Simulating the Dynamic Intra-Tumor Heterogeneity and Therapeutic Responses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Construction
2.2. Parameter Setting
2.3. Therapies in the Model
3. Results
3.1. Examples of DynamicIntra-Tumor Heterogeneity Progression
3.2. The CES Webserver
3.3. Simulation Results
3.4. Intra-Tumor Heterogeneity and Treatment Responses
3.5. Simulations of Tumorigenesis
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gay, L.; Baker, A.M.; Graham, T.A. Tumour cell heterogeneity. F1000Research 2016, 5, 238. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [PubMed] [Green Version]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 81–94. [Google Scholar] [PubMed]
- Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int. J. Oncol. 2019, 54, 407–419. [Google Scholar] [PubMed]
- Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for cancer: A trigger for metastases. Cancer Res. 2017, 77, 1548–1552. [Google Scholar] [PubMed] [Green Version]
- Schaue, D.; McBride, W.H. Opportunities and challenges of radiotherapy for treating cancer. Nat. Rev. Clin. Oncol. 2015, 12, 527–540. [Google Scholar] [PubMed]
- Dienstmann, R.; Rodon, J.; Prat, A.; Perez-Garcia, J.; Adamo, B.; Felip, E.; Cortes, J.; Iafrate, A.J.; Nuciforo, P.; Tabernero, J. Genomic aberrations in the FGFR pathway: Opportunities for targeted therapies in solid tumors. Ann. Oncol. 2014, 25, 552–563. [Google Scholar] [PubMed]
- Miliotou, A.N.; Papadopoulou, L.C. CAR T-cell therapy: A new era in cancer immunotherapy. Curr. Pharm. Biotechnol. 2018, 19, 5–18. [Google Scholar]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 2011, 3, 95ra73. [Google Scholar] [PubMed] [Green Version]
- Porter, D.L.; Levine, B.L.; Kalos, M.; Bagg, A.; June, C.H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 2011, 365, 725–733. [Google Scholar]
- Xu, X.J.; Zhao, H.Z.; Tang, Y.M. Efficacy and safety of adoptive immunotherapy using anti-CD19 chimeric antigen receptor transduced T-cells: A systematic review of phase I clinical trials. Leuk. Lymphoma 2013, 54, 255–260. [Google Scholar] [PubMed]
- Sun, X.X.; Yu, Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol. Sin. 2015, 36, 1219–1227. [Google Scholar] [PubMed]
- Nowell, P.C. The clonal evolution of tumor cell populations. Science 1976, 194, 23–28. [Google Scholar] [PubMed]
- Casas-Selves, M.; Degregori, J. How cancer shapes evolution and how evolution shapes cancer. Evolution 2011, 4, 624–634. [Google Scholar]
- Greaves, M.; Maley, C.C. Clonal evolution in cancer. Nature 2012, 481, 306–313. [Google Scholar] [PubMed]
- Seebacher, N.A.; Stacy, A.E.; Porter, G.M.; Merlot, A.M. Clinical development of targeted and immune based anti-cancer therapies. J. Exp. Clin. Cancer Res. 2019, 38, 156. [Google Scholar] [PubMed]
- Rybinski, B.; Yun, K. Addressing intra-tumoral heterogeneity and therapy resistance. Oncotarget 2016, 7, 72322–72342. [Google Scholar] [PubMed] [Green Version]
- Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501, 338–345. [Google Scholar] [PubMed]
- Durrett, R.; Foo, J.; Leder, K.; Mayberry, J.; Michor, F. Intratumor heterogeneity in evolutionary models of tumor progression. Genetics 2011, 188, 461–477. [Google Scholar]
- Waclaw, B.; Bozic, I.; Pittman, M.E.; Hruban, R.H.; Vogelstein, B.; Nowak, M.A. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 2015, 525, 261–264. [Google Scholar] [PubMed] [Green Version]
- Beerenwinkel, N.; Schwarz, R.F.; Gerstung, M.; Markowetz, F. Cancer evolution: Mathematical models and computational inference. Syst. Biol. 2015, 64, e1–e25. [Google Scholar] [PubMed]
