||||||
9-aminocamptothecin | 1 | 33 | 3 | Y | N | Zamboni et al. (2006) [2] | |
9-nitrocamptothecin | 1 | 33 | 3 | Y | N | Zamboni et al. (2006) [2] | |
ABCG2 | |||||||
9-aminocamptothecin | 1 | 28 | 3 | Y | Y | Zamboni et al. (2006) [2] | |
9-nitrocamptothecin | 1 | 28 | 3 | Y | N | Zamboni et al. (2006) [2] | |
erlotinib | 1 | 88 | 2 | Y | Y | White-Koning et al. (2011) [65] | |
salazosulfapyridine | 1 | 15 | 3 | N | N/A | Otsubo et al. (2017) [67] | |
danusertib | 2 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
teletanib | 2 | 33 | 7 | Y | N | Steeghs et al. (2011) [43] | |
pazopanib | 2 | 94 | 5 | Y | N | Bins et al. (2019) [63] | |
lapatinib | undisclosed | 24 | 3 | Y | N | Thiessen et al. (2010) [64] | |
AOX1 | |||||||
TP300 | 1 | 32 | 7 | N | N/A | Anthoney et al. (2012) [68] | |
AURKA | |||||||
danusertib | 2 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
AURKB | |||||||
danusertib | 1 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
CDA | |||||||
oral gemcitabine (LY2334737) | 1 | 13 | 3 | N | N/A | Yamamoto et al. (2013) [69] | |
CES2 | |||||||
oral gemcitabine (LY2334737) | 1 | 13 | 3 | N | N/A | Yamamoto et al. (2013) [69] | |
CYP24A1 | |||||||
calcitriol | 28 | 20 | 4 | Y | N | Ramnath et al. (2013) [47] | |
CYP2A6 | |||||||
S-1 | 4 | 23 | 3 | Y | Y | Park et al. (2013) [70] | |
letrozole | 8 | 22 | 2 | Y | Y | Tanii et al. (2011) [71] | |
CYP2C19 | |||||||
E7070 | 2 | 21 | 5 | N | N/A | Yamada et al. (2005) [72] | |
tivantinib | 2 | 51 | 5 | Y | N | Yap et al. (2011) [11] | |
nelfenavir | 2 | 39 | 2 | Y | Y | Kattel et al. (2015) [73] | |
tivantinib | 2 | 28 | 4 | N | N/A | Okusaka et al. (2015) [12] | |
ibrutinib, voriconazole | 61 | 26 | 3 | N | N/A | de Jong et al. (2018) [74] | |
tivantinib | undisclosed | 47 | 8 | N | N/A | Yamamoto et al. (2013) [75] | |
tivantinib | undisclosed | 25 | 4 | N | N/A | Yamamoto et al. (2013) [13] | |
CYP2C8 | |||||||
paclitaxel | 1 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
CYP2C9 | |||||||
E7070 | 2 | 21 | 5 | N | N/A | Yamada et al. (2005) [72] | |
abemaciclib | 2 | 44 | 1 | N | N/A | Turner et al. (2020) [76] | |
CYP2D6 | |||||||
TP300 | 2 | 32 | 7 | N | N/A | Anthoney et al. (2012) [68] | |
abemaciclib | 12 | 44 | 1 | N | N/A | Turner et al. (2020) [76] | |
CYP3A4 | |||||||
panobinostat | 1 | 14 | 2 | N | N/A | Hamberg et al. (2011) [77] | |
pazopanib | 1 | 94 | 5 | Y | Y | Bins et al. (2019) [63] | |
paclitaxel | 1 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
irinotecan | 3 | 23 | 2 | Y | N | Soepenberg et al. (2005) [1] | |
abemaciclib | 4 | 44 | 1 | N | N/A | Turner et al. (2020) [76] | |
ibrutinib, erythromycin | 51 | 26 | 3 | N | N/A | de Jong et al. (2018) [74] | |
lapatinib | undisclosed | 24 | 3 | Y | N | Thiessen et al. (2010) [64] | |
CYP3A5 | |||||||
irinotecan | 1 | 23 | 2 | Y | N | Soepenberg et al. (2005) [1] | |
17-AAG | 1 | 21 | 11 | N | N/A | Goetz et al. (2005) [15] | |
lapatinib | 1 | 24 | 3 | Y | N | Thiessen et al. (2010) [64] | |
erlotinib | 1 | 88 | 2 | Y | Y | White-Koning et al. (2011) [65] | |
paclitaxel | 3 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
panobinostat | 4 | 14 | 2 | N | N/A | Hamberg et al. (2011) [77] | |
abemaciclib | 5 | 44 | 1 | N | N/A | Turner et al. (2020) [76] | |
ibrutinib, erythromycin | 22 | 26 | 3 | N | N/A | de Jong et al. (2018) [74] | |
FLT1 | |||||||
sorafenib | 1 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
FLT3 | |||||||
danusertib | 1 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
FLT4 | |||||||
