A Model to Detect Significant Prostate Cancer Integrating Urinary Peptide and Extracellular Vesicle RNA Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population and Characteristics
2.2. Sample Collection and Processing
2.3. NanoString Analysis
2.4. Mass Spectrometry Analysis
2.5. Peptidomic Data Processing
2.6. Peptide Sequence Assignment
2.7. Statistical and Data Analysis
2.7.1. Feature Selection Using LASSO (Least Absolute Shrinkage and Selection Operator)
2.7.2. Model Construction
2.7.3. Comparator Models
2.7.4. Statistical Evaluation of Model Predictivity
3. Results
3.1. The Development Cohort
3.2. Feature Selection and Model Development
3.3. Comparative Assessment of the Four Predictive Models
3.4. Net Benefit of Integrated ExoSpec Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef]
- Cancer Research UK Cancer Research UK Prostate Cancer Statistics. Available online: http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer (accessed on 22 February 2022).
- Guichard, G.; Larré, S.; Gallina, A.; Lazar, A.; Faucon, H.; Chemama, S.; Allory, Y.; Patard, J.-J.; Vordos, D.; Hoznek, A.; et al. Extended 21-Sample Needle Biopsy Protocol for Diagnosis of Prostate Cancer in 1000 Consecutive Patients. Eur. Urol. 2007, 52, 430–435. [Google Scholar] [CrossRef]
- Ankerst, D.P.; Miyamoto, R.; Nair, P.V.; Pollock, B.H.; Thompson, I.M.; Parekh, D.J. Yearly Prostate Specific Antigen and Digital Rectal Examination Fluctuations in a Screened Population. J. Urol. 2009, 181, 2071–2076. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic Accuracy of Multi-Parametric MRI and TRUS Biopsy in Prostate Cancer (PROMIS): A Paired Validating Confirmatory Study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Frick, J.; Aulitzky, W. Physiology of the Prostate. Infection 1991, 19 (Suppl. S3), S115–S118. [Google Scholar] [CrossRef]
- Shappell, S.B.; Fulmer, J.; Arguello, D.; Wright, B.S.; Oppenheimer, J.R.; Putzi, M.J. PCA3 Urine MRNA Testing for Prostate Carcinoma: Patterns of Use by Community Urologists and Assay Performance in Reference Laboratory Setting. Urology 2009, 73, 363–368. [Google Scholar] [CrossRef]
- Van Neste, L.; Hendriks, R.J.; Dijkstra, S.; Trooskens, G.; Cornel, E.B.; Jannink, S.A.; de Jong, H.; Hessels, D.; Smit, F.P.; Melchers, W.J.G.; et al. Detection of High-Grade Prostate Cancer Using a Urinary Molecular Biomarker-Based Risk Score. Eur. Urol. 2016, 70, 740–748. [Google Scholar] [CrossRef]
- McKiernan, J.; Donovan, M.J.; O’Neill, V.; Bentink, S.; Noerholm, M.; Belzer, S.; Skog, J.; Kattan, M.W.; Partin, A.; Andriole, G.; et al. A Novel Urine Exosome Gene Expression Assay to Predict High-Grade Prostate Cancer at Initial Biopsy. JAMA Oncol. 2016, 2, 882. [Google Scholar] [CrossRef] [Green Version]
- NICE. Prostate Cancer: Diagnosis and Management; National Institute for Health and Care Excellence: London, UK, 2019. [Google Scholar]
- Connell, S.P.; Yazbek-Hanna, M.; McCarthy, F.; Hurst, R.; Webb, M.; Curley, H.; Walker, H.; Mills, R.; Ball, R.Y.; Sanda, M.G.; et al. A Four-Group Urine Risk Classifier for Predicting Outcomes in Patients with Prostate Cancer. BJU Int. 2019, 124, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Connell, S.P.; O’Reilly, E.; Tuzova, A.; Webb, M.; Hurst, R.; Mills, R.; Zhao, F.; Bapat, B.; Cooper, C.S.; Perry, A.S.; et al. Development of a Multivariable Risk Model Integrating Urinary Cell DNA Methylation and Cell-free RNA Data for the Detection of Significant Prostate Cancer. Prostate 2020, 80, 547–558. [Google Scholar] [CrossRef]
- Connell, S.; Mills, R.; Pandha, H.; Morgan, R.; Cooper, C.; Clark, J.; Brewer, D. Integration of Urinary EN2 Protein & Cell-Free RNA Data in the Development of a Multivariable Risk Model for the Detection of Prostate Cancer Prior to Biopsy. Cancers. 2021, 3, 2102. [Google Scholar] [CrossRef]
- Frantzi, M.; Gomez Gomez, E.; Blanca Pedregosa, A.; Valero Rosa, J.; Latosinska, A.; Culig, Z.; Merseburger, A.S.; Luque, R.M.; Requena Tapia, M.J.; Mischak, H.; et al. CE–MS-Based Urinary Biomarkers to Distinguish Non-Significant from Significant Prostate Cancer. Br. J. Cancer 2019, 120, 1120–1128. [Google Scholar] [CrossRef]
- Zhao, F.; Olkhov-Mitsel, E.; Kamdar, S.; Jeyapala, R.; Garcia, J.; Hurst, R.; Hanna, M.Y.; Mills, R.; Tuzova, A.V.; O’Reilly, E.; et al. A Urine-Based DNA Methylation Assay, ProCUrE, to Identify Clinically Significant Prostate Cancer. Clin. Epigenetics 2018, 10, 147. [Google Scholar] [CrossRef]
- O’Reilly, E.; Tuzova, A.V.; Walsh, A.L.; Russell, N.M.; O’Brien, O.; Kelly, S.; Dhomhnallain, O.N.; DeBarra, L.; Dale, C.M.; Brugman, R.; et al. EpiCaPture: A Urine DNA Methylation Test for Early Detection of Aggressive Prostate Cancer. JCO Precis. Oncol. 2019, 3, 1–18. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Whittington, R.; Bruce Malkowicz, S.; Schultz, D.; Blank, K.; Broderick, G.A.; Tomaszewski, J.E.; Renshaw, A.A.; Kaplan, I.; Beard, C.J.; et al. Biochemical Outcome after Radical Prostatectomy, External Beam Radiation Therapy, or Interstitial Radiation Therapy for Clinically Localized Prostate Cancer. J. Am. Med. Assoc. 1998, 280, 969–974. [Google Scholar] [CrossRef]
- Deantoni, E.P.; Crawford, E.D.; Oesterling, J.E.; Ross, C.A.; Berger, E.R.; McLeod, D.G.; Staggers, F.; Stone, N.N. Age- and Race-Specific Reference Ranges for Prostate-Specific Antigen from a Large Community-Based Study. Urology 1996, 48, 234–239. [Google Scholar] [CrossRef]
- Metzger, J.; Negm, A.A.; Plentz, R.R.; Weismüller, T.J.; Wedemeyer, J.; Karlsen, T.H.; Dakna, M.; Mullen, W.; Mischak, H.; Manns, M.P.; et al. Urine Proteomic Analysis Differentiates Cholangiocarcinoma from Primary Sclerosing Cholangitis and Other Benign Biliary Disorders. Gut 2013, 62, 122–130. [Google Scholar] [CrossRef]
- Zürbig, P.; Renfrow, M.B.; Schiffer, E.; Novak, J.; Walden, M.; Wittke, S.; Just, I.; Pelzing, M.; Neusüß, C.; Theodorescu, D.; et al. Biomarker Discovery by CE-MS Enables Sequence Analysisvia MS/MS with Platform-Independent Separation. Electrophoresis 2006, 27, 2111–2125. [Google Scholar] [CrossRef]
- Mischak, H.; Vlahou, A.; Ioannidis, J.P.A. Technical Aspects and Inter-Laboratory Variability in Native Peptide Profiling: The CE–MS Experience. Clin. Biochem. 2013, 46, 432–443. [Google Scholar] [CrossRef]
- Frantzi, M.; Metzger, J.; Banks, R.E.; Husi, H.; Klein, J.; Dakna, M.; Mullen, W.; Cartledge, J.J.; Schanstra, J.P.; Brand, K.; et al. Discovery and Validation of Urinary Biomarkers for Detection of Renal Cell Carcinoma. J. Proteomics 2014, 98, 44–58. [Google Scholar] [CrossRef]
- Siwy, J.; Mullen, W.; Golovko, I.; Franke, J.; Zürbig, P. Human Urinary Peptide Database for Multiple Disease Biomarker Discovery. Proteomics. Clin. Appl. 2011, 5, 367–374. [Google Scholar] [CrossRef]
- Latosinska, A.; Siwy, J.; Mischak, H.; Frantzi, M. Peptidomics and Proteomics Based on CE-MS as a Robust Tool in Clinical Application: The Past, the Present, and the Future. Electrophoresis 2019, 40, 2294–2308. [Google Scholar] [CrossRef]
- Dakna, M.; Harris, K.; Kalousis, A.; Carpentier, S.; Kolch, W.; Schanstra, J.P.; Haubitz, M.; Vlahou, A.; Mischak, H.; Girolami, M. Addressing the Challenge of Defining Valid Proteomic Biomarkers and Classifiers. BMC Bioinform. 2010, 11, 594. [Google Scholar] [CrossRef] [Green Version]
- Klein, J.; Papadopoulos, T.; Mischak, H.; Mullen, W. Comparison of CE-MS/MS and LC-MS/MS Sequencing Demonstrates Significant Complementarity in Natural Peptide Identification in Human Urine. Electrophoresis 2014, 35, 1060–1064. [Google Scholar] [CrossRef]
- Magalhães, P.; Pontillo, C.; Pejchinovski, M.; Siwy, J.; Krochmal, M.; Makridakis, M.; Carrick, E.; Klein, J.; Mullen, W.; Jankowski, J.; et al. Comparison of Urine and Plasma Peptidome Indicates Selectivity in Renal Peptide Handling. PROTEOMICS—Clin. Appl. 2018, 12, 1700163. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 7 April 2020).
- Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ma, G. Ensemble-Based Active Learning for Class Imbalance Problem. J. Biomed. Sci. Eng. 2010, 03, 1022–1029. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P Values: Data Analysis with Estimation Graphics. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef]
- Vickers, A.J.; Elkin, E.B. Decision Curve Analysis: A Novel Method for Evaluating Prediction Models. Med. Decis. Making 2006, 26, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Brown, M. Rmda: Risk Model Decision Analysis. Available online: https://cran.r-project.org/package=rmda (accessed on 7 April 2020).
- Kerr, K.F.; Brown, M.D.; Zhu, K.; Janes, H. Assessing the Clinical Impact of Risk Prediction Models with Decision Curves: Guidance for Correct Interpretation and Appropriate Use. J. Clin. Oncol. 2016, 34, 2534–2540. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.M.; Donovan, J.L.; Turner, E.L.; Metcalfe, C.; Young, G.J.; Walsh, E.I.; Lane, J.A.; Noble, S.; Oliver, S.E.; Evans, S.; et al. Effect of a Low-Intensity PSA-Based Screening Intervention on Prostate Cancer Mortality: The CAP Randomized Clinical Trial. JAMA-J. Am. Med. Assoc. 2018, 319, 883–895. [Google Scholar] [CrossRef] [Green Version]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Alford, A.V.; Brito, J.M.; Yadav, K.K.; Yadav, S.S.; Tewari, A.K.; Renzulli, J. The Use of Biomarkers in Prostate Cancer Screening and Treatment. Rev. Urol. 2017, 19, 221–234. [Google Scholar] [CrossRef]
- Igawa, T.; Takehara, K.; Onita, T.; Ito, K.; Sakai, H. Stability of [-2]Pro-PSA in Whole Blood and Serum: Analysis for Optimal Measurement Conditions. J. Clin. Lab. Anal. 2014, 28, 315–319. [Google Scholar] [CrossRef]
- Mochtar, C.; Kiemeney, L.A.L.; van Riemsdijk, M.; Barnett, G.; Laguna, M.; Debruyne, F.M.; de la Rosette, J.J.M.C. Prostate-Specific Antigen as an Estimator of Prostate Volume in the Management of Patients with Symptomatic Benign Prostatic Hyperplasia. Eur. Urol. 2003, 44, 695–700. [Google Scholar] [CrossRef]
- Ulleryd, P.; Zackrisson, B.; Aus, G.; Bergdahl, S.; Hugosson, J.; Sandberg, T. Prostatic Involvement in Men with Febrile Urinary Tract Infection as Measured by Serum Prostate-Specific Antigen and Transrectal Ultrasonography. BJU Int. 2001, 84, 470–474. [Google Scholar] [CrossRef]
- Tchetgen, M.-B.; Song, J.T.; Strawderman, M.; Jacobsen, S.J.; Oesterling, J.E. Ejaculation Increases the Serum Prostate-Specific Antigen Concentration. Urology 1996, 47, 511–516. [Google Scholar] [CrossRef]
- Balk, S.P.; Ko, Y.-J.; Bubley, G.J. Biology of Prostate-Specific Antigen. J. Clin. Oncol. 2003, 21, 383–391. [Google Scholar] [CrossRef]
- Thompson, I.M.; Pauler, D.K.; Goodman, P.J.; Tangen, C.M.; Lucia, M.S.; Parnes, H.L.; Minasian, L.M.; Ford, L.G.; Lippman, S.M.; Crawford, E.D.; et al. Prevalence of Prostate Cancer among Men with a Prostate-Specific Antigen Level ≤4.0 Ng per Milliliter. N. Engl. J. Med. 2004, 350, 2239–2246. [Google Scholar] [CrossRef] [Green Version]
- Hennenlotter, J.; Neumann, T.; Alperowitz, S.; Wagner, V.; Hohneder, A.; Bedke, J.; Stenzl, A.; Todenhöfer, T.; Rausch, S. Age-Adapted Prostate Cancer Gene 3 Score Interpretation—Suggestions for Clinical Use. Clin. Lab. 2020, 66. [Google Scholar] [CrossRef]
- Roumiguié, M.; Ploussard, G.; Nogueira, L.; Bruguière, E.; Meyrignac, O.; Lesourd, M.; Péricart, S.; Malavaud, B. Independent Evaluation of the Respective Predictive Values for High-Grade Prostate Cancer of Clinical Information and RNA Biomarkers after Upfront MRI and Image-Guided Biopsies. Cancers 2020, 12, 285. [Google Scholar] [CrossRef] [Green Version]
- Tomlins, S.A.; Day, J.R.; Lonigro, R.J.; Hovelson, D.H.; Siddiqui, J.; Kunju, L.P.; Dunn, R.L.; Meyer, S.; Hodge, P.; Groskopf, J.; et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur. Urol. 2016, 70, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Zou, Z.; Zhang, W.; Young, D.; Gleave, M.G.; Rennie, P.; Connell, T.; Connelly, R.; Moul, J.; Srivastava, S.; Sesterhenn, I. Maspin Expression Profile in Human Prostate Cancer (CaP) and in Vitro Induction of Maspin Expression by Androgen Ablation. Clin. Cancer Res. 2002, 8, 1172–1177. [Google Scholar]
- Theodorescu, D.; Schiffer, E.; Bauer, H.W.; Douwes, F.; Eichhorn, F.; Polley, R.; Schmidt, T.; Schöfer, W.; Zürbig, P.; Good, D.M.; et al. Discovery and Validation of Urinary Biomarkers for Prostate Cancer. Proteomics. Clin. Appl. 2008, 2, 556–570. [Google Scholar] [CrossRef]
- Song, H.; Kuang, G.; Zhang, Z.; Ma, B.; Jin, J.; Zhang, Q. The Prognostic Value of Pretreatment Plasma Fibrinogen in Urological Cancers: A Systematic Review and Meta-Analysis. J. Cancer 2019, 10, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Egeblad, M.; Werb, Z. New Functions for the Matrix Metalloproteinases in Cancer Progression. Nat. Rev. Cancer 2002, 2, 161–174. [Google Scholar] [CrossRef]
- Tedeschi, P.M.; Bansal, N.; Kerrigan, J.E.; Abali, E.E.; Scotto, K.W.; Bertino, J.R. NAD+ Kinase as a Therapeutic Target in Cancer. Clin. Cancer Res. 2016, 22, 5189–5195. [Google Scholar] [CrossRef] [Green Version]
- Pramono, A.A.; Rather, G.M.; Herman, H.; Lestari, K.; Bertino, J.R. NAD- and NADPH-Contributing Enzymes as Therapeutic Targets in Cancer: An Overview. Biomolecules 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Bhagavan, N.V.; Ha, C.-E. Protein and Amino Acid Metabolism. In Essentials of Medical Biochemistry; Elsevier: Amsterdam, The Netherlands, 2011; pp. 169–190. [Google Scholar]
- Tofte, N.; Lindhardt, M.; Adamova, K.; Bakker, S.J.L.; Beige, J.; Beulens, J.W.J.; Birkenfeld, A.L.; Currie, G.; Delles, C.; Dimos, I.; et al. Early Detection of Diabetic Kidney Disease by Urinary Proteomics and Subsequent Intervention with Spironolactone to Delay Progression (PRIORITY): A Prospective Observational Study and Embedded Randomised Placebo-Controlled Trial. Lancet Diabetes Endocrinol. 2020, 8, 301–312. [Google Scholar] [CrossRef]
- Wendt, R.; Thijs, L.; Kalbitz, S.; Mischak, H.; Siwy, J.; Raad, J.; Metzger, J.; Neuhaus, B.; von der Leyen, H.; Dudoignon, E.; et al. A Urinary Peptidomic Profile Predicts Outcome in SARS-CoV-2-Infected Patients. EClinicalMedicine 2021, 36, 100883. [Google Scholar] [CrossRef]
- Webb, M.; Manley, K.; Olivan, M.; Guldvik, I.; Palczynska, M.; Hurst, R.; Connell, S.P.; Mills, I.G.; Brewer, D.S.; Mills, R.; et al. Methodology for the At-Home Collection of Urine Samples for Prostate Cancer Detection. Biotechniques 2020, 68, 65–71. [Google Scholar] [CrossRef]
- Nafie, S.; Wanis, M.; Khan, M. The Efficacy of Transrectal Ultrasound Guided Biopsy Versus Transperineal Template Biopsy of the Prostate in Diagnosing Prostate Cancer in Men with Previous Negative Transrectal Ultrasound Guided Biopsy. Urol. J. 2017, 14, 3008–3012. [Google Scholar]
- Corcoran, N.M.; Hovens, C.M.; Hong, M.K.H.H.; Pedersen, J.; Casey, R.G.; Connolly, S.; Peters, J.; Harewood, L.; Gleave, M.E.; Goldenberg, S.L.; et al. Underestimation of Gleason Score at Prostate Biopsy Reflects Sampling Error in Lower Volume Tumours. BJU Int. 2012, 109, 660–664. [Google Scholar] [CrossRef]
- Ferro, M.; Crocetto, F.; Bruzzese, D.; Imbriaco, M.; Fusco, F.; Longo, N.; Napolitano, L.; La Civita, E.; Cennamo, M.; Liotti, A.; et al. Prostate Health Index and Multiparametric MRI: Partners in Crime Fighting Overdiagnosis and Overtreatment in Prostate Cancer. Cancers. 2021, 13, 4723. [Google Scholar] [CrossRef]
- Saltman, A.; Zegar, J.; Haj-Hamed, M.; Verma, S.; Sidana, A. Prostate Cancer Biomarkers and Multiparametric MRI: Is There a Role for Both in Prostate Cancer Management? Ther. Adv. Urol. 2021, 13, 175628722199718. [Google Scholar] [CrossRef]
- Riley, R.D.; Ensor, J.; Snell, K.I.E.; Harrell, F.E.; Martin, G.P.; Reitsma, J.B.; Moons, K.G.M.; Collins, G.; van Smeden, M. Calculating the Sample Size Required for Developing a Clinical Prediction Model. BMJ 2020, 368, m441. [Google Scholar] [CrossRef] [Green Version]
‘No Cancer’ (NC) | PCa | |
---|---|---|
Collection Centre: NNUH, n (%) | 59 (100%) | 133 (100%) |
Age (years): | ||
minimum | 45.0 | 53.0 |
median (IQR) | 67.0 (59.5, 71.0) | 70.0 (65.0, 76.0) |
mean (sd) | 66.2 ± 8.3 | 70.2 ± 7.8 |
maximum | 82.0 | 91.0 |
PSA (ng/mL): | ||
minimum | 0.3 | 4.10 |
median (IQR) | 5.3 (2.3, 7.9) | 10.40 (6.90, 16.60) |
mean (sd) | 6.4 ± 5.9 | 16.8 ± 17.4 |
maximum | 30.3 | 95.9 |
Prostate Size (DRE estimate): | ||
Small, n (%) | 16 (27%) | 12 (9%) |
Medium, n (%) | 25 (42%) | 67 (50%) |
Large, n (%) | 14 (24%) | 38 (29%) |
Unknown, n (%) | 4 (7%) | 16 (12%) |
Gleason Score: | ||
0, n (%) | 59 (100%) | 0 (0%) |
3 + 3, n (%) | 0 (0%) | 31 (23%) |
3 + 4, n (%) | 0 (0%) | 48 (36%) |
4 + 3, n (%) | 0 (0%) | 25 (19%) |
≥4 + 4, n (%) | 0 (0%) | 29 (22%) |
Biopsy Outcome | ||
No Biopsy, n (%) | 23 (39%) | 0 (0%) |
Biopsy Negative, n (%) | 36 (61%) | 0 (0%) |
Biopsy Positive, n (%) | 0 (0%) | 133 (100%) |
SoC | MassSpec | ‘ExoRNA’ | ‘ExoSpec’ | Difference (PCa vs. NC) | |
---|---|---|---|---|---|
Clinical Parameters | Serum PSA | - | - | Serum PSA | 10.4× |
Age | - | - | Age | 4.1× | |
Peptides | - | HIST1H1E (KSPAKAKAVKPKAAKPKTAKPKAA) | - | HIST1H1E (KSPAKAKAVKPKAAKPKTAKPKAA) | 7.1× |
- | COL2A1 (RDGEPGTPGNpGPpGP) | - | COL2A1 (RDGEPGTPGNpGPpGP) | 7.0× | |
- | COL1A1 (GDDGEAGKpGRpGERGpPGP) | - | - | 6.4× | |
- | FGA (DEAGSEADHEGTHSTKRGHAKSRPV) | - | FGA (DEAGSEADHEGTHSTKRGHAKSRPV) | 5.6× | |
- | COL4A4 (NEGLCACEpGpMGPPGPp) | - | - | 5.4× | |
- | MMP2 (TAMSTVGGNSEGApCV) | - | - | 4.8× | |
- | - | - | FGA (ADHEGTHSTKRG) | 4.1× | |
- | - | - | FGA (SEADHEGTHSTKRG) | 3.2× | |
- | NADK (QTAPQEEAVTQEEVEALVCGHTQRWVPG) | - | - | 1.3× | |
- | COL1A1 (ApGDRGEpGPPGp) | - | - | 0.7× | |
- | COL1A1 (SpGPDGKTGPpGPA) | - | - | 0.6× | |
- | COL4A3 (PGNEGLDGpRGDPGqPGpPGEqGP) | - | - | 0.6× | |
- | COL4A5 (LPGFPGpEGPPGpRGQKGDDGIpGpPGPK) | - | - | 0.6× | |
- | GLUD1 (AVGESDGSIWNPDGIDPK) | - | GLUD1 (AVGESDGSIWNPDGIDPK) | 0.5× | |
EV-RNA probes | - | - | ERG exons 4–5 | ERG exons 4–5 | 4.8× |
- | - | PCA3 | PCA3 | 4.2× | |
- | - | SLC12A1 | SLC12A1 | 3.5× | |
- | - | TMEM45B | TMEM45B | 1.9× | |
- | - | SERPINB5 | - | 0.8× | |
- | - | SNORA20 | - | 0.8× |
Initial Biopsy Outcome | SoC | MassSpec | ExoRNA | ExoSpec |
---|---|---|---|---|
Any Cancer | 0.78 (0.70–0.85) | 0.76 (0.68–0.84) | 0.84 (0.79–0.90) | 0.91 (0.86–0.96) |
Gs ≥ 3 + 4: | 0.71 (0.64–0.78) | 0.69 (0.61–0.76) | 0.75 (0.68–0.82) | 0.83 (0.77–0.88) |
Gs ≥ 4 + 3: | 0.76 (0.69–0.84) | 0.70 (0.62–0.78) | 0.67 (0.58–0.75) | 0.82 (0.75–0.88) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connell, S.P.; Frantzi, M.; Latosinska, A.; Webb, M.; Mullen, W.; Pejchinovski, M.; Salji, M.; Mischak, H.; Cooper, C.S.; Clark, J.; et al. A Model to Detect Significant Prostate Cancer Integrating Urinary Peptide and Extracellular Vesicle RNA Data. Cancers 2022, 14, 1995. https://doi.org/10.3390/cancers14081995
O’Connell SP, Frantzi M, Latosinska A, Webb M, Mullen W, Pejchinovski M, Salji M, Mischak H, Cooper CS, Clark J, et al. A Model to Detect Significant Prostate Cancer Integrating Urinary Peptide and Extracellular Vesicle RNA Data. Cancers. 2022; 14(8):1995. https://doi.org/10.3390/cancers14081995
Chicago/Turabian StyleO’Connell, Shea P., Maria Frantzi, Agnieszka Latosinska, Martyn Webb, William Mullen, Martin Pejchinovski, Mark Salji, Harald Mischak, Colin S. Cooper, Jeremy Clark, and et al. 2022. "A Model to Detect Significant Prostate Cancer Integrating Urinary Peptide and Extracellular Vesicle RNA Data" Cancers 14, no. 8: 1995. https://doi.org/10.3390/cancers14081995
APA StyleO’Connell, S. P., Frantzi, M., Latosinska, A., Webb, M., Mullen, W., Pejchinovski, M., Salji, M., Mischak, H., Cooper, C. S., Clark, J., Brewer, D. S., & on behalf of The Movember GAP1 Urine Biomarker Consortium. (2022). A Model to Detect Significant Prostate Cancer Integrating Urinary Peptide and Extracellular Vesicle RNA Data. Cancers, 14(8), 1995. https://doi.org/10.3390/cancers14081995