Immune Checkpoint Inhibitors and Pregnancy: Analysis of the VigiBase® Spontaneous Reporting System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Source
2.3. Selection Criteria of Safety Reports
2.4. Variables
2.5. Disproportionality Analyses
3. Results
3.1. Demographic and Clinical Characteristics of Safety Reports
3.2. Characterization of Pregnancy-Related Outcomes
3.3. Disproportionality Analyses
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beenen, A.C.; Sauerer, T.; Schaft, N.; Dörrie, J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int. J. Mol. Sci. 2022, 23, 8599. [Google Scholar] [CrossRef] [PubMed]
- Borgers, J.S.W.; Heimovaara, J.H.; Cardonick, E.; Dierickx, D.; Lambertini, M.; Haanen, J.B.A.G.; Amant, F. Immunotherapy for cancer treatment during pregnancy. Lancet Oncol. 2021, 22, e550–e561. [Google Scholar] [CrossRef]
- Guleria, I.; Khosroshahi, A.; Ansari, M.J.; Habicht, A.; Azuma, M.; Yagita, H.; Noelle, R.J.; Coyle, A.; Mellor, A.L.; Khoury, S.J.; et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J. Exp. Med. 2005, 202, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Habicht, A.; Dada, S.; Jurewicz, M.; Fife, B.T.; Yagita, H.; Azuma, M.; Sayegh, M.H.; Guleria, I. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J. Immunol. 2007, 179, 5211–5219. [Google Scholar] [CrossRef] [Green Version]
- D’Addio, F.; Riella, L.V.; Mfarrej, B.G.; Chabtini, L.; Adams, L.T.; Yeung, M.; Yagita, H.; Azuma, M.; Sayegh, M.H.; Guleria, I. The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance. J. Immunol. 2011, 187, 4530–4541. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.H.; Tian, M.; Tang, M.X.; Liu, Z.Z.; Liao, A.H. Recent Insight into the Role of the PD-1/PD-L1 Pathway in Feto-Maternal Tolerance and Pregnancy. Am. J. Reprod. Immunol. 2015, 74, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, A.M.; Dumitru, A.E.; Gica, N.; Botezatu, R.; Peltecu, G.; Panaitescu, A.M. Benefits and Risks of IgG Transplacental Transfer. Diagnostics 2020, 10, 583. [Google Scholar] [CrossRef]
- Garutti, M.; Lambertini, M.; Puglisi, F. Checkpoint inhibitors, fertility, pregnancy, and sexual life: A systematic review. ESMO Open 2021, 6, 100276. [Google Scholar] [CrossRef]
- Poulet, F.M.; Wolf, J.J.; Herzyk, D.J.; DeGeorge, J.J. An Evaluation of the impact of PD-1 pathway blockade on reproductive safety of therapeutic PD-1 inhibitors. Birth Defects Res. B Dev. Reprod. Toxicol. 2016, 107, 108–119. [Google Scholar] [CrossRef]
- Electronic Medicine Compendium Searched for Ipilimumab, Nivolumab, Pembrolizumab, Cemiplimab, Atezolizumab, Avelumab, Durvalumab, Dostarlimab. Available online: www.medicines.org.uk (accessed on 5 September 2022).
- Mehta, A.; Kim, K.B.; Minor, D.R. Case Report of a Pregnancy During Ipilimumab Therapy. J. Glob. Oncol. 2018, 4, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Burotto, M.; Gormaz, J.G.; Samtani, S.; Valls, N.; Silva, R.; Rojas, C.; Portiño, S.; de la Jara, C. Viable Pregnancy in a patient with metastatic melanoma treated with double checkpoint immunotherapy. Semin. Oncol. 2018, 45, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Menzer, C.; Beedgen, B.; Rom, J.; Duffert, C.M.; Volckmar, A.L.; Sedlaczek, O.; Richtig, E.; Enk, A.; Jäger, D.; Hassel, J.C. Immunotherapy with ipilimumab plus nivolumab in a stage IV melanoma patient during pregnancy. Eur. J. Cancer 2018, 104, 239–242. [Google Scholar] [CrossRef]
- Xu, W.; Moor, R.J.; Walpole, E.T.; Atkinson, V.G. Pregnancy with successful foetal and maternal outcome in a melanoma patient treated with nivolumab in the first trimester: Case report and review of the literature. Melanoma Res. 2019, 29, 333–337. [Google Scholar] [CrossRef]
- Bucheit, A.D.; Hardy, J.T.; Szender, J.B.; Glitza Oliva, I.C. Conception and viable twin pregnancy in a patient with metastatic melanoma while treated with CTLA-4 and PD-1 checkpoint inhibition. Melanoma Res. 2020, 30, 423–425. [Google Scholar] [CrossRef]
- Haiduk, J.; Ziemer, M. Pregnancy in a patient with metastatic uveal melanoma treated with nivolumab. J. Dtsch. Dermatol. Ges. 2021, 19, 762–765. [Google Scholar] [CrossRef] [PubMed]
- Salehi, I.; Porto, L.; Elser, C.; Singh, J.; Saibil, S.; Maxwell, C. Immune Checkpoint Inhibitor Exposure in Pregnancy: A Scoping Review. J. Immunother. 2022, 45, 231–238. [Google Scholar] [CrossRef]
- Anami, Y.; Minami, S.; Kumegawa, A.; Matsukawa, H.; Nishioka, K.; Noguchi, T.; Iwahashi, N.; Mizoguchi, M.; Nanjo, S.; Ota, N.; et al. Malignant melanoma treated with pembrolizumab during pregnancy: A case report and review of the literature. Mol. Clin. Oncol. 2021, 15, 242. [Google Scholar] [CrossRef]
- Andrikopoulou, A.; Korakiti, A.M.; Apostolidou, K.; Dimopoulos, M.A.; Zagouri, F. Immune checkpoint inhibitor administration during pregnancy: A case series. ESMO Open 2021, 6, 100262. [Google Scholar] [CrossRef]
- Hutson, J.R.; Eastabrook, G.; Garcia-Bournissen, F. Pregnancy outcome after early exposure to nivolumab, a PD-1 checkpoint inhibitor for relapsed Hodgkin’s lymphoma. Clin. Toxicol. 2022, 60, 535–536. [Google Scholar] [CrossRef]
- Le-Nguyen, A.; Rys, R.N.; Petrogiannis-Haliotis, T.; Johnson, N.A. Successful pregnancy and fetal outcome following previous treatment with pembrolizumab for relapsed Hodgkin’s lymphoma. Cancer Rep. 2022, 5, e1432. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Susok, L. Uncomplicated pregnancy and delivery under ongoing nivolumab therapy for metastatic melanoma. Melanoma Res. 2022, 32, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, M. VigiBase, the WHO Global ICSR Database System: Basic Facts. Drug Inf. J. 2008, 42, 409–419. [Google Scholar] [CrossRef]
- Montastruc, F.; Salvo, F.; Arnaud, M.; Bégaud, B.; Pariente, A. Signal of Gastrointestinal Congenital Malformations with Antipsychotics After Minimising Competition Bias: A Disproportionality Analysis Using Data from Vigibase(®). Drug. Saf. 2016, 39, 689–696. [Google Scholar] [CrossRef]
- Sessa, M.; Mascolo, A.; Callréus, T.; Capuano, A.; Rossi, F.; Andersen, M. Direct-acting oral anticoagulants (DOACs) in pregnancy: New insight from VigiBase®. Sci. Rep. 2019, 9, 7236. [Google Scholar] [CrossRef] [Green Version]
- Beex-Oosterhuis, M.M.; Samb, A.; Heerdink, E.R.; Souverein, P.C.; Van Gool, A.R.; Meyboom, R.H.B.; van Marum, R.J. Safety of clozapine use during pregnancy: Analysis of international pharmacovigilance data. Pharmacoepidemiol. Drug Saf. 2020, 29, 725–735. [Google Scholar] [CrossRef]
- Noseda, R.; Bedussi, F.; Gobbi, C.; Zecca, C.; Ceschi, A. Safety profile of erenumab, galcanezumab and fremanezumab in pregnancy and lactation: Analysis of the WHO pharmacovigilance database. Cephalalgia 2021, 41, 789–798. [Google Scholar] [CrossRef]
- Khamisy-Farah, R.; Damiani, G.; Kong, J.D.; Wu, J.H.; Bragazzi, N.L. Safety profile of Dupilumab during pregnancy: A data mining and disproportionality analysis of over 37,000 reports from the WHO individual case safety reporting database (VigiBase™). Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5448–5451. [Google Scholar] [CrossRef]
- Gastaldon, C.; Arzenton, E.; Raschi, E.; Spigset, O.; Papola, D.; Ostuzzi, G.; Moretti, U.; Trifirò, G.; Barbui, C.; Schoretsanitis, G. Neonatal withdrawal syndrome following in utero exposure to antidepressants: A disproportionality analysis of VigiBase, the WHO spontaneous reporting database. Psychol. Med. 2022, 1–9. [Google Scholar] [CrossRef]
- Faillie, J.L. Case-non-case studies: Principle, methods, bias and interpretation. Therapie 2019, 74, 225–232. [Google Scholar] [CrossRef]
- Raschi, E.; Antonazzo, I.C.; La Placa, M.; Ardizzoni, A.; Poluzzi, E.; De Ponti, F. Serious Cutaneous Toxicities with Immune Checkpoint Inhibitors in the U.S. Food and Drug Administration Adverse Event Reporting System. Oncologist 2019, 24, e1228–e1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raschi, E.; Gatti, M.; Gelsomino, F.; Ardizzoni, A.; Poluzzi, E.; De Ponti, F. Lessons to be Learnt from Real-World Studies on Immune-Related Adverse Events with Checkpoint Inhibitors: A Clinical Perspective from Pharmacovigilance. Target Oncol. 2020, 15, 449–466. [Google Scholar] [CrossRef] [PubMed]
- Seabroke, S.; Candore, G.; Juhlin, K.; Quarcoo, N.; Wisniewski, A.; Arani, R.; Painter, J.; Tregunno, P.; Norén, G.N.; Slattery, J. Performance of Stratified and Subgrouped Disproportionality Analyses in Spontaneous Databases. Drug Saf. 2016, 39, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, L.; Taavola, H.; Aoki, Y.; Chandler, R.; Norén, G.N. Risk Factor Considerations in Statistical Signal Detection: Using Subgroup Disproportionality to Uncover Risk Groups for Adverse Drug Reactions in VigiBase. Drug Saf. 2020, 43, 999–1009. [Google Scholar] [CrossRef]
- McGoldrick, E.; Stewart, F.; Parker, R.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2020, 12, CD004454. [Google Scholar] [CrossRef]
- Anand, K.J. Pharmacological approaches to the management of pain in the neonatal intensive care unit. J. Perinatol. 2007, 27 (Suppl. 1), S4–S11. [Google Scholar] [CrossRef] [Green Version]
- Yazdy, M.M.; Desai, R.J.; Brogly, S.B. Prescription Opioids in Pregnancy and Birth Outcomes: A Review of the Literature. J. Pediatr. Genet. 2015, 4, 56–70. [Google Scholar] [CrossRef]
- Zhang, D.; Xie, D.; He, N.; Wang, X.; Dong, W.; Lei, X. Prophylactic Use of Fluconazole in Very Premature Infants. Front. Pediatr. 2021, 9, 726769. [Google Scholar] [CrossRef]
- Mlinarić, A.; Horvat, M.; Šupak Smolčić, V. Dealing with the positive publication bias: Why you should really publish your negative results. Biochem. Med. 2017, 27, 030201. [Google Scholar] [CrossRef] [Green Version]
- Andersson, T.M.; Johansson, A.L.; Fredriksson, I.; Lambe, M. Cancer during pregnancy and the postpartum period: A population-based study. Cancer 2015, 121, 2072–2077. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; et al. Five-Year Survival and Correlates Among Patients with Advanced Melanoma, Renal Cell Carcinoma, or Non-Small Cell Lung Cancer Treated with Nivolumab. JAMA Oncol. 2019, 5, 1411–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.B.; Nebhan, C.A.; Moslehi, J.J.; Balko, J.M. Immune-checkpoint inhibitors: Long-term implications of toxicity. Nat. Rev. Clin. Oncol. 2022, 19, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Robert, C.; Ribas, A.; Hamid, O.; Daud, A.; Wolchok, J.D.; Joshua, A.M.; Hwu, W.J.; Weber, J.S.; Gangadhar, T.C.; Joseph, R.W.; et al. Durable Complete Response After Discontinuation of Pembrolizumab in Patients with Metastatic Melanoma. J. Clin. Oncol. 2018, 36, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
- Fukudo, M.; Sasaki, T.; Ohsaki, Y. PD-1 Blockers: Staying Long in the Body and Delayed Toxicity Risks. J. Thorac. Oncol. 2020, 15, e42–e44. [Google Scholar] [CrossRef]
- Carlet, C.; Dalle, S.; Leccia, M.T.; Mortier, L.; Dalac-Rat, S.; Dutriaux, C.; Legoupil, D.; Montaudié, H.; Dereure, O.; De Quatrebarbes, J.; et al. Late-onset adverse events of anti-PD1 therapy in melanoma patients: An observational study from MELBASE, a nationwide prospective cohort. J. Am. Acad. Dermatol. 2022, 86, 345–352. [Google Scholar] [CrossRef]
- Pentsuk, N.; van der Laan, J.W. An interspecies comparison of placental antibody transfer: New insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res. B Dev. Reprod. Toxicol. 2009, 86, 328–344. [Google Scholar] [CrossRef]
- Wright, J.J.; Powers, A.C.; Johnson, D.B. Endocrine toxicities of immune checkpoint inhibitors. Nat. Rev. Endocrinol. 2021, 17, 389–399. [Google Scholar] [CrossRef]
Characteristic | n (%), N = 103 |
---|---|
Country of origin | |
United States of America | 65 (63.1) |
Europe | 30 (29.1) |
South America | 4 (3.9) |
Australia | 4 (3.9) |
Reporting year | |
2012 | 1 (1.0) |
2014 | 1 (1.0) |
2015 | 3 (2.9) |
2016 | 12 (11.7) |
2017 | 13 (12.6) |
2018 | 13 (12.6) |
2019 | 25 (24.3) |
2020 | 18 (17.5) |
2021 | 12 (11.7) |
2022 (as of 30 April) | 5 (4.9) |
Type of reporter | |
Physician | 52 (50.5) |
Other healthcare professional | 25 (24.3) |
Pharmacist | 9 (8.7) |
Consumer | 15 (14.6) |
Not reported | 2 (1.9) |
Patient sex | |
Female | 96 (93.2) |
Male 1 | 6 (5.8) |
Not reported 2 | 1 (1.0) |
Patient age | |
Reported | 50 (48.5) |
In neonates (<30 days) | 5 |
In adults | 45 |
Not reported | 53 (51.5) |
Time of ICI exposure | |
Maternal exposure during pregnancy 3 | 77 (74.8) |
Exposure via father 4 | 12 (11.7) |
Maternal exposure timing unspecified | 11 (10.7) |
Maternal exposure before pregnancy | 3 (2.9) |
ICI regimen | |
Anti-CTLA-4 monotherapy | |
ipilimumab | 12 (11.7) |
Anti-PD-1 monotherapy | |
nivolumab | 42 (40.8) |
pembrolizumab | 29 (28.2) |
Anti-PD-L1 monotherapy | |
atezolizumab | 5 (4.9) |
Combination of | |
nivolumab and ipilimumab | 7 (6.8) |
nivolumab and ipilimumab in regimen not definable 5 | 8 (7.8) |
Indication | |
Malignant melanoma | 28 (27.2) |
Hodgkin’s lymphoma | 12 (11.7) |
Renal cell carcinoma | 7 (6.8) |
Colon cancer | 3 (2.9) |
Lung cancer | 3 (2.9) |
Lymphoma | 2 (1.9) |
Glioma | 1 (1.0) |
Alveolar soft part sarcoma | 1 (1.0) |
Pericardial mesothelioma | 1 (1.0) |
Breast cancer | 1 (1.0) |
Gestational throphoblastic tumor | 1 (1.0) |
Not reported | 43 (41.7) |
Pregnancy-Related Outcomes. | n (%), N = 56 * |
---|---|
Maternal outcomes | |
Specific pregnancy complications | |
Pre-eclampsia | 1 (1.8) |
HELLP syndrome | 1 (1.8) |
Placental disorder | 1 (1.8) |
Placental infarction | 1 (1.8) |
More general outcomes | |
Diarrhea | 3 (5.4) |
Nausea | 2 (3.6) |
Fatigue | 2 (3.6) |
Abdominal pain | 2 (3.6) |
Pruritus | 2 (3.6) |
Chest pain | 2 (3.6) |
Diabetes mellitus | 1 (1.8) |
Hypophysitis | 1 (1.8) |
Arthralgia | 1 (1.8) |
Hypophagia | 1 (1.8) |
Starvation | 1 (1.8) |
Ketoacidosis | 1 (1.8) |
Urinary tract infection | 1 (1.8) |
Neutropenia | 1 (1.8) |
Lung disorder | 1 (1.8) |
Iron deficiency anemia | 1 (1.8) |
Antiphospholipid syndrome | 1 (1.8) |
Abdominal distension | 1 (1.8) |
Autoimmune disorder | 1 (1.8) |
Anxiety | 1 (1.8) |
Cardiac disorder | 1 (1.8) |
Tri-iodothyronine increased | 1 (1.8) |
Insomnia | 1 (1.8) |
Dyspnea | 1 (1.8) |
Breastfeeding | 1 (1.8) |
Fetal/neonatal outcomes | |
Normal newborn | 4 (7.1) |
Live birth | 1 (1.8) |
Fetal death | 1 (1.8) |
Stillbirth | 1 (1.8) |
Spontaneous abortion | 12 (21.4) |
Abortion induced | 7 (12.5) |
Spontaneous abortion incomplete | 1 (1.8) |
Fetal growth restriction | 6 (10.7) |
Fetal distress syndrome | 1 (1.8) |
Small for gestational age | 1 (1.8) |
Umbilical cord compression | 1 (1.8) |
Prematurity | 18 (32.1) |
Neonatal respiratory distress syndrome | 2 (3.6) |
Hypoxia | 1 (1.8) |
Lung disorder | 1 (1.8) |
C-reactive protein increased | 1 (1.8) |
White blood cell count increased | 1 (1.8) |
Retinopathy of prematurity | 1 (1.8) |
Intraventricular haemorrhage neonatal | 1 (1.8) |
Motor developmental delay | 1 (1.8) |
Neonatal type 1 diabetes mellitus | 1 (1.8) |
Birth defects | |
Congenital hand malformation | 1 (1.8) |
Congenital pulmonary valve disorder | 1 (1.8) |
Congenital hypothyroidism | 1 (1.8) |
Hypospadias | 1 (1.8) |
Raw Disproportionality Analyses | Subgroup Disproportionality Analyses | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(a) | (b) | (c) | (d) | ROR [95% CI] | (a) | (b) | (c) | (d) | ROR [95% CI] | ||
Spontaneous abortion | ICIs vs. entire database | 12 | 123,277 | 30,612 | 30,408,371 | 0.097 [0.055–0.170] | 8 | 2802 | 16,805 | 4,082,848 | 0.694 [0.346–1.389] |
ICIs vs. other antineoplastic agents | 12 | 123,277 | 715 | 2,727,718 | 0.371 [0.210–0.657] | 8 | 2802 | 367 | 159,606 | 1.242 [0.616–2.504] | |
ICIs vs. other antineoplastic agents (2011–) | 12 | 123,190 | 593 | 2,401,037 | 0.394 [0.223–0.698] | 8 | 2792 | 298 | 137,342 | 1.321 [0.654–2.668] | |
Fetal growth restriction | ICIs vs. entire database | 6 | 123,283 | 3117 | 30,435,866 | 0.475 [0.213–1.059] | - | 2810 | 604 | 4,099,049 | NC |
ICIs vs. other antineoplastic agents | 6 | 123,283 | 288 | 2,728,145 | 0.461 [0.205–1.035] | - | 2810 | 39 | 159,934 | NC | |
ICIs vs. other antineoplastic agents (2011–) | 6 | 123,196 | 256 | 2,401,374 | 0.457 [0.203–1.026] | - | 2800 | 32 | 137,608 | NC | |
Prematurity | ICIs vs. entire database | 18 | 123,271 | 22,998 | 30,415,985 | 0.193 [0.122–0.307] | 5 | 2805 | 6128 | 4,093,525 | 1.191 [0.495–2.864] |
ICIs vs. other antineoplastic agents | 18 | 123,271 | 1000 | 2,727,433 | 0.398 [0.250–0.635] | 5 | 2805 | 189 | 159,784 | 1.507 [0.620–3.665] | |
ICIs vs. other antineoplastic agents (2011–) | 18 | 123,184 | 861 | 2,400,769 | 0.407 [0.255–0.650] | 5 | 2795 | 166 | 137,474 | 1.481 [0.608–3.609] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noseda, R.; Müller, L.; Bedussi, F.; Fusaroli, M.; Raschi, E.; Ceschi, A. Immune Checkpoint Inhibitors and Pregnancy: Analysis of the VigiBase® Spontaneous Reporting System. Cancers 2023, 15, 173. https://doi.org/10.3390/cancers15010173
Noseda R, Müller L, Bedussi F, Fusaroli M, Raschi E, Ceschi A. Immune Checkpoint Inhibitors and Pregnancy: Analysis of the VigiBase® Spontaneous Reporting System. Cancers. 2023; 15(1):173. https://doi.org/10.3390/cancers15010173
Chicago/Turabian StyleNoseda, Roberta, Laura Müller, Francesca Bedussi, Michele Fusaroli, Emanuel Raschi, and Alessandro Ceschi. 2023. "Immune Checkpoint Inhibitors and Pregnancy: Analysis of the VigiBase® Spontaneous Reporting System" Cancers 15, no. 1: 173. https://doi.org/10.3390/cancers15010173
APA StyleNoseda, R., Müller, L., Bedussi, F., Fusaroli, M., Raschi, E., & Ceschi, A. (2023). Immune Checkpoint Inhibitors and Pregnancy: Analysis of the VigiBase® Spontaneous Reporting System. Cancers, 15(1), 173. https://doi.org/10.3390/cancers15010173