danusertib | 1 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
FMO3 | |||||||
danusertib | 3 | 63 | 3 | Y | Y | Steeghs et al. (2011) [4] | |
NAT2 | |||||||
salazosulfapyridine | 4 | 15 | 3 | N | N/A | Otsubo et al. (2017) [67] | |
JPH203 | 10 | 17 | 5 | N | N/A | Okano et al. (2020) [53] | |
NQO1 | |||||||
17-AAG | 1 | 21 | 11 | N | N/A | Goetz et al. (2005) [15] | |
Rh1 | 1 | 14 | 12 | N | N/A | Danson et al. (2011) [78] | |
RET | |||||||
danusertib | 2 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
TYMS | |||||||
5-FU | 1 | 28 | 4 | N | N/A | Wright et al. (2005) [57] | |
UGT1A1 | |||||||
TAS-103 | 1 | 12 | 1 | N | N/A | Ewesuedo et al. (2001) [79] | |
flavopiridol | 1 | 49 | 9 | Y | N | Zhai et al. (2003) [26] | |
irinotecan | 1 | 23 | 2 | Y | Y | Soepenberg et al. (2005) [1] | |
irinotecan | 1 | 30 | 4 | Y | Y | Wright et al. (2005) [57] | |
irinotecan | 1 | 45 | 1 | Y | Y | Denlinger et al. (2009) [28] | |
irinotecan * | 1 | 44 | 5,4 | Y | Y | Toffoli et al. (2010) [58] | |
TP300 | 1 | 32 | 7 | N | N/A | Anthoney et al. (2012) [68] | |
topotecan | 1 | 29 | 3 | Y | N | Stewart et al. (2014) [80] | |
alisertib | 1 | 22 | 1 | Y | N/A | DuBois et al. (2016) [30] | |
irinotecan | 1 | 22 | 1 | Y | N/A | DuBois et al. (2016) [30] | |
irinotecan | 2 | 37 | 3 | Y | N | Yamamoto et al. (2009) [35] | |
irinotecan * | 2 | 27 | 4,2 | Y | Y | Hazama et al. (2010) [34] | |
irinotecan | 2 | 11 | 3 | N | N/A | Chang et al. (2015) [36] | |
irinotecan | 2 | 16 | 4 | N | N/A | Chiang et al. (2016) [37] | |
irinotecan | 3 | 23 | 4 | Y | N | Park et al. (2013) [70] | |
irinotecan * | 3 | 18 | unknown | unknown | unknown | Takano et al. (2013) [81] | |
belinostat | 3 | 25 | 4 | Y | Y | Goey et al. (2016) [42] | |
UGT1A6 | |||||||
irinotecan | 3 | 45 | 1 | Y | N | Denlinger et al. (2009) [28] | |
irinotecan | 4 | 23 | 4 | Y | N | Park et al. (2013) [70] | |
UGT1A7 | |||||||
irinotecan | 4 | 45 | 1 | Y | N | Denlinger et al. (2009) [28] | |
irinotecan | 4 | 23 | 4 | Y | N | Park et al. (2013) [70] | |
UGT1A9 | |||||||
irinotecan | 1 | 45 | 1 | Y | N | Denlinger et al. (2009) [28] | |
VEGFA | |||||||
sorafenib | 7 | 27 | 3 | Y | N | Chiorean et al. (2020) [44] | |
VEGFR2 | |||||||
danusertib | 5 | 63 | 3 | Y | N | Steeghs et al. (2011) [4] | |
Other Studies (n = 3 Studies) | |||||||
MTD and toxicity in NAT2 slow acetylators | |||||||
NAT2 | |||||||
batracyclin | 11 | 31 | 4 | N/A | N/A | Kummar et al. (2013) [82] | |
Dose escalation only evaluating genotypes in discontinued patients | |||||||
pazopanib/paclitaxel | 3 | 28 | undisclosed | N/A | N/A | Kendra et al. (2013) [83] | |
FcgRIIIa (no variants identified) | |||||||
cetuximab | 3 | 22 | 1 | N/A | N/A | Bertino et al. (2016) [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sissung, T.M.; Figg, W.D. Pharmacogenomics Testing in Phase I Oncology Clinical Trials: Constructive Criticism Is Warranted. Cancers 2022, 14, 1131. https://doi.org/10.3390/cancers14051131
Sissung TM, Figg WD. Pharmacogenomics Testing in Phase I Oncology Clinical Trials: Constructive Criticism Is Warranted. Cancers. 2022; 14(5):1131. https://doi.org/10.3390/cancers14051131
Chicago/Turabian StyleSissung, Tristan M., and William D. Figg. 2022. "Pharmacogenomics Testing in Phase I Oncology Clinical Trials: Constructive Criticism Is Warranted" Cancers 14, no. 5: 1131. https://doi.org/10.3390/cancers14051131
APA StyleSissung, T. M., & Figg, W. D. (2022). Pharmacogenomics Testing in Phase I Oncology Clinical Trials: Constructive Criticism Is Warranted. Cancers, 14(5), 1131. https://doi.org/10.3390/cancers14051131