Strategies to Optimize Treatment for Locally Advanced Rectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Intensifying Concurrent Chemotherapy Regimen
3. Short-Course Radiotherapy
4. Total Neoadjuvant Therapy
5. Neoadjuvant Immunotherapy
6. Local Radiotherapy Boosts Treatment
7. Omission of RT
8. Watch-and-Wait Treatment Strategy (WW)
9. Local Excision
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gollins, S.; Sebag-Montefiore, D. Neoadjuvant Treatment Strategies for Locally Advanced Rectal Cancer. Clin. Oncol. (R Coll. Radiol.) 2016, 28, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Choi, H.; You, Y.N.; Rauch, G.M.; Jensen, C.T.; Hou, P.; Chang, G.J.; Skibber, J.M.; Ernst, R.D. MR imaging for preoperative evaluation of primary rectal cancer: Practical considerations. Radiogr. A Rev. Publ. Radiol. Soc. North Am. Inc 2012, 32, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Cedermark, B.; Dahlberg, M.; Glimelius, B.; Påhlman, L.; Rutqvist, L.E.; Wilking, N. Improved survival with preoperative radiotherapy in resectable rectal cancer. New Engl. J. Med. 1997, 336, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Wo, J.Y.; Anker, C.J.; Ashman, J.B.; Bhadkamkar, N.A.; Bradfield, L.; Chang, D.T.; Dorth, J.; Garcia-Aguilar, J.; Goff, D.; Jacqmin, D.; et al. Radiation Therapy for Rectal Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2021, 11, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Ogura, A.; Konishi, T.; Cunningham, C.; Garcia-Aguilar, J.; Iversen, H.; Toda, S.; Lee, I.K.; Lee, H.X.; Uehara, K.; Lee, P.; et al. Neoadjuvant (Chemo)radiotherapy With Total Mesorectal Excision Only Is Not Sufficient to Prevent Lateral Local Recurrence in Enlarged Nodes: Results of the Multicenter Lateral Node Study of Patients With Low cT3/4 Rectal Cancer. J. Clin. Oncol. 2019, 37, 33–43. [Google Scholar] [CrossRef]
- He, W.; Li, Q.; Li, X. Changing Patterns of Neoadjuvant Therapy for Locally Advanced Rectal Cancer: A Narrative Review. Crit. Rev. Oncol. /Hematol. 2022, 181, 103885. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Azad, N.; Chen, Y.-J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Rectal Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 1139–1167. [Google Scholar] [CrossRef]
- Roh, M.S.; Colangelo, L.H.; O’Connell, M.J.; Yothers, G.; Deutsch, M.; Allegra, C.J.; Kahlenberg, M.S.; Baez-Diaz, L.; Ursiny, C.S.; Petrelli, N.J.; et al. Preoperative multimodality therapy improves disease-free survival in patients with carcinoma of the rectum: NSABP R-03. J. Clin. Oncol. 2009, 27, 5124–5130. [Google Scholar] [CrossRef]
- Allegra, C.J.; Yothers, G.; O’Connell, M.J.; Roh, M.S.; Lopa, S.H.; Petrelli, N.J.; Beart, R.W.; Sharif, S.; Wolmark, N. Final results from NSABP protocol R-04: Neoadjuvant chemoradiation (RT) comparing continuous infusion (CIV) 5-FU with capecitabine (Cape) with or without oxaliplatin (Ox) in patients with stage II and III rectal cancer. J. Clin. Oncol. 2014, 32, 3603. [Google Scholar] [CrossRef]
- Aschele, C.; Cionini, L.; Lonardi, S.; Pinto, C.; Cordio, S.; Rosati, G.; Artale, S.; Tagliagambe, A.; Ambrosini, G.; Rosetti, P.; et al. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: Pathologic results of the STAR-01 randomized phase III trial. J. Clin. Oncol. 2011, 29, 2773–2780. [Google Scholar] [CrossRef]
