Predictive Factors for Local Recurrence after Intraoperative Microwave Ablation for Colorectal Liver Metastases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Microwave Ablation
2.3. Definitions
2.4. Follow Up
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozzetti, F.; Doci, R.; Bignami, P.; Morabito, A.; Gennari, L. Patterns of failure following surgical resection of colorectal cancer liver metastases. Rationale for a multimodal approach. Ann. Surg. 1987, 205, 264–270. [Google Scholar] [CrossRef]
- Kingham, T.P.; Tanoue, M.; Eaton, A.; Rocha, F.G.; Do, R.; Allen, P.; De Matteo, R.P.; D’Angelica, M.; Fong, Y.; Jarnagin, W.R. Patterns of recurrence after ablation of colorectal cancer liver metastases. Ann. Surg. Oncol. 2012, 19, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Ruers, T.; Van Coevorden, F.; Punt, C.J.; Pierie, J.E.; Borel-Rinkes, I.; Ledermann, J.A.; Poston, G.; Bechstein, W.; Lentz, M.A.; Mauer, M.; et al. Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial. J. Natl. Cancer Inst. 2017, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauri, G.; Monfardini, L.; Garnero, A.; Zampino, M.G.; Orsi, F.; Della Vigna, P.; Bonomo, G.; Varano, G.M.; Busso, M.; Gazzera, C.; et al. Optimizing Loco Regional Management of Oligometastatic Colorectal Cancer: Technical Aspects and Biomarkers, Two Sides of the Same Coin. Cancers 2021, 13, 2617. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Arain, M.A.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Farkas, L.; et al. Colon Cancer, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 329–359. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Wan, X.; Li, Y.; Li, B.; Zhang, Y.; Yuan, Y.; Zheng, Y. Efficacy and safety of thermal ablation in patients with liver metastases. Eur. J. Gastroenterol. Hepatol. 2013, 25, 442–446. [Google Scholar] [CrossRef]
- Qin, S.; Liu, G.J.; Huang, M.; Huang, J.; Luo, Y.; Wen, Y.; Wang, Y.; Chen, L. The local efficacy and influencing factors of ultrasound-guided percutaneous microwave ablation in colorectal liver metastases: A review of a 4-year experience at a single center. Int. J. Hyperth. 2019, 36, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.S.; Lee, F.T., Jr.; Mahvi, D.M. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis. Ann. Surg. Oncol. 2003, 10, 275–283. [Google Scholar] [CrossRef]
- Takahashi, H.; Kahramangil, B.; Berber, E. Local recurrence after microwave thermosphere ablation of malignant liver tumors: Results of a surgical series. Surgery 2018, 163, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.L.; Mangu, P.B.; Choti, M.A.; Crocenzi, T.S.; Dodd, G.D., 3rd; Dorfman, G.S.; Eng, C.; Fong, Y.; Giusti, A.F.; Lu, D.; et al. American Society of Clinical Oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J. Clin. Oncol. 2010, 28, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Akyuz, M.; Aksoy, E.; Karabulut, K.; Berber, E. Local recurrence after laparoscopic radiofrequency ablation of malignant liver tumors: Results of a contemporary series. J. Surg. Oncol. 2017, 115, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Groeschl, R.T.; Pilgrim, C.H.; Hanna, E.M.; Simo, K.A.; Swan, R.Z.; Sindram, D.; Martinie, J.B.; Iannitti, D.A.; Bloomston, M.; Schmidt, C.; et al. Microwave ablation for hepatic malignancies: A multiinstitutional analysis. Ann. Surg. 2014, 259, 1195–1200. [Google Scholar] [CrossRef]
- Abreu de Carvalho, L.F.; Logghe, B.; Van Cleven, S.; Vanlander, A.; Moura Ribeiro, S.; Geboes, K.; Lecluyse, C.; Smeets, P.; Degroote, H.; Van Vlierberghe, H.; et al. Local control of hepatocellular carcinoma and colorectal liver metastases after surgical microwave ablation without concomitant hepatectomy. Langenbecks Arch. Surg. 2021, 406, 2749–2757. [Google Scholar] [CrossRef]
- Meijerink, M.R.; Puijk, R.S.; van Tilborg, A.; Henningsen, K.H.; Fernandez, L.G.; Neyt, M.; Heymans, J.; Frankema, J.S.; de Jong, K.P.; Richel, D.J.; et al. Radiofrequency and Microwave Ablation Compared to Systemic Chemotherapy and to Partial Hepatectomy in the Treatment of Colorectal Liver Metastases: A Systematic Review and Meta-Analysis. Cardiovasc. Interv. Radiol. 2018, 41, 1189–1204. [Google Scholar] [CrossRef] [Green Version]
- Urbonas, T.; Anderson, E.M.; Gordon-Weeks, A.N.; Kabir, S.I.; Soonawalla, Z.; Silva, M.A.; Gleeson, F.V.; Reddy, S. Factors predicting ablation site recurrence following percutaneous microwave ablation of colorectal hepatic metastases. HPB 2019, 21, 1175–1184. [Google Scholar] [CrossRef]
- Fan, H.; Wang, X.; Qu, J.; Lu, W.; Pang, Z.; Shao, T.; Xia, J.; Wang, H.; Li, G.; Zhang, Y.; et al. Periprocedural risk factors for incomplete radiofrequency ablation of liver metastases from colorectal cancer: A single-center retrospective analysis. Int. J. Hyperth. 2021, 38, 985–994. [Google Scholar] [CrossRef]
- Tanis, E.; Nordlinger, B.; Mauer, M.; Sorbye, H.; van Coevorden, F.; Gruenberger, T.; Schlag, P.M.; Punt, C.J.; Ledermann, J.; Ruers, T.J. Local recurrence rates after radiofrequency ablation or resection of colorectal liver metastases. Analysis of the European Organisation for Research and Treatment of Cancer #40004 and #40983. Eur. J. Cancer 2014, 50, 912–919. [Google Scholar] [CrossRef]
- Odisio, B.C.; Yamashita, S.; Huang, S.Y.; Harmoush, S.; Kopetz, S.E.; Ahrar, K.; Chun, Y.S.; Conrad, C.; Aloia, T.A.; Gupta, S.; et al. Local tumour progression after percutaneous ablation of colorectal liver metastases according to RAS mutation status. Br. J. Surg. 2017, 104, 760–768. [Google Scholar] [CrossRef]
- Shady, W.; Petre, E.N.; Do, K.G.; Gonen, M.; Yarmohammadi, H.; Brown, K.T.; Kemeny, N.E.; D’Angelica, M.; Kingham, P.T.; Solomon, S.B.; et al. Percutaneous Microwave versus Radiofrequency Ablation of Colorectal Liver Metastases: Ablation with Clear Margins (A0) Provides the Best Local Tumor Control. J. Vasc. Interv. Radiol. 2018, 29, 268–275.e261. [Google Scholar] [CrossRef]
- Wang, X.; Sofocleous, C.T.; Erinjeri, J.P.; Petre, E.N.; Gonen, M.; Do, K.G.; Brown, K.T.; Covey, A.M.; Brody, L.A.; Alago, W.; et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc. Interv. Radiol. 2013, 36, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puijk, R.S.; Dijkstra, M.; van den Bemd, B.A.T.; Ruarus, A.H.; Nieuwenhuizen, S.; Geboers, B.; Timmer, F.E.F.; Schouten, E.A.C.; de Vries, J.J.J.; van der Meijs, B.B.; et al. Improved Outcomes of Thermal Ablation for Colorectal Liver Metastases: A 10-Year Analysis from the Prospective Amsterdam CORE Registry (AmCORE). Cardiovasc. Interv. Radiol. 2022, 45, 1074–1089. [Google Scholar] [CrossRef] [PubMed]
- Puijk, R.S.; Ahmed, M.; Adam, A.; Arai, Y.; Arellano, R.; de Baère, T.; Bale, R.; Bellera, C.; Binkert, C.A.; Brace, C.L.; et al. Consensus Guidelines for the Definition of Time-to-Event End Points in Image-guided Tumor Ablation: Results of the SIO and DATECAN Initiative. Radiology 2021, 301, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Shady, W.; Petre, E.N.; Gonen, M.; Erinjeri, J.P.; Brown, K.T.; Covey, A.M.; Alago, W.; Durack, J.C.; Maybody, M.; Brody, L.A.; et al. Percutaneous Radiofrequency Ablation of Colorectal Cancer Liver Metastases: Factors Affecting Outcomes--A 10-year Experience at a Single Center. Radiology 2016, 278, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Gavriilidis, P.; Roberts, K.J.; de’Angelis, N.; Aldrighetti, L.; Sutcliffe, R.P. Recurrence and survival following microwave, radiofrequency ablation, and hepatic resection of colorectal liver metastases: A systematic review and network meta-analysis. Hepatobiliary Pancreat. Dis. Int. 2021, 20, 307–314. [Google Scholar] [CrossRef]
- Kurilova, I.; Bendet, A.; Petre, E.N.; Boas, F.E.; Kaye, E.; Gonen, M.; Covey, A.; Brody, L.A.; Brown, K.T.; Kemeny, N.E.; et al. Factors Associated With Local Tumor Control and Complications After Thermal Ablation of Colorectal Cancer Liver Metastases: A 15-year Retrospective Cohort Study. Clin. Color. Cancer 2021, 20, e82–e95. [Google Scholar] [CrossRef]
- Vasiniotis Kamarinos, N.; Vakiani, E.; Gonen, M.; Kemeny, N.E.; Sigel, C.; Saltz, L.B.; Brown, K.T.; Covey, A.M.; Erinjeri, J.P.; Brody, L.A.; et al. Biopsy and Margins Optimize Outcomes after Thermal Ablation of Colorectal Liver Metastases. Cancers 2022, 14, 693. [Google Scholar] [CrossRef]
- Dijkstra, M.; Nieuwenhuizen, S.; Puijk, R.S.; Timmer, F.E.F.; Geboers, B.; Schouten, E.A.C.; Opperman, J.; Scheffer, H.J.; de Vries, J.J.J.; Versteeg, K.S.; et al. Primary Tumor Sidedness, RAS and BRAF Mutations and MSI Status as Prognostic Factors in Patients with Colorectal Liver Metastases Treated with Surgery and Thermal Ablation: Results from the Amsterdam Colorectal Liver Met Registry (AmCORE). Biomedicines 2021, 9, 962. [Google Scholar] [CrossRef]
- Weilert, H.; Sadeghi, D.; Lipp, M.; Oldhafer, K.J.; Donati, M.; Stang, A. Potential for cure and predictors of long-term survival after radiofrequency ablation for colorectal liver metastases: A 20-years single-center experience. Eur. J. Surg. Oncol. 2022, 48, 2487–2494. [Google Scholar] [CrossRef]
- Vasiniotis Kamarinos, N.; Gonen, M.; Sotirchos, V.; Kaye, E.; Petre, E.N.; Solomon, S.B.; Erinjeri, J.P.; Ziv, E.; Kirov, A.; Sofocleous, C.T. 3D margin assessment predicts local tumor progression after ablation of colorectal cancer liver metastases. Int. J. Hyperth. 2022, 39, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Park, B.J.; Hunt, S.J.; Nadolski, G.J.; Gade, T.P. Augmented reality improves procedural efficiency and reduces radiation dose for CT-guided lesion targeting: A phantom study using HoloLens 2. Sci. Rep. 2020, 10, 18620. [Google Scholar] [CrossRef] [PubMed]
- Shyn, P.B.; Casadaban, L.C.; Sainani, N.I.; Sadow, C.A.; Bunch, P.M.; Levesque, V.M.; Kim, C.K.; Gerbaudo, V.H.; Silverman, S.G. Intraprocedural Ablation Margin Assessment by Using Ammonia Perfusion PET during FDG PET/CT-guided Liver Tumor Ablation: A Pilot Study. Radiology 2018, 288, 138–145. [Google Scholar] [CrossRef] [PubMed]
Variables | Local Recurrence (n = 39) | No Local Recurrence (n = 156) | p-Value | |
---|---|---|---|---|
Age | (median, range) | 62 (42–81) | 66.5 (35–90) | 0.12 |
Sex | men/women | 23/16 | 102/54 | 0.46 |
Timing of CRLM | synchronous/metachronous | 27/12 | 74/82 | 0.01 |
Largest diameter of CRLM with MWA or HR | median (range) (mm) | 24.8 (13.9–80) | 23.3 (3–110) | 0.10 |
Largest diameter of CRLM with MWA | median (range) (mm) | 24 (11–44.1) | 19.0 (4.8–42) | <0.01 |
Number of CRLM with MWA and HR | median (range) | 6 (1–34) | 4 (1–48) | 0.051 |
solitary/multiple | 6/33 | 33/123 | 0.42 | |
<5/≥5 | 15/24 | 87/69 | 0.053 | |
Number of CRLM with MWA | median (range) | 5 (1–34) | 3 (1–45) | 0.01 |
solitary/multiple | 7/32 | 49/107 | 0.09 | |
<5/≥5 | 18/21 | 103/53 | 0.02 | |
Operative procedure | ||||
MWA | 24 | 85 | 0.43 | |
MWA + HR | 15 | 71 | ||
CEA (ng/mL) | median (range) | 10.1 (1.4–1640) | 13.0 (0.7–486) | 0.94 |
CA19-9 (U/mL) | median (range) | 27 (1–745) | 20 (1–120,000) | 0.67 |
Clinical Risk Score | 0–2 | 16 | 74 | 0.59 |
3–5 | 23 | 84 | ||
Preoperative chemotherapy | 21 (53.9%) | 50 (32.1%) | 0.01 | |
Adjuvant chemotherapy | 18 (47.4%) | 50 (32.1%) | 0.041 | |
Primary site | ||||
T stage | 1/2/3/4 | 0/3/31/5 | 3/7/125/21 | 0.43 |
N status | Positive | 25 | 104 | 0.46 |
Location of primary site | right/left | 10/29 | 42/114 | 0.87 |
Minimal ablation margin | <5 mm, ≥5 mm | 33/6 | 59/97 | <0.01 |
Recurrence in 2 years after surgery | 39 (100%) | 110 (70.5%) | <0.01 | |
Intrahepatic recurrence | 28 (71.8%) | 75 (49.4%) | 0.01 | |
Extrahepatic recurrence | 10 (25.6%) | 62 (39.7%) | 0.10 | |
RAS status | wild/mutated/not evaluated | 14/10/15 | 46/26/84 | 0.63 |
Variables | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||
Age | ≤62 | 2.07 | (1.02–4.23) | 0.045 | 1.35 | (0.57–3.22) | 0.50 |
Sex | Men | 0.76 | (0.37–1.56) | 0.46 | |||
Timing of CRLM | Synchronous | 2.50 | (1.18–5.27) | 0.02 | 1.62 | (0.63–4.14) | 0.31 |
Largest diameter of CRLM with MWA or HR | >23 mm | 1.79 | (0.86–3.69) | 0.12 | |||
Largest diameter of CRLM with MWA | >20 mm | 3.38 | (1.54–7.42) | <0.01 | 4.79 | (1.83–12.50) | <0.01 |
Number of CRLM with MWA and HR | ≥5 | 2.02 | (0.98–4.14) | 0.056 | 0.58 | (0.10–3.39) | 0.54 |
Number of CRLM with MWA | ≥5 | 2.27 | (1.11–4.62) | 0.02 | 1.35 | (0.24–7.72) | 0.74 |
Operative procedure | MWA + Hr | 0.75 | (0.36–1.53) | 0.43 | |||
Clinical Risk Score | >2 | 1.23 | (0.60–2.51)) | 0.56 | |||
CEA | ≥5 ng/ml | 0.88 | (0.40–1.90) | 0.74 | |||
CA19-9 | ≥37 U/ml | 1.63 | (0.79–3.37) | 0.19 | |||
Preoperative chemotherapy | Yes | 2.47 | (1.21–5.05) | 0.01 | 2.61 | (0.97–7.02) | 0.06 |
Adjuvant chemotherapy | Yes | 2.10 | (1.02–4.31) | 0.043 | 2.07 | (0.84–5.09) | 0.11 |
minimal ablation margin | <5 mm | 9.04 | (3.57–22.87) | <0.01 | 8.32 | (2.99–23.13) | <0.01 |
RAS status | Mutated | 1.26 | (0.49–3.25) | 0.63 |
Variables | Total | Local Recurrence | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lesions | Size (mm) | Range | Ablation Margin (mm) | HV/IVC | Glisson | Lesions | (% of Total) | Size (mm) | Range | Ablation Margin (mm) | HV/ IVC | Glisson | |
(0/0.1–5/5–9.10/10 </NE) | (0/0.1–5/5–9.10/10 </NE) | ||||||||||||
Total | 1066 | 10 | (2.7–44.1) | 42/65/874/19/66 | 42 | 15 | 44 | (4.1%) | 23.0 | (10–44.1) | 18/20/5/0 | 18 | 7 |
Segment 1 | 44 | 12.5 | (3.0–37.0) | 7/7/28/0/2 | 7 | 1 | 2 | (4.5%) | 18.8 | (13.0–24.5) | 1/1/0/0 | 1 | 1 |
2 | 101 | 8.5 | (2.9–32.9) | 1/2/85/0/13 | 1 | 2 | 1 | (1.0%) | 25 | (25.0–25.0) | 0/1/0/0 | 0 | 1 |
3 | 91 | 8.7 | (2.7–28.5) | 0/0/80/3/8 | 0 | 1 | 0 | (0%) | |||||
4 | 163 | 9.2 | (2.9–31.6) | 6/13/134/0/10 | 6 | 2 | 3 | (1.8%) | 20 | (15.0–24.0) | 1/1/1/0 | 1 | 1 |
5 | 129 | 9 | (3.0–41.3) | 0/7/109/6/7 | 0 | 1 | 2 | (1.6%) | 11.3 | (11.0–11.6) | 0/2/0/0 | 2 | 0 |
6 | 151 | 10.3 | (3.5–42.0) | 13/19/121/2/7 | 0 | 2 | 2 | (1.3%) | 24.8 | (16.9–32.6) | 0/2/0/0 | 0 | 1 |
7 | 162 | 10.3 | (3.1–41.8) | 13/19/121/2/7 | 13 | 1 | 22 | (13.6%) | 20.5 | (10.0–41.8) | 9/10/3/0 | 9 | 1 |
8 | 225 | 10.1 | (2.7–44.1) | 15/5/183/6/16 | 15 | 5 | 12 | (5.3%) | 26.7 | (14.4–44.1) | 7/3/1/0 | 7 | 2 |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Tumor size > 20 mm | 9.98 | (5.29–18.81) | <0.01 | 3.13 | (1.05–9.32) | 0.04 |
Posterosuperior segment (1, 7, and 8) | 6.93 | (3.18–15.09) | <0.01 | 1.56 | (0.49–4.98) | 0.45 |
Posterosuperior segment and > 15 mm | 17.2 | (8.82–33.53) | <0.01 | 14.33 | (4.56–45.06) | <0.01 |
Ablation margin (<5 mm) | 49.99 | (19.34–129.23) | <0.01 | 45.76 | (14.26–145.85) | <0.01 |
Direct contact with HV/IVC | 29.97 | (14.46–62.11) | <0.01 | 1.10 | (0.36–3.35) | 0.86 |
Proximity to Glissonian pedicle | 24.67 | (8.48–71.74) | <0.01 | 9.08 | (2.19–38.58) | <0.01 |
Variables | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
Age | >62 | 0.81 | (0.58–1.12) | 0.20 | |||
Sex | Men | 1.20 | (0.59–1.16) | 0.28 | |||
Timing of CRLM | Synchronous | 1.54 | (1.12–2.12) | <0.01 | 1.09 | (0.75–1.61) | 0.64 |
Largest diameter of CRLM with MWA or HR | >5 cm | 1.32 | (0.80–2.06) | 0.26 | |||
Largest diameter of CRLM with MWA | >20 mm | 1.42 | (1.04–1.96) | 0.03 | 1.28 | (0.87–1.90) | 0.21 |
Number of CRLM with WMA and HR | |||||||
solitary/multiple | Multiple | 2.44 | (1.58–3.94) | <0.01 | 0.92 | (0.38–2.20) | 0.85 |
<5/≥5 | ≥5 | 2.63 | (1.90–3.66) | <0.01 | 1.5 | (0.78–2.88) | 0.22 |
Number of CRLM with MWA | |||||||
solitary/ multiple | Multiple | 2.67 | (1.82–4.01) | <0.01 | 1.92 | (0.92–4.02) | 0.08 |
<5/≥5 | ≥ 5 | 2.66 | (1.92–3.69) | <0.01 | 1.34 | (0.74–2.44) | 0.34 |
Operative procedure | MCN | 0.66 | (0.48–0.90) | 0.01 | 0.84 | (0.56–1.26) | 0.40 |
CEA | >5 ng/mL | 1.55 | (1.10–2.23) | 0.01 | 1.27 | (0.83–1.94) | 0.26 |
CA19-9 | >37 U/mL | 1.57 | (1.12–2.18) | 0.01 | 1.46 | (1.01–2.13) | 0.048 |
Clinical Risk Score | > 2 | 1.53 | (1.11–2.11) | 0.01 | 0.95 | (0.64–1.42) | 0.81 |
Preoperative chemotherapy | Yes | 1.59 | (1.15–2.19) | 0.01 | 1.04 | (0.69–1.56) | 0.86 |
Adjuvant chemotherapy | Yes | 0.93 | (0.67–1.28) | 0.64 | |||
Primary site | |||||||
T-stage | 4 | 1.53 | (0.94–2.37) | 0.09 | |||
N-status | Positive | 1.21 | (0.86–1.72) | 0.28 | |||
Right/left side | Right | 0.88 | (0.60–1.25) | 0.48 | |||
Minimal ablation margin | <5 mm | 1.74 | (1.27–2.39) | <0.01 | 1.27 | (0.87–1.86) | 0.21 |
Local recurrence | Yes | 1.85 | (1.26–2.66) | <0.01 | 1.04 | (0.66–1.63) | 0.86 |
Variables | Univariate | Multivariate | |||||
---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
Age | >62 | 1.15 | (0.78–1.73) | 0.48 | |||
Sex | Men | 1.21 | (0.82–1.81) | 0.34 | |||
Timing of CRLM | synchronous | 1.34 | (0.92–1.96) | 0.13 | |||
Largest diameter of CRLM with MWA or HR | >5 cm | 1.71 | (0.97–2.83) | 0.06 | |||
Largest diameter of CRLM with MWA | >20 mm | 1.24 | (0.86–1.82) | 0.25 | |||
Number of CRLM with MWA and HR | |||||||
solitary/multiple | multiple | 1.89 | (1.14–3.33) | 0.01 | 1.56 | (0.50–4.84) | 0.44 |
<5/≥5 | ≥5 | 1.64 | (1.13–2.40) | <0.01 | 1.41 | (0.67–2.99) | 0.37 |
Number of CRLM with MWA | |||||||
solitary/ multiple | multiple | 1.69 | (1.09–2.71) | 0.02 | 1.50 | (0.62–3.59) | 0.36 |
<5/≥5 | ≥5 | 1.46 | (1.00–2.11) | 0.050 | 0.81 | (0.42–1.58) | 0.54 |
Operative procedure | MWA | 0.68 | (0.46–0.98) | 0.04 | 1.01 | (0.60–1.69) | 0.97 |
CEA | >5 ng/mL | 2.01 | (1.30–3.23) | <0.01 | 1.51 | (0.92–2.49) | 0.10 |
CA19-9 | >37 U/mL | 1.82 | (1.23–2.66) | 0.01 | 1.75 | (1.13–2.72) | 0.01 |
Clinical Risk Score | > 2 | 1.74 | (1.19–2.56) | 0.01 | 0.79 | (0.38–1.64) | 0.53 |
Preoperative chemotherapy | Yes | 1.42 | (0.97–2.08) | 0.07 | |||
Adjuvant chemotherapy | Yes | 0.88 | (0.59–1.30) | 0.54 | |||
Primary site | |||||||
T stage | 4 | 1.77 | (1.00–2.93) | 0.051 | |||
N status | positive | 1.60 | (1.05–2.52) | 0.03 | 1.91 | (0.97–3.76) | 0.06 |
Right/left side | right | 1.22 | (0.79–1.84) | 0.36 | |||
Minimal ablation margin | <5 mm | 1.07 | (0.74–1.55) | 0.73 | |||
Local recurrence | Yes | 1.51 | (0.97–2.28) | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wada, Y.; Takami, Y.; Ryu, T.; Uchino, Y.; Kugiyama, T.; Nomura, Y.; Saitsu, H. Predictive Factors for Local Recurrence after Intraoperative Microwave Ablation for Colorectal Liver Metastases. Cancers 2023, 15, 122. https://doi.org/10.3390/cancers15010122
Wada Y, Takami Y, Ryu T, Uchino Y, Kugiyama T, Nomura Y, Saitsu H. Predictive Factors for Local Recurrence after Intraoperative Microwave Ablation for Colorectal Liver Metastases. Cancers. 2023; 15(1):122. https://doi.org/10.3390/cancers15010122
Chicago/Turabian StyleWada, Yoshiyuki, Yuko Takami, Tomoki Ryu, Yoshihiro Uchino, Tota Kugiyama, Yoriko Nomura, and Hideki Saitsu. 2023. "Predictive Factors for Local Recurrence after Intraoperative Microwave Ablation for Colorectal Liver Metastases" Cancers 15, no. 1: 122. https://doi.org/10.3390/cancers15010122
APA StyleWada, Y., Takami, Y., Ryu, T., Uchino, Y., Kugiyama, T., Nomura, Y., & Saitsu, H. (2023). Predictive Factors for Local Recurrence after Intraoperative Microwave Ablation for Colorectal Liver Metastases. Cancers, 15(1), 122. https://doi.org/10.3390/cancers15010122