Extracorporeal Removal of Thermosensitive Liposomal Doxorubicin from Systemic Circulation after Tumor Delivery to Reduce Toxicities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. Thermosensitive Liposome (TSL) Release Kinetics
2.2. Dox Must Be Released from TSL for Effective Filtration
2.3. In vivo Removal of TSL-Dox from Systemic Blood in Extracorporeal Circuit (ECC)
2.4. Pharmacokinetic Modelling
2.5. Fluorescence Monitoring Enables Real-Time In Vivo Quantification of Drug Removal
2.6. Tumor Doxorubicin Uptake
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Extracorporeal Circuit (ECC) Components
5.1.1. Activated Carbon Filter (ACF)
5.1.2. Heating Element for Dox Release from TSL-Dox
5.1.3. Imaging Module
5.1.4. Rat Back-Mount
5.2. Thermosensitive Liposomal Doxorubicin (TSL-Dox)
5.3. Tumor Cell Line
5.4. Rat Tumor Model
5.5. Microwave Hyperthermia of Tumors
5.6. In Vivo Real-Time Doxorubicin Quantification in Blood by Fluorescence Imaging
5.7. Doxorubicin Quantification in Plasma and PBS
5.8. Doxorubicin Quantification in Cardiac Tissue
5.9. Surgical Catheter Implantation
5.9.1. Right Jugular Vein Catheterization
5.9.2. Left Carotid Artery Catheterization
5.9.3. Post-Surgical Care
5.10. In Vivo Extracorporeal Circuit (ECC)
5.11. Experimental Procedure
5.12. Experimental Groups
5.13. Computational Modelling
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ketterl, T.G.; Syrjala, K.L.; Casillas, J.; Jacobs, L.A.; Palmer, S.C.; McCabe, M.S.; Ganz, P.A.; Overholser, L.; Partridge, A.; Rajotte, E.J.; et al. Lasting effects of cancer and its treatment on employment and finances in adolescent and young adult cancer survivors. Cancer 2019, 125, 1908–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokesh, K.N.; Chaudhuri, T.; Lakshmaiah, K.C.; Babu, K.G.; Lokanatha, D.; Jacob, L.A.; Suresh Babu, M.C.; Rudresha, A.H.; Rajeev, L.K. Induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma in adults: Results from a nonendemic region. Indian J. Cancer 2018, 55, 257–260. [Google Scholar] [PubMed]
- Wong, M.L.; Cooper, B.A.; Paul, S.M.; Abrams, G.; Topp, K.; Kober, K.M.; Chesney, M.A.; Mazor, M.; Schumacher, M.A.; Conley, Y.P.; et al. Age-related differences in patient-reported and objective measures of chemotherapy-induced peripheral neuropathy among cancer survivors. Support. Care Cancer 2019, 27, 3905–3912. [Google Scholar] [CrossRef] [PubMed]
- Robison, L.L.; Hudson, M.M. Survivors of childhood and adolescent cancer: Life-long risks and responsibilities. Nat. Rev. Cancer 2014, 14, 61–70. [Google Scholar] [CrossRef]
- Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014. [Google Scholar] [CrossRef]
- Tardi, P.G.; Boman, N.L.; Cullis, P.R. Liposomal doxorubicin. J. Drug Target. 1996, 4, 129–140. [Google Scholar] [CrossRef]
- Gouyette, A.; Lemoine, R.; Adhemar, J.P.; Kleinknecht, D.; Man, N.K.; Droz, J.P.; Macquet, J.P. Kinetics of cisplatin in an anuric patient undergoing hemofiltration dialysis. Cancer Treat. Rep. 1981, 65, 665–668. [Google Scholar]
- Ibrahim, R.B.; Liu, C.Y.; Cronin, S.M.; Murphy, B.C.; Cha, R.; Swerdlow, P.; Avila, T.; Smith, S.T.; Lewis, R.A.; Edwards, D.J. Influence of plasma exchange on the disposition of the fourth generation cephalosporin cefepime. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2009, 15, 217–222. [Google Scholar] [CrossRef]
- August, D.A.; Verma, N.; Andrews, J.C.; Vaerten, M.A.; Brenner, D.E. Hepatic artery infusion of doxorubicin with hepatic venous drug extraction. J. Surg. Res. 1994, 56, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Putz, G.; Schmah, O.; Eckes, J.; Hug, M.J.; Winkler, K. Controlled application and removal of liposomal therapeutics: Effective elimination of pegylated liposomal doxorubicin by double-filtration plasmapheresis in vitro. J. Clin. Apher. 2010, 25, 54–62. [Google Scholar] [CrossRef]
- Eckes, J.; Schmah, O.; Siebers, J.W.; Groh, U.; Zschiedrich, S.; Rautenberg, B.; Hasenburg, A.; Jansen, M.; Hug, M.J.; Winkler, K.; et al. Kinetic targeting of pegylated liposomal doxorubicin: A new approach to reduce toxicity during chemotherapy (carl-trial). BMC Cancer 2011, 11, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinkova, J.; Blaha, M.; Kubecek, O.; Malakova, J.; Spacek, J.; Bezouska, J.; Krulichova, I.S.; Filip, S. Plasmafiltration as a possible contributor to kinetic targeting of pegylated liposomal doxorubicin (pld) in order to prevent organ toxicity and immunosuppression. Cancer Chemother. Pharmacol. 2016, 77, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Blaha, M.; Martinkova, J.; Lanska, M.; Filip, S.; Malakova, J.; Kubecek, O.; Bezouska, J.; Spacek, J. Plasma filtration for the controlled removal of liposomal therapeutics—From the apheretic site of view. Atherosclerosis. Suppl. 2017, 30, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Kong, G.; Anyarambhatla, G.; Petros, W.P.; Braun, R.D.; Colvin, O.M.; Needham, D.; Dewhirst, M.W. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: Importance of triggered drug release. Cancer Res. 2000, 60, 6950–6957. [Google Scholar] [PubMed]
- Lyon, P.C.; Gray, M.D.; Mannaris, C.; Folkes, L.K.; Stratford, M.; Campo, L.; Chung, D.Y.F.; Scott, S.; Anderson, M.; Goldin, R.; et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (tardox): A single-centre, open-label, phase 1 trial. Lancet. Oncol. 2018, 19, 1027–1039. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Hynynen, K.; Allen, C. To heat or not to heat: Challenges with clinical translation of thermosensitive liposomes. J. Control. Release Off. J. Control. Release Soc. 2017, 249, 63–73. [Google Scholar] [CrossRef]
- Zagar, T.M.; Vujaskovic, Z.; Formenti, S.; Rugo, H.; Muggia, F.; O’Connor, B.; Myerson, R.; Stauffer, P.; Hsu, I.C.; Diederich, C.; et al. Two phase i dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (ltld) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. North Am. Hyperth. Group 2014, 30, 285–294. [Google Scholar] [CrossRef]
- Wood, B.J.; Poon, R.T.; Locklin, J.K.; Dreher, M.R.; Ng, K.K.; Eugeni, M.; Seidel, G.; Dromi, S.; Neeman, Z.; Kolf, M.; et al. Phase i study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J. Vasc. Interv. Radiol. JVIR 2012, 23, 248–255.e247. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, A.A.; Lindner, L.H.; Landon, C.D.; Park, J.Y.; Simnick, A.J.; Dreher, M.R.; Das, S.; Hanna, G.; Park, W.; Chilkoti, A.; et al. Overcoming limitations in nanoparticle drug delivery: Triggered, intravascular release to improve drug penetration into tumors. Cancer Res. 2012, 72, 5566–5575. [Google Scholar] [CrossRef] [Green Version]
- Motamarry, A.; Negussie, A.H.; Rattay, F.; Wood, B.J.; Haemmerich, D. Comparison of conventional chemotherapy, stealth liposomes and temperature-sensitive liposomes in a mathematical model. PLoS ONE 2012, 7, e47453. [Google Scholar]
- Li, L.; ten Hagen, T.L.; Hossann, M.; Süss, R.; van Rhoon, G.C.; Eggermont, A.M.; Haemmerich, D.; Koning, G.A. Mild hyperthermia triggered doxorubicin release from optimized stealth thermosensitive liposomes improves intratumoral drug delivery and efficacy. J. Control. Release Off. J. Control. Release Soc. 2013, 168, 142–150. [Google Scholar] [CrossRef] [PubMed]
- ten Hagen, T.L.M.; Dreher, M.R.; Zalba, S.; Seynhaeve, A.L.B.; Amin, M.; Li, L.; Haemmerich, D. Drug transport kinetics of intravascular triggered drug delivery systems. Commun. Biol. 2021, 4, 920. [Google Scholar] [CrossRef] [PubMed]
- Motamarry, A.; Negussie, A.H.; Rossmann, C.; Small, J.; Wolfe, A.M.; Wood, B.J.; Haemmerich, D. Real-time fluorescence imaging for visualization and drug uptake prediction during drug delivery by thermosensitive liposomes. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2019, 36, 817–826. [Google Scholar] [CrossRef]
- Bredlau, A.L.; Motamarry, A.; Chen, C.; McCrackin, M.A.; Helke, K.; Armeson, K.E.; Bynum, K.; Broome, A.M.; Haemmerich, D. Localized delivery of therapeutic doxorubicin dose across the canine blood-brain barrier with hyperthermia and temperature sensitive liposomes. Drug Deliv. 2018, 25, 973–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haemmerich, D.; Motamarry, A. Extracorporeal Drug Removal for Intravascular Triggered Drug Delivery Systems. USPO App. US20190336671, 6 May 2019. [Google Scholar]
- August, D.A.; Verma, N.; Vaertan, M.A.; Shah, R.; Brenner, D.E. An evaluation of hepatic extraction and clearance of doxorubicin. Br. J. Cancer 1995, 72, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Bing, C.; Patel, P.; Staruch, R.M.; Shaikh, S.; Nofiele, J.; Wodzak Staruch, M.; Szczepanski, D.; Williams, N.S.; Laetsch, T.; Chopra, R. Longer heating duration increases localized doxorubicin deposition and therapeutic index in vx2 tumors using mr-hifu mild hyperthermia and thermosensitive liposomal doxorubicin. Int. J. Hyperth. 2019, 36, 195–202. [Google Scholar] [CrossRef]
- Yatvin, M.B.; Weinstein, J.N.; Dennis, W.H.; Blumenthal, R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978, 202, 1290–1293. [Google Scholar] [CrossRef]
- Motamarry, A.; Asemani, D.; Haemmerich, D. Thermosensitive liposomes. In Liposomes; Catala, A., Ed.; InTech: Rijeka, Croatia, 2017; pp. 187–211. [Google Scholar]
- Ranjan, A.; Jacobs, G.C.; Woods, D.L.; Negussie, A.H.; Partanen, A.; Yarmolenko, P.S.; Gacchina, C.E.; Sharma, K.V.; Frenkel, V.; Wood, B.J.; et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit vx2 tumor model. J. Control. Release 2012, 158, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Park, S.M.; Kim, M.S.; Park, S.J.; Park, E.S.; Choi, K.S.; Kim, Y.S.; Kim, H.R. Novel temperature-triggered liposome with high stability: Formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (hifu). J. Control. Release Off. J. Control. Release Soc. 2013, 170, 373–379. [Google Scholar] [CrossRef]
- Lu, T.; Haemmerich, D.; Liu, H.; Seynhaeve, A.L.B.; van Rhoon, G.C.; Houtsmuller, A.B.; ten Hagen, T.L.M. Externally triggered smart drug delivery system encapsulating idarubicin shows superior kinetics and enhances tumoral drug uptake and response. Theranostics 2021, 11, 5700–5712. [Google Scholar] [CrossRef]
- Gasselhuber, A.; Dreher, M.R.; Negussie, A.; Wood, B.J.; Rattay, F.; Haemmerich, D. Mathematical spatio-temporal model of drug delivery from low temperature sensitive liposomes during radiofrequency tumour ablation. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2010, 26, 499–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagami, T.; Ernsting, M.J.; Li, S.D. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J. Control. Release Off. J. Control. Release Soc. 2011, 152, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.A.; Cornelius, V.R.; Plummer, C.J.; Levitt, G.; Verrill, M.; Canney, P.; Jones, A. Cardiotoxicity of anthracycline agents for the treatment of cancer: Systematic review and meta-analysis of randomised controlled trials. BMC Cancer 2010, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Workman, P. Editorial: Infusional anthracyclines: Is slower better? If so, why? Ann. Oncol. 1992, 3, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Haven, M.C.; Tetrault, G.A.; Schenken, J.R. Fluorometry and fluorescence polarization. In Laboratory Instrumentation; Haven, M.C., Ed.; John Wiley & Sons: New York, NY, USA, 1994; pp. 135–157. [Google Scholar]
- Oh, H.J.; Aboian, M.S.; Yi, M.Y.J.; Maslyn, J.A.; Loo, W.S.; Jiang, X.; Parkinson, D.Y.; Wilson, M.W.; Moore, T.; Yee, C.R.; et al. 3d printed absorber for capturing chemotherapy drugs before they spread through the body. ACS Cent. Sci. 2019, 5, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Aboian, M.S.; Yu, J.F.; Gautam, A.; Sze, C.H.; Yang, J.K.; Chan, J.; Lillaney, P.V.; Jordan, C.D.; Oh, H.J.; Wilson, D.M.; et al. In vitro clearance of doxorubicin with a DNA-based filtration device designed for intravascular use with intra-arterial chemotherapy. Biomed. Microdevices 2016, 18, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, T.J.; Lee, S.H.; Simmons, T.J.; Martin, J.G.; Mousa, S.A.; Snezhkova, E.A.; Sarnatskaya, V.V.; Nikolaev, V.G.; Linhardt, R.J. Heparin-cellulose-charcoal composites for drug detoxification prepared using room temperature ionic liquids. Chem. Commun. 2008, 40, 5022–5024. [Google Scholar] [CrossRef]
- Chandy, T.; Sharma, C.P. Activated charcoal microcapsules and their applications. J. Biomater. Appl. 1998, 13, 128–157. [Google Scholar] [CrossRef]
- Burke, C.; Dreher, M.R.; Negussie, A.H.; Mikhail, A.S.; Yarmolenko, P.; Patel, A.; Skilskyj, B.; Wood, B.J.; Haemmerich, D. Drug release kinetics of temperature sensitive liposomes measured at high-temporal resolution with a millifluidic device. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2018, 34, 786–794. [Google Scholar] [CrossRef]
- Asemani, D.; Motamarry, A.; Haemmerich, D. In vitro measurement of release kinetics of temperature sensitive liposomes with a fluorescence imaging system. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 3216–3219. [Google Scholar]
- Limmer, S.; Hahn, J.; Schmidt, R.; Wachholz, K.; Zengerle, A.; Lechner, K.; Eibl, H.; Issels, R.D.; Hossann, M.; Lindner, L.H. Gemcitabine treatment of rat soft tissue sarcoma with phosphatidyldiglycerol-based thermosensitive liposomes. Pharm. Res. 2014, 31, 2276–2286. [Google Scholar] [CrossRef]
- Feng, J.; Fitz, Y.; Li, Y.; Fernandez, M.; Cortes Puch, I.; Wang, D.; Pazniokas, S.; Bucher, B.; Cui, X.; Solomon, S.B. Catheterization of the carotid artery and jugular vein to perform hemodynamic measures, infusions and blood sampling in a conscious rat model. J. Vis. Exp. JoVE 2015, 95, e51881. [Google Scholar] [CrossRef] [PubMed]
- Curto, S.; Faridi, P.; Shrestha, T.B.; Pyle, M.; Maurmann, L.; Troyer, D.; Bossmann, S.H.; Prakash, P. An integrated platform for small-animal hyperthermia investigations under ultra-high-field mri guidance. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2018, 34, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.B.; Blaufox, M.D. Blood volume in the rat. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 1985, 26, 72–76. [Google Scholar]
- van der Vijgh, W.J.F.; Maessen, P.A.; Pinedo, H.M. Comparative metabolism and pharmacokinetics of doxorubicin and 4′-epidoxorubicin in plasma, heart and tumor of tumor-bearing mice. Cancer Chemother. Pharmacol. 1990, 26, 9–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokerse, W.J.; Kneepkens, E.C.; Ten Hagen, T.L.; Eggermont, A.M.; Grull, H.; Koning, G.A. In depth study on thermosensitive liposomes: Optimizing formulations for tumor specific therapy and in vitro to in vivo relations. Biomaterials 2016, 82, 138–150. [Google Scholar] [CrossRef]
Model Parameters | Parameter Value | Comments |
---|---|---|
Weight of the Animal | 250 g | |
Blood volume | 16 ml | Estimated from [47] |
Volume of ECC (VECC) | 4.2 mL | From in vivo experiments |
Dosage | 7 mg/kg (=1.75 mg) | Bolus injection was assumed |
Filter Perfusion Rate | 0.35 mL/min | Filtration started 30 min after injection |
Filtration Efficacy | 55%, 80%, 100% | |
Half-life of TSL-Dox | 55 min | Experimentally determined |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motamarry, A.; Wolfe, A.M.; Ramajayam, K.K.; Pattanaik, S.; Benton, T.; Peterson, Y.; Faridi, P.; Prakash, P.; Twombley, K.; Haemmerich, D. Extracorporeal Removal of Thermosensitive Liposomal Doxorubicin from Systemic Circulation after Tumor Delivery to Reduce Toxicities. Cancers 2022, 14, 1322. https://doi.org/10.3390/cancers14051322
Motamarry A, Wolfe AM, Ramajayam KK, Pattanaik S, Benton T, Peterson Y, Faridi P, Prakash P, Twombley K, Haemmerich D. Extracorporeal Removal of Thermosensitive Liposomal Doxorubicin from Systemic Circulation after Tumor Delivery to Reduce Toxicities. Cancers. 2022; 14(5):1322. https://doi.org/10.3390/cancers14051322
Chicago/Turabian StyleMotamarry, Anjan, A. Marissa Wolfe, Krishna K. Ramajayam, Sanket Pattanaik, Thomas Benton, Yuri Peterson, Pegah Faridi, Punit Prakash, Katherine Twombley, and Dieter Haemmerich. 2022. "Extracorporeal Removal of Thermosensitive Liposomal Doxorubicin from Systemic Circulation after Tumor Delivery to Reduce Toxicities" Cancers 14, no. 5: 1322. https://doi.org/10.3390/cancers14051322
APA StyleMotamarry, A., Wolfe, A. M., Ramajayam, K. K., Pattanaik, S., Benton, T., Peterson, Y., Faridi, P., Prakash, P., Twombley, K., & Haemmerich, D. (2022). Extracorporeal Removal of Thermosensitive Liposomal Doxorubicin from Systemic Circulation after Tumor Delivery to Reduce Toxicities. Cancers, 14(5), 1322. https://doi.org/10.3390/cancers14051322