- Gérard, J.P.; Azria, D.; Gourgou-Bourgade, S.; Martel-Laffay, I.; Hennequin, C.; Etienne, P.L.; Vendrely, V.; François, E.; de La Roche, G.; Bouché, O.; et al. Comparison of two neoadjuvant chemoradiotherapy regimens for locally advanced rectal cancer: Results of the phase III trial ACCORD 12/0405-Prodige 2. J. Clin. Oncol. 2010, 28, 1638–1644. [Google Scholar] [CrossRef]
- Rödel, C.; Graeven, U.; Fietkau, R.; Hohenberger, W.; Hothorn, T.; Arnold, D.; Hofheinz, R.D.; Ghadimi, M.; Wolff, H.A.; Lang-Welzenbach, M.; et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): Final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015, 16, 979–989. [Google Scholar] [CrossRef]
- O’Connell, M.J.; Colangelo, L.H.; Beart, R.W.; Petrelli, N.J.; Allegra, C.J.; Sharif, S.; Pitot, H.C.; Shields, A.F.; Landry, J.C.; Ryan, D.P.; et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: Surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J. Clin. Oncol. 2014, 32, 1927–1934. [Google Scholar] [CrossRef] [Green Version]
- Schmoll, H.J.; Stein, A.; Van Cutsem, E.; Price, T.; Hofheinz, R.D.; Nordlinger, B.; Daisne, J.F.; Janssens, J.; Brenner, B.; Reinel, H.; et al. Pre- and Postoperative Capecitabine Without or With Oxaliplatin in Locally Advanced Rectal Cancer: PETACC 6 Trial by EORTC GITCG and ROG, AIO, AGITG, BGDO, and FFCD. J. Clin. Oncol. 2021, 39, 17–29. [Google Scholar] [CrossRef]
- Schmoll, H.-J.; Haustermans, K.; Price, T.J.; Nordlinger, B.; Hofheinz, R.; Daisne, J.-F.; Janssens, J.; Brenner, B.; Schmidt, P.; Reinel, H.; et al. Preoperative chemoradiotherapy and postoperative chemotherapy with capecitabine +/- oxaliplatin in locally advanced rectal cancer: Final results of PETACC-6. J. Clin. Oncol. 2018, 36, 3500. [Google Scholar] [CrossRef]
- Deng, Y.; Chi, P.; Lan, P.; Wang, L.; Chen, W.; Cui, L.; Chen, D.; Cao, J.; Wei, H.; Peng, X.; et al. Modified FOLFOX6 With or Without Radiation Versus Fluorouracil and Leucovorin With Radiation in Neoadjuvant Treatment of Locally Advanced Rectal Cancer: Initial Results of the Chinese FOWARC Multicenter, Open-Label, Randomized Three-Arm Phase III Trial. J. Clin. Oncol. 2016, 34, 3300–3307. [Google Scholar] [CrossRef]
- Deng, Y.; Chi, P.; Lan, P.; Wang, L.; Chen, W.; Cui, L.; Chen, D.; Cao, J.; Wei, H.; Peng, X.; et al. Neoadjuvant Modified FOLFOX6 With or Without Radiation Versus Fluorouracil Plus Radiation for Locally Advanced Rectal Cancer: Final Results of the Chinese FOWARC Trial. J. Clin. Oncol. 2019, 37, 3223–3233. [Google Scholar] [CrossRef]
- Des Guetz, G.; Landre, T.; Bollet, M.A.; Mathonnet, M.; Quero, L. Is There a Benefit of Oxaliplatin in Combination with Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer? An Updated Meta-Analysis. Cancers 2021, 13, 6035. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, A.; Sun, X.; Liu, L.; Zhu, Y.; Zhang, T.; Jia, J.; Tan, S.; Wu, J.; Wang, X.; et al. Multicenter, Randomized, Phase III Trial of Neoadjuvant Chemoradiation With Capecitabine and Irinotecan Guided by UGT1A1 Status in Patients With Locally Advanced Rectal Cancer. J. Clin. Oncol. 2020, 38, 4231–4239. [Google Scholar] [CrossRef]
- Sebag-Montefiore, D.; Adams, R.; Gollins, S.; Samuel, L.M.; Glynne-Jones, R.; Harte, R.; West, N.; Quirke, P.; Myint, A.S.; Bach, S.P.; et al. ARISTOTLE: A phase III trial comparing concurrent capecitabine with capecitabine and irinotecan (Ir) chemoradiation as preoperative treatment for MRI-defined locally advanced rectal cancer (LARC). J. Clin. Oncol. 2020, 38, 4101. [Google Scholar] [CrossRef]
- Diefenhardt, M.; Ludmir, E.B.; Hofheinz, R.D.; Ghadimi, M.; Minsky, B.D.; Rödel, C.; Fokas, E. Association of Treatment Adherence With Oncologic Outcomes for Patients With Rectal Cancer: A Post Hoc Analysis of the CAO/ARO/AIO-04 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Iyer, L.; Das, S.; Janisch, L.; Wen, M.; Ramírez, J.; Karrison, T.; Fleming, G.F.; Vokes, E.E.; Schilsky, R.L.; Ratain, M.J. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharm. J. 2002, 2, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Sun, X.; Liu, A.; Zhu, Y.; Zhu, Y.; Zhang, T.; Jia, J.; Tan, S.; Wu, J.; Zhou, J.; et al. A multicenter randomized phase III trial of capecitabine with or without irinotecan driven by UGT1A1 in neoadjuvant chemoradiation of locally advanced rectal cancer (CinClare). J. Clin. Oncol. 2019, 37, 3510. [Google Scholar] [CrossRef]
- Raldow, A.C.; Chen, A.B.; Russell, M.; Lee, P.P.; Hong, T.S.; Ryan, D.P.; Cusack, J.C.; Wo, J.Y. Cost-effectiveness of Short-Course Radiation Therapy vs Long-Course Chemoradiation for Locally Advanced Rectal Cancer. JAMA Netw. Open 2019, 2, e192249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngan, S.Y.; Burmeister, B.; Fisher, R.J.; Solomon, M.; Goldstein, D.; Joseph, D.; Ackland, S.P.; Schache, D.; McClure, B.; McLachlan, S.A.; et al. Randomized trial of short-course radiotherapy versus long-course chemoradiation comparing rates of local recurrence in patients with T3 rectal cancer: Trans-Tasman Radiation Oncology Group trial 01.04. J. Clin. Oncol. 2012, 30, 3827–3833. [Google Scholar] [CrossRef]
- Ciseł, B.; Pietrzak, L.; Michalski, W.; Wyrwicz, L.; Rutkowski, A.; Kosakowska, E.; Cencelewicz, A.; Spałek, M.; Polkowski, W.; Jankiewicz, M.; et al. Long-course preoperative chemoradiation versus 5 × 5 Gy and consolidation chemotherapy for clinical T4 and fixed clinical T3 rectal cancer: Long-term results of the randomized Polish II study. Ann. Oncol. 2019, 30, 1298–1303. [Google Scholar] [CrossRef]
- Erlandsson, J.; Holm, T.; Pettersson, D.; Berglund, Å.; Cedermark, B.; Radu, C.; Johansson, H.; Machado, M.; Hjern, F.; Hallböök, O.; et al. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): A multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lancet Oncol. 2017, 18, 336–346. [Google Scholar] [CrossRef]
- Jin, J.; Tang, Y.; Hu, C.; Jiang, L.M.; Jiang, J.; Li, N.; Liu, W.Y.; Chen, S.L.; Li, S.; Lu, N.N.; et al. Multicenter, Randomized, Phase III Trial of Short-Term Radiotherapy Plus Chemotherapy Versus Long-Term Chemoradiotherapy in Locally Advanced Rectal Cancer (STELLAR). J. Clin. Oncol. 2022, 40, 1681–1692. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Counsell, N.; Quirke, P.; Mortensen, N.; Maraveyas, A.; Meadows, H.M.; Ledermann, J.; Sebag-Montefiore, D. Chronicle: Results of a randomised phase III trial in locally advanced rectal cancer after neoadjuvant chemoradiation randomising postoperative adjuvant capecitabine plus oxaliplatin (XELOX) versus control. Ann. Oncol. 2014, 25, 1356–1362. [Google Scholar] [CrossRef]
- Breugom, A.J.; van Gijn, W.; Muller, E.W.; Berglund, Å.; van den Broek, C.B.M.; Fokstuen, T.; Gelderblom, H.; Kapiteijn, E.; Leer, J.W.H.; Marijnen, C.A.M.; et al. Adjuvant chemotherapy for rectal cancer patients treated with preoperative (chemo)radiotherapy and total mesorectal excision: A Dutch Colorectal Cancer Group (DCCG) randomized phase III trial. Ann. Oncol. 2015, 26, 696–701. [Google Scholar] [CrossRef]
- Cercek, A.; Roxburgh, C.S.D.; Strombom, P.; Smith, J.J.; Temple, L.K.F.; Nash, G.M.; Guillem, J.G.; Paty, P.B.; Yaeger, R.; Stadler, Z.K.; et al. Adoption of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer. JAMA Oncol. 2018, 4, e180071. [Google Scholar] [CrossRef]
- Petrelli, F.; Trevisan, F.; Cabiddu, M.; Sgroi, G.; Bruschieri, L.; Rausa, E.; Ghidini, M.; Turati, L. Total Neoadjuvant Therapy in Rectal Cancer: A Systematic Review and Meta-analysis of Treatment Outcomes. Ann. Surg. 2020, 271, 440–448. [Google Scholar] [CrossRef]
- Fokas, E.; Allgäuer, M.; Polat, B.; Klautke, G.; Grabenbauer, G.G.; Fietkau, R.; Kuhnt, T.; Staib, L.; Brunner, T.; Grosu, A.L.; et al. Randomized Phase II Trial of Chemoradiotherapy Plus Induction or Consolidation Chemotherapy as Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer: CAO/ARO/AIO-12. J. Clin. Oncol. 2019, 37, 3212–3222. [Google Scholar] [CrossRef]
- Fokas, E.; Schlenska-Lange, A.; Polat, B.; Klautke, G.; Grabenbauer, G.G.; Fietkau, R.; Kuhnt, T.; Staib, L.; Brunner, T.; Grosu, A.L.; et al. Chemoradiotherapy Plus Induction or Consolidation Chemotherapy as Total Neoadjuvant Therapy for Patients With Locally Advanced Rectal Cancer: Long-term Results of the CAO/ARO/AIO-12 Randomized Clinical Trial. JAMA Oncol. 2022, 8, e215445. [Google Scholar] [CrossRef]
- Diefenhardt, M.; Schlenska-Lange, A.; Kuhnt, T.; Kirste, S.; Piso, P.; Bechstein, W.O.; Hildebrandt, G.; Ghadimi, M.; Hofheinz, R.D.; Rödel, C.; et al. Total Neoadjuvant Therapy for Rectal Cancer in the CAO/ARO/AIO-12 Randomized Phase 2 Trial: Early Surrogate Endpoints Revisited. Cancers 2022, 14, 3658. [Google Scholar] [CrossRef]
- Garcia-Aguilar, J.; Patil, S.; Kim, J.K.; Yuval, J.B.; Thompson, H.; Verheij, F.; Lee, M.; Saltz, L.B.; on behalf of the OPRA Consortium. Preliminary results of the organ preservation of rectal adenocarcinoma (OPRA) trial. J. Clin. Oncol. 2020, 38, 4008. [Google Scholar] [CrossRef]
- Conroy, T.; Lamfichekh, N.; Etienne, P.-L.; Rio, E.; Francois, E.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Total neoadjuvant therapy with mFOLFIRINOX versus preoperative chemoradiation in patients with locally advanced rectal cancer: Final results of PRODIGE 23 phase III trial, a UNICANCER GI trial. J. Clin. Oncol. 2020, 38, 4007. [Google Scholar] [CrossRef]
- Conroy, T.; Bosset, J.F.; Etienne, P.L.; Rio, E.; François, É.; Mesgouez-Nebout, N.; Vendrely, V.; Artignan, X.; Bouché, O.; Gargot, D.; et al. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 702–715. [Google Scholar] [CrossRef]
- van der Valk, M.J.M.; Marijnen, C.A.M.; van Etten, B.; Dijkstra, E.A.; Hilling, D.E.; Kranenbarg, E.M.; Putter, H.; Roodvoets, A.G.H.; Bahadoer, R.R.; Fokstuen, T.; et al. Compliance and tolerability of short-course radiotherapy followed by preoperative chemotherapy and surgery for high-risk rectal cancer—Results of the international randomized RAPIDO-trial. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2020, 147, 75–83. [Google Scholar] [CrossRef]
- Bahadoer, R.R.; Dijkstra, E.A.; van Etten, B.; Marijnen, C.A.M.; Putter, H.; Kranenbarg, E.M.; Roodvoets, A.G.H.; Nagtegaal, I.D.; Beets-Tan, R.G.H.; Blomqvist, L.K.; et al. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 29–42. [Google Scholar] [CrossRef]
- Shiu, K.-K.; Andre, T.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.J.A.; Smith, D.M.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. KEYNOTE-177: Phase III randomized study of pembrolizumab versus chemotherapy for microsatellite instability-high advanced colorectal cancer. J. Clin. Oncol. 2021, 39, 6. [Google Scholar] [CrossRef]
- Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lenz, H.J.; Van Cutsem, E.; Luisa Limon, M.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Chalabi, M.; Fanchi, L.F.; Dijkstra, K.K.; Van den Berg, J.G.; Aalbers, A.G.; Sikorska, K.; Lopez-Yurda, M.; Grootscholten, C.; Beets, G.L.; Snaebjornsson, P.; et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 2020, 26, 566–576. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, B.H.; Wallmark, J.M.; Lorente, D.; Elez, E.; Raimbourg, J.; Gomez-Roca, C.; Ejadi, S.; Piha-Paul, S.A.; Stein, M.N.; Abdul Razak, A.R.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS ONE 2017, 12, e0189848. [Google Scholar] [CrossRef] [Green Version]
- Cercek, A.; Lumish, M.; Sinopoli, J.; Weiss, J.; Shia, J.; Lamendola-Essel, M.; El Dika, I.H.; Segal, N.; Shcherba, M.; Sugarman, R.; et al. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. New Engl. J. Med. 2022, 386, 2363–2376. [Google Scholar] [CrossRef]
- Papke, D.J., Jr.; Yurgelun, M.B.; Noffsinger, A.E.; Turner, K.O.; Genta, R.M.; Redston, M. Prevalence of Mismatch-Repair Deficiency in Rectal Adenocarcinomas. New Engl. J. Med. 2022, 387, 1714–1716. [Google Scholar] [CrossRef]
- Ciardiello, D.; Vitiello, P.P.; Cardone, C.; Martini, G.; Troiani, T.; Martinelli, E.; Ciardiello, F. Immunotherapy of colorectal cancer: Challenges for therapeutic efficacy. Cancer Treat Rev. 2019, 76, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.W.; Gomes-Santos, I.L.; Aoki, S.; Datta, M.; Kawaguchi, K.; Talele, N.P.; Roberge, S.; Ren, J.; Liu, H.; Chen, I.X.; et al. Dendritic cell paucity in mismatch repair-proficient colorectal cancer liver metastases limits immune checkpoint blockade efficacy. Proc. Natl. Acad. Sci. USA 2021, 118, e2105323118. [Google Scholar] [CrossRef]
- Barker, H.E.; Paget, J.T.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409–425. [Google Scholar] [CrossRef]
- Yuki, S.; Bando, H.; Tsukada, Y.; Inamori, K.; Komatsu, Y.; Homma, S.; Uemura, M.; Kato, T.; Kotani, D.; Fukuoka, S.; et al. Short-term results of VOLTAGE-A: Nivolumab monotherapy and subsequent radical surgery following preoperative chemoradiotherapy in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer. J. Clin. Oncol. 2020, 38, 4100. [Google Scholar] [CrossRef]
- Salvatore, L.; Bensi, M.; Corallo, S.; Bergamo, F.; Pellegrini, I.; Rasola, C.; