Measurable Residual Disease in High-Risk Acute Myeloid Leukemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods of MRD Detection
3. Prognostic Value of MRD in AML
4. Limitations and Challenges in MRD Assessment in AML
5. Promising Strategies to Achieve MRD Negativity in High-Risk AML
5.1. CPX-351 in High-Risk AML
5.2. Venetoclax Combinations in High-Risk AML
5.3. Other Regimens in High-Risk AML
5.4. Maintenance Therapy in High-Risk AML
6. Future Perspectives and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ravandi, F.; Walter, R.B.; Freeman, S.D. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018, 2, 1356–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodersen, L.E.; Gerbing, R.B.; Pardo, M.L.; Alonzo, T.A.; Paine, D.; Fritschle, W.; Hsu, F.-C.; Pollard, J.A.; Aplenc, R.; Kahwash, S.B.; et al. Morphologic remission status is limited compared to DeltaN flow cytometry: A Children’s Oncology Group AAML0531 report. Blood Adv. 2020, 4, 5050–5061. [Google Scholar] [CrossRef] [PubMed]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Bene, M.C.; et al. 2021 update measurable residual disease in acute myeloid leukemia: European LeukemiaNet working party consensus document. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef] [PubMed]
- Bruggemann, M.; Kotrova, M. Minimal residual disease in adult ALL: Technical aspects and implications for correct clinical interpretation. Blood Adv. 2017, 1, 2456–2466. [Google Scholar] [CrossRef]
- Del Giudice, I.; Raponi, S.; Della Starza, I.; De Propris, M.S.; Cavalli, M.; De Novi, L.A.; Cappelli, L.V.; Ilari, C.; Cafforio, L.; Guarini, A.; et al. Minimal residual disease in chronic lymphocytic leukemia: A new goal? Front. Oncol. 2019, 9, 689. [Google Scholar] [CrossRef] [Green Version]
- Dohner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Bolouri, H.; Farrar, J.E.; Triche, T., Jr.; Ries, R.E.; Lim, E.L.; Alonzo, T.A.; Ma, Y.; Moore, R.; Mungall, A.J.; Marra, M.A.; et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 2018, 24, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Østgård, L.S.G.; Medeiros, B.C.; Sengelov, H.; Norgaard, M.; Andersen, M.K.; Dufva, I.H.; Friis, L.S.; Kjeldsen, E.; Marcher, C.W.; Preiss, B.; et al. Epidemiology and Clinical Significance of Secondary and Therapy-Related Acute Myeloid Leukemia: A National Population-Based Cohort Study. J. Clin. Oncol. 2015, 33, 3641–3649. [Google Scholar] [CrossRef]
- Sasine, J.P.; Schiller, G.J. Emerging strategies for high-risk and relapsed/refractory acute myeloid leukemia: Novel agents and approaches currently in clinical trials. Blood Rev. 2015, 29, 1–9. [Google Scholar] [CrossRef]
- Veltri, L.; Rezvani, K.; Oran, B.; Mehta, R.; Rondon, G.; Kebriaei, P.; Popat, U.; Nieto, Y.; Hosing, C.; Qazilbash, M.; et al. Allotransplants for patients 65 years or older with high-risk acute myeloid leukemia. Biol. Blood Marrow Transplant. 2019, 25, 505–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araki, D.; Wood, B.L.; Othus, M.; Radich, J.P.; Halpern, A.B.; Zhou, Y.; Mielcarek, M.; Estey, E.H.; Appelbaum, F.R.; Walter, R.B. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: Time to move toward a minimal residual disease-based definition of complete remission? J. Clin. Oncol. 2016, 34, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.B.; Gooley, T.A.; Wood, B.L.; Milano, F.; Fang, M.; Sorror, M.L.; Estey, E.H.; Salter, A.I.; Lansverk, E.; Chien, J.W.; et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J. Clin. Oncol. 2011, 29, 1190–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, R.B.; Buckley, S.A.; Pagel, J.M.; Wood, B.L.; Storer, B.E.; Sandmaier, B.M.; Fang, M.; Gyurkocza, B.; Delaney, C.; Radich, J.P.; et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood 2013, 122, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.B.; Gyurkocza, B.; Storer, B.E.; Godwin, C.D.; Pagel, J.M.; Buckley, S.A.; Sorror, M.L.; Wood, B.L.; Storb, R.; Appelbaum, F.R.; et al. Comparison of minimal residual disease as outcome predictor for AML patients in first complete remission undergoing myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation. Leukemia 2015, 29, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Buckley, S.A.; Wood, B.L.; Othus, M.; Hourigan, C.S.; Ustun, C.; Linden, M.A.; DeFor, T.E.; Malagola, M.; Anthias, C.; Valkova, V.; et al. Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: A meta-analysis. Haematologica 2017, 102, 865–873. [Google Scholar] [CrossRef] [Green Version]
- Balsat, M.; Renneville, A.; Thomas, X.; de Botton, S.; Caillot, D.; Marceau, A.; Lemasle, E.; Marolleau, J.P.; Nibourel, O.; Berthon, C.; et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: A study by the acute leukemia French association group. J. Clin. Oncol. 2017, 35, 185–193. [Google Scholar] [CrossRef]
- Heuser, M.; Heida, B.; Buttner, K.; Wienecke, C.P.; Teich, K.; Funke, C.; Brandes, M.; Klement, P.; Liebich, A.; Wichmann, M.; et al. Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations. Blood Adv. 2021, 5, 2294–2304. [Google Scholar] [CrossRef]
- Horan, J.T.; Meshinchi, S.; Loken, M.R.; Alonzo, T.A.; Aplenc, R.; Davies, S.M.; Gerbing, R.B.; Gamis, A.S. Impact of residual disease on survival in pediatric patients receiving allogeneic hematopoietic cell transplantation for acute myeloid leukemia In first complete remission. Blood 2013, 122, 65. [Google Scholar] [CrossRef]
- Jacobsohn, D.A.; Loken, M.R.; Fei, M.; Adams, A.; Brodersen, L.E.; Logan, B.R.; Ahn, K.W.; Shaw, B.E.; Kletzel, M.; Olszewski, M.; et al. Outcomes of measurable residual disease in pediatric acute myeloid leukemia before and after hematopoietic stem cell transplant: Validation of difference from normal flow cytometry with chimerism studies and wilms tumor 1 gene expression. Biol. Blood Marrow Transplant. 2018, 24, 2040–2046. [Google Scholar] [CrossRef] [Green Version]
- Ravandi, F. Is it time to routinely incorporate MRD into practice? Best Pract. Res. Clin. Haematol. 2018, 31, 396–400. [Google Scholar] [CrossRef]
- Voso, M.T.; Ottone, T.; Lavorgna, S.; Venditti, A.; Maurillo, L.; Lo-Coco, F.; Buccisano, F. MRD in AML: The Role of New Techniques. Front. Oncol. 2019, 9, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoest, J.M.; Shirai, C.L.; Duncavage, E.J. Sequencing-based measurable residual disease testing in acute myeloid leukemia. Front. Cell Dev. Biol. 2020, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Ediriwickrema, A.; Aleshin, A.; Reiter, J.G.; Corces, M.R.; Kohnke, T.; Stafford, M.; Liedtke, M.; Medeiros, B.C.; Majeti, R. Single-cell mutational profiling enhances the clinical evaluation of AML MRD. Blood Adv. 2020, 4, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Hasserjian, R.P.; Steensma, D.P.; Graubert, T.A.; Ebert, B.L. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood 2020, 135, 1729–1738. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Zhou, S.; Fu, C.; Berry, D.A.; Walter, R.B.; Freeman, S.D.; Hourigan, C.S.; Huang, X.; Nogueras Gonzalez, G.; Hwang, H.; et al. Association of measurable residual disease with survival outcomes in patients with acute myeloid leukemia: A systematic review and meta-analysis. JAMA Oncol. 2020, 6, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Geyer, S.M.; Komrokji, R.S.; Al Ali, N.H.; Song, J.; Hussaini, M.; Sweet, K.L.; Lancet, J.E.; List, A.F.; Padron, E.; et al. Prognostic significance of serial molecular annotation in myelodysplastic syndromes (MDS) and secondary acute myeloid leukemia (sAML). Leukemia 2021, 35, 1145–1155. [Google Scholar] [CrossRef] [PubMed]
- Salek, C.; Vydra, J.; Cerovska, E.; Sestakova, S.; Ransdorfova, S.; Valkova, V.; Cetkovsky, P.; Remesova, H. WT1 expression in peripheral blood at diagnosis and during the course of early consolidation treatment correlates with survival in patients with intermediate and poor-risk acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk 2020, 20, e998–e1009. [Google Scholar] [CrossRef]
- Lambert, J.; Lambert, J.; Thomas, X.; Marceau-Renaut, A.; Micol, J.B.; Renneville, A.; Clappier, E.; Hayette, S.; Recher, C.; Raffoux, E.; et al. Early detection of WT1 measurable residual disease identifies high-risk patients independently of transplantation in AML. Blood Adv. 2021, 5, 5258–5268. [Google Scholar] [CrossRef]
- Langebrake, C.; Creutzig, U.; Dworzak, M.; Hrusak, O.; Mejstrikova, E.; Griesinger, F.; Zimmermann, M.; Reinhardt, D. Residual disease monitoring in childhood acute myeloid leukemia by multiparameter flow cytometry: The MRD-AML-BFM Study Group. J. Clin. Oncol. 2006, 24, 3686–3692. [Google Scholar] [CrossRef] [Green Version]
- Loken, M.R.; Alonzo, T.A.; Pardo, L.; Gerbing, R.B.; Raimondi, S.C.; Hirsch, B.A.; Ho, P.A.; Franklin, J.; Cooper, T.M.; Gamis, A.S.; et al. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: A report from Children’s Oncology Group. Blood 2012, 120, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Rubnitz, J.E.; Inaba, H.; Dahl, G.; Ribeiro, R.C.; Bowman, W.P.; Taub, J.; Pounds, S.; Razzouk, B.I.; Lacayo, N.J.; Cao, X.; et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: Results of the AML02 multicentre trial. Lancet Oncol. 2010, 11, 543–552. [Google Scholar] [CrossRef] [Green Version]
- Sievers, E.L.; Lange, B.J.; Buckley, J.D.; Smith, F.O.; Wells, D.A.; Daigneault-Creech, C.A.; Shults, K.E.; Bernstein, I.D.; Loken, M.R. Prediction of relapse of pediatric acute myeloid leukemia by use of multidimensional flow cytometry. J. Natl. Cancer Inst. 1996, 88, 1483–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievers, E.L.; Lange, B.J.; Alonzo, T.A.; Gerbing, R.B.; Bernstein, I.D.; Smith, F.O.; Arceci, R.J.; Woods, W.G.; Loken, M.R. Immunophenotypic evidence of leukemia after induction therapy predicts relapse: Results from a prospective Children’s Cancer Group study of 252 patients with acute myeloid leukemia. Blood 2003, 101, 3398–3406. [Google Scholar] [CrossRef] [Green Version]
- Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J. Clin. Oncol. 2020, 38, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Jentzsch, M.; Schwind, S.; Bach, E.; Stasik, S.; Thiede, C.; Platzbecker, U. Clinical challenges and consequences of measurable residual disease in non-APL acute myeloid leukemia. Cancers 2019, 11, 1625. [Google Scholar] [CrossRef] [Green Version]
- Minetto, P.; Guolo, F.; Clavio, M.; Kunkl, A.; Colombo, N.; Carminati, E.; Fugazza, G.; Matarese, S.; Guardo, D.; Ballerini, F.; et al. Early minimal residual disease assessment after AML induction with fludarabine, cytarabine and idarubicin (FLAI) provides the most useful prognostic information. Br. J. Haematol. 2019, 184, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.H.; Tang, J.L.; Tien, F.M.; Kuo, Y.Y.; Wu, D.C.; Lin, C.C.; Tseng, M.H.; Peng, Y.L.; Hou, M.F.; Chuang, Y.K.; et al. Clinical implications of sequential MRD monitoring by NGS at 2 time points after chemotherapy in patients with AML. Blood Adv. 2021, 5, 2456–2466. [Google Scholar] [CrossRef]
- Guolo, F.; Fianchi, L.; Minetto, P.; Clavio, M.; Gottardi, M.; Galimberti, S.; Rizzuto, G.; Rondoni, M.; Bertani, G.; Dargenio, M.; et al. CPX-351 treatment in secondary acute myeloblastic leukemia is effective and improves the feasibility of allogeneic stem cell transplantation: Results of the Italian compassionate use program. Blood Cancer J. 2020, 10, 96. [Google Scholar] [CrossRef]
- Chiche, E.; Rahmé, R.; Bertoli, S.; Dumas, P.-Y.; Micol, J.-B.; Hicheri, Y.; Pasquier, F.; Peterlin, P.; Chevallier, P.; Thomas, X.; et al. Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: A multicentric French cohort. Blood Adv. 2021, 5, 176–184. [Google Scholar] [CrossRef]
- Rautenberg, C.; Stolzel, F.; Rollig, C.; Stelljes, M.; Gaidzik, V.; Lauseker, M.; Kriege, O.; Verbeek, M.; Unglaub, J.M.; Thol, F.; et al. Real-world experience of CPX-351 as first-line treatment for patients with acute myeloid leukemia. Blood Cancer J. 2021, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.D.; Talati, C.; Desai, P.; Famulare, C.; Devlin, S.M.; Farnoud, N.; Sallman, D.A.; Lancet, J.E.; Roboz, G.J.; Sweet, K.L.; et al. TP53 mutations predict poorer responses to CPX-351 in acute myeloid leukemia. In Proceedings of the 60th Annual Meeting and Exposition of the American Society of Hematology (ASH), San Diego, CA, USA, 1–4 December 2018. [Google Scholar]
- Plesa, A.; Roumier, C.; Gutrin, J.; Larcher, M.V.; Balsat, M.; Cadassou, O.; Barraco, F.; Fossard, G.; Baudouin, A.; Labussiere, H.; et al. Measurable residual disease including AML leukemia stem cell flow evaluation of CPX-351 therapy by multi-parameter flow cytometry. Leuk Res. 2021, 111, 106673. [Google Scholar] [CrossRef] [PubMed]
- Cooper, T.M.; Absalon, M.J.; Alonzo, T.A.; Gerbing, R.B.; Leger, K.J.; Hirsch, B.A.; Pollard, J.; Razzouk, B.I.; Aplenc, R.; Kolb, E.A. Phase I/II study of CPX-351 followed by fludarabine, cytarabine, and granulocyte-colony stimulating factor for children with relapsed acute myeloid leukemia: A report From the Children’s Oncology Group. J. Clin. Oncol. 2020, 38, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
- Maiti, A.; DiNardo, C.D.; Wang, S.A.; Jorgensen, J.; Kadia, T.M.; Daver, N.G.; Short, N.J.; Yilmaz, M.; Pemmaraju, N.; Borthakur, G.; et al. Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Adv. 2021, 5, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Dohner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Pratz, K.W.; Jonas, B.A.; Pullarkat, V.; Recher, C.; Schuh, A.C.; Thirman, M.J.; Garcia, J.S.; DiNardo, C.D.; Vorobyev, V.; Fracchiolla, N.S.; et al. Measurable residual disease response and prognosis in treatment-naïve acute myeloid lukemia with venetoclax and azacitidine. J. Clin. Oncol. 2021; [Online ahead of print]. [Google Scholar] [CrossRef]
- Gutman, J.A.; Winters, A.; Amaya, M.L.; McMahon, C.M.; Schowinsky, J.; Abbott, D.; Hammes, A.; Pei, S.; Stevens, B.M.; Jordan, C.T.; et al. Venetoclax and azacitidine for newly diagnosed non-elderly adult patients with acute myeloid leukemia and adverse risk features. In Proceedings of the 62nd Annual Meeting and Exposition of the American Society of Hematology (ASH), Virutal Congress, 5–8 December 2020. Poster 2855. [Google Scholar]
- Karol, S.E.; Alexander, T.B.; Budhraja, A.; Pounds, S.B.; Canavera, K.; Wang, L.; Wolf, J.; Klco, J.M.; Mead, P.E.; Das Gupta, S.; et al. Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia: A phase 1, dose-escalation study. Lancet Oncol. 2020, 21, 551–560. [Google Scholar] [CrossRef]
- Craddock, C.; Jackson, A.; Loke, J.; Siddique, S.; Hodgkinson, A.; Mason, J.; Andrew, G.; Nagra, S.; Malladi, R.; Peniket, A.; et al. Augmented reduced-intensity regimen does not improve postallogeneic transplant outcomes in acute myeloid leukemia. J. Clin. Oncol. 2021, 39, 768–778. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; Bixby, D.L.; et al. CPX-351 versus 7+3 cytarabine and daunorubicin chemotherapy in older adults with newly diagnosed high-risk or secondary acute myeloid leukaemia: 5-year results of a randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2021, 8, e481–e491. [Google Scholar] [CrossRef]
- Roboz, G.J.; Ravandi, F.; Wei, A.H.; Dombret, H.; Döhner, H.; Thol, F.; Voso, M.T.; Schuh, A.C.; Porkka, K.; La Torre, I.; et al. CC-486 prolongs survival for patients with acute myeloid leukemia (AML) in remission after intensive chemotherapy (IC) independent of the presence of measurable residual disease (MRD) at study entry: Results from the QUAZAR AML-001 maintenance trial. In Proceedings of the 62nd Annual Meeting and Exposition of the Americal Society of Hematology (ASH), Virutal Congress, 5–8 December 2020. [Google Scholar]
Method | Target | Markers | Sensitivity * | Strengths | Weaknesses |
---|---|---|---|---|---|
FISH | Chromosomal aberrations | N/A | 1 to 2% |
|
|
MFC † | Leukemia-associated aberrant immunophenotypes | CD2, CD4, CD7, CD13, CD15, CD19, CD33, CD34, CD38, CD45, CD56, CD117, CD123, HLA-DR LSCs ‡ are CD34+/CD38- cells combined with an aberrant marker not present on HSCs (e.g., CD45RA, CLL-1, CD123) [4] | 1 in 1000 (0.1%) to 1 in 10,000 (0.01%) |
|
|
PCR |
| CBFB-MYH11, IDH1/IDH2, NPM1, RUNX1/RUNX1T1,KMT2A (various), WT1, PML-RARα, BCR-ABL, DEK-NUP214 | 1 in 10,000 (0.01%) to 1 in 1,000,000 (0.0001%) |
|
|
NGS | Gene mutations | NPM1, FLT3-ITD, IDH1/IDH2; some panels can examine hundreds of genes of interest [23] | 1 in 100,000 (0.001%) to 1 in 1,000,000 (0.0001%) § |
|
|
Study | Regimen | Population | MRD Method | Results * | ||
---|---|---|---|---|---|---|
MRD Negative | MRD Positive | p-Value | ||||
Prognostic Value in Adults with AML | ||||||
Short 2020 [26] | Review of 81 publications |
| MFC, qPCR, NGS, or cytogenetics/FISH in BM or peripheral blood at induction or during/after consolidation |
|
| Not reported |
Salek 2020 [28] | Intensive chemotherapy |
| qPCR of WT1 in peripheral blood after two cycles of treatment |
|
|
|
Lambert 2021 [29] ALFA-0702 trial | Daunorubicin plus cytarabine induction with G-CSF; potential salvage with idarubicin and high-dose cytarabine |
| qPCR of WT1 in BM or peripheral blood |
|
|
|
Prognostic value in pediatric patients with AML | ||||||
Langebrake 2006 [30] | Intensive chemotherapy |
| LAIP MFC in BM at BM puncture 1 (median of 15 days from the start of therapy) or BM puncture 2 (median of 29 days from the start of therapy) |
High-risk patients:
|
High-risk patients:
|
High-risk patients:
|
Loken 2012 [31] AAML03PI trial | Two courses ofcytarabine, daunorubicin, and etoposide, plus gemtuzumabozogamicin in the first course; additional three courses of intensive chemotherapy |
| DfN MFC in BM or peripheral blood at the end of induction 1 |
High-risk patients:
|
High-risk patients:
|
High-risk patients:
|
Rubnitz 2010 [32] AML02 trial | High-dose or low-dose cytarabine plus daunorubicin and etoposide |
| LAIP MFC in BM on Day 22 of the first induction |
High-risk patients:
|
High-risk patients:
|
High-risk patients:
|
Sievers 1996 [33] | Intensive chemotherapy |
| MFC in BM during CR1 |
|
|
|
Sievers 2003 [34] CCG-2941 and CCG-2961 trials | Intensive chemotherapy |
| MFC in BM after induction | MRD positivity was associated with a worsened risk of relapse and death:
| ||
Post-HCT prognostic value in adults with AML | ||||||
Araki 2016 [12] | Myeloablative allogeneic HCT |
| MFC in BM aspirates pre-HCT |
|
| Not reported |
Veltri 2019 [11] | HCT with myeloablative or reduced-intensity conditioning |
| MFC in BM pre-HCT |
|
|
|
Walter 2011 [13] | Myeloablative HCT |
| MFC in BM aspirates pre-HCT |
|
| Not reported |
Walter 2013 [14] | Myeloablative HCT in CR1 or CR2 |
| MFC in BM aspirates pre-HCT |
|
| Not reported |
Walter 2015 [15] | Myeloablative or non-myeloablative HCT |
| MFC in BM aspirates pre-HCT |
|
| Not reported |
Hourigan 2020 [35] | HCT |
| NGS in blood pre-HCT |
|
| Not reported |
Buckley 2017 [16] | Review of 19 publications |
| MFC, PCR, or cytogenetics/FISH in BM or peripheral blood | MRD positivity was associated with worsened LFS, OS, and CIR:
| ||
Heuser 2021 [18] | HCT |
| NGS in BM or peripheral blood post-HCT | In a multivariate analysis, MRD positivity adversely predicted CIR, RFS, and OS:
| ||
Post-HCT prognostic value in pediatric patients with AML | ||||||
Horan 2013 [19] AAML0531 and AAML03PI trials | HCT in CR1 |
| MFC in BM in CR1 pre-HCT |
|
|
|
Jacobsohn 2018 [20] | HCT |
| DfN MFC in BM pre-HCT |
|
|
|
Regimen | Study Design | Population | MRD Assessment | MRD Results * | |
---|---|---|---|---|---|
MRD Negativity | MRD Negative Versus MRD Positive | ||||
CPX-351 [39] | Italian compassionate use program |
|
|
|
|
CPX-351 [40] | Retrospective analysis |
|
|
|
|
CPX-351 [41] | Retrospective analysis |
|
|
|
|
CPX-351 [42] | Retrospective analysis |
|
|
| Not reported |
CPX-351 [43] | Retrospective analysis |
|
|
| Not reported |
CPX-351 followed by FLAG [44] | Phase 1/2 study |
|
|
| Not reported |
Venetoclax plus decitabine [45] | Phase 2 study |
|
|
| Not reported |
Venetoclax plus azacitidine [46,47] | Phase 3 study |
|
|
| Secondary AML †:
Poor-risk cytogenetics †:
|
Venetoclax plus azacitidine [48] | Phase 2 study |
|
|
| Not reported |
Venetoclax plus cytarabine with or without idarubicin [49] | Phase 1 study |
|
|
| Not reported |
FLAMSA-Bu (fludarabine/amsacrine/cytarabine-busulfan) vs. fludarabine-based RIC [50] | Phase 2 study |
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cluzeau, T.; Lemoli, R.M.; McCloskey, J.; Cooper, T. Measurable Residual Disease in High-Risk Acute Myeloid Leukemia. Cancers 2022, 14, 1278. https://doi.org/10.3390/cancers14051278
Cluzeau T, Lemoli RM, McCloskey J, Cooper T. Measurable Residual Disease in High-Risk Acute Myeloid Leukemia. Cancers. 2022; 14(5):1278. https://doi.org/10.3390/cancers14051278
Chicago/Turabian StyleCluzeau, Thomas, Roberto M. Lemoli, James McCloskey, and Todd Cooper. 2022. "Measurable Residual Disease in High-Risk Acute Myeloid Leukemia" Cancers 14, no. 5: 1278. https://doi.org/10.3390/cancers14051278
APA StyleCluzeau, T., Lemoli, R. M., McCloskey, J., & Cooper, T. (2022). Measurable Residual Disease in High-Risk Acute Myeloid Leukemia. Cancers, 14(5), 1278. https://doi.org/10.3390/cancers14051278