- Xue, Y.; Wang, Q.; Long, Q.; Ng, B.L.; Swerdlow, H.; Burton, J.; Skuce, C.; Taylor, R.; Abdellah, Z.; Zhao, Y.; et al. Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr. Biol. 2009, 19, 1453–1457. [Google Scholar] [PubMed] [Green Version]
- Bozic, I.; Antal, T.; Ohtsuki, H.; Carter, H.; Kim, D.; Chen, S.; Karchin, R.; Kinzler, K.W.; Vogelstein, B.; Nowak, M.A. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. USA 2010, 107, 18545–18550. [Google Scholar] [PubMed] [Green Version]
- McFarland, C.D.; Mirny, L.A.; Korolev, K.S. Tug-of-war between driver and passenger mutations in cancer and other adaptive processes. Proc. Natl. Acad. Sci. USA 2014, 111, 15138–15143. [Google Scholar] [PubMed] [Green Version]
- Lahouel, K.; Younes, L.; Danilova, L.; Giardiello, F.M.; Hruban, R.H.; Groopman, J.; Kinzler, K.W.; Vogelstein, B.; Geman, D.; Tomasetti, C. Revisiting the tumorigenesis timeline with a data-driven generative model. Proc. Natl. Acad. Sci. USA 2020, 117, 857–864. [Google Scholar] [PubMed] [Green Version]
- Abegglen, L.M.; Caulin, A.F.; Chan, A.; Lee, K.; Robinson, R.; Campbell, M.S.; Kiso, W.K.; Schmitt, D.L.; Waddell, P.J.; Bhaskara, S.; et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA 2015, 314, 1850–1860. [Google Scholar] [PubMed]
- Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [PubMed] [Green Version]
- Johnson, K.E.; Howard, G.; Mo, W.; Strasser, M.K.; Lima, E.; Huang, S.; Brock, A. Cancer cell population growth kinetics at low densities deviate from the exponential growth model and suggest an Allee effect. PLoS Biol. 2019, 17, e3000399. [Google Scholar]
- Anttila, J.V.; Shubin, M.; Cairns, J.; Borse, F.; Guo, Q.; Mononen, T.; Vazquez-Garcia, I.; Pulkkinen, O.; Mustonen, V. Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression. PLoS Comput. Biol. 2019, 15, e1007493. [Google Scholar]
- Dempsey, J.L.; Seshadri, R.S.; Morley, A.A. Increased mutation frequency following treatment with cancer chemotherapy. Cancer Res. 1985, 45, 2873–2877. [Google Scholar] [PubMed]
- Chevin, L.M.; Hospital, F. Selective sweep at a quantitative trait locus in the presence of background genetic variation. Genetics 2008, 180, 1645–1660. [Google Scholar] [PubMed] [Green Version]
- Ratner, L.; Waldmann, T.A.; Janakiram, M.; Brammer, J.E. Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N. Engl. J. Med. 2018, 378, 1947–1948. [Google Scholar] [PubMed]
- Neher, R.A.; Shraiman, B.I. Fluctuations of fitness distributions and the rate of muller’s ratchet. Genetics 2012, 191, 1283–1293. [Google Scholar] [PubMed] [Green Version]
- Gillespie, J.H. A simple stochastic gene substitution model. Theor. Popul. Biol. 1983, 23, 202–215. [Google Scholar] [PubMed]
- Ma, S.J.; Oladeru, O.T.; Miccio, J.A.; Iovoli, A.J.; Hermann, G.M.; Singh, A.K. Association of timing of adjuvant therapy with survival in patients with resected stage I to Ii pancreatic cancer. JAMA Netw. Open 2019, 2, e199126. [Google Scholar] [PubMed] [Green Version]
- Sun, Z.; Adam, M.A.; Kim, J.; Nussbaum, D.P.; Benrashid, E.; Mantyh, C.R.; Migaly, J. Determining the optimal timing for initiation of adjuvant chemotherapy after resection for stage II and III colon cancer. Dis. Colon. Rectum. 2016, 59, 87–93. [Google Scholar] [PubMed]
- Kasi, A.; Abbasi, S.; Handa, S.; Al-Rajabi, R.; Saeed, A.; Baranda, J.; Sun, W. Total neoadjuvant therapy vs. standard therapy in locally advanced rectal cancer: A systematic review and meta-analysis. JAMA Netw. Open 2020, 3, e2030097. [Google Scholar] [PubMed]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeobc pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [PubMed] [Green Version]
- West, M.A.; Dimitrov, B.D.; Moyses, H.E.; Kemp, G.J.; Loughney, L.; White, D.; Grocott, M.P.; Jack, S.; Brown, G. Timing of surgery following neoadjuvant chemoradiotherapy in locally advanced rectal cancer—A comparison of magnetic resonance imaging at two time points and histopathological responses. Eur. J. Surg. Oncol. 2016, 42, 1350–1358. [Google Scholar]
- Del Monte, U. Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle 2009, 8, 505–506. [Google Scholar]
- Chung, E.J.; Lee, N.J.; Baek, S.K.; Kwon, S.Y.; Woo, J.S.; Jung, K.Y. Clinical efficacy of primary tumor volume measurements: Comparison of different primary sites. Clin. Exp. Otorhinolaryngol. 2009, 2, 78–84. [Google Scholar] [PubMed]
- Mattern, J.; Volm, M. Imbalance of cell proliferation and apoptosis during progression of lung carcinomas. Anticancer Res. 2004, 24, 4243–4246. [Google Scholar] [PubMed]
- Jones, S.; Chen, W.D.; Parmigiani, G.; Diehl, F.; Beerenwinkel, N.; Antal, T.; Traulsen, A.; Nowak, M.A.; Siegel, C.; Velculescu, V.E.; et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl. Acad. Sci. USA 2008, 105, 4283–4288. [Google Scholar] [PubMed] [Green Version]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar]
- Vessoni, A.T.; Filippi-Chiela, E.C.; Lenz, G.; Batista, L.F.Z. Tumor propagating cells: Drivers of tumor plasticity, heterogeneity, and recurrence. Oncogene 2020, 39, 2055–2068. [Google Scholar]
- Sottoriva, A.; Kang, H.; Ma, Z.; Graham, T.A.; Salomon, M.P.; Zhao, J.; Marjoram, P.; Siegmund, K.; Press, M.F.; Shibata, D.; et al. A big bang model of human colorectal tumor growth. Nat. Genet. 2015, 47, 209–216. [Google Scholar]
- Baake, E.; Bialowons, R. Ancestral processes with selection: Branching and moran models. arXiv 2007, arXiv:q-bio/0702002. [Google Scholar]
- Poudel, P.; Nyamundanda, G.; Patil, Y.; Cheang, M.C.U.; Sadanandam, A. Heterocellular gene signatures reveal luminal-a breast cancer heterogeneity and differential therapeutic responses. NPJ Breast Cancer 2019, 5, 21. [Google Scholar]
- Roberts, C.M.; Cardenas, C.; Tedja, R. The role of intra-tumoral heterogeneity and its clinical relevance in epithelial ovarian cancer recurrence and metastasis. Cancers 2019, 11, 1083. [Google Scholar]
- Bedard, P.L.; Hansen, A.R.; Ratain, M.J.; Siu, L.L. Tumour heterogeneity in the clinic. Nature 2013, 501, 355–364. [Google Scholar]
Parameter Full Name | Abbreviation | Denotation | Default Values in the Model |
---|---|---|---|
Division rate | DR | The duplication rate of tumor cells in a time interval T. | 0.2 for cancer cells, 0.15 for precancerous cells |
Apoptosis rate | AR | The apoptosis rate of tumor cells in a time interval T. | 0.05 |
Mutation rate | MR | The count of expected mutations occurring in a time interval T. | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Feng, C.; Zhou, Y.; Shao, X.; Chen, M. Simulating the Dynamic Intra-Tumor Heterogeneity and Therapeutic Responses. Cancers 2022, 14, 1645. https://doi.org/10.3390/cancers14071645
Liu Y, Feng C, Zhou Y, Shao X, Chen M. Simulating the Dynamic Intra-Tumor Heterogeneity and Therapeutic Responses. Cancers. 2022; 14(7):1645. https://doi.org/10.3390/cancers14071645
Chicago/Turabian StyleLiu, Yongjing, Cong Feng, Yincong Zhou, Xiaotian Shao, and Ming Chen. 2022. "Simulating the Dynamic Intra-Tumor Heterogeneity and Therapeutic Responses" Cancers 14, no. 7: 1645. https://doi.org/10.3390/cancers14071645
APA StyleLiu, Y., Feng, C., Zhou, Y., Shao, X., & Chen, M. (2022). Simulating the Dynamic Intra-Tumor Heterogeneity and Therapeutic Responses. Cancers, 14(7), 1645. https://doi.org/10.3390/cancers14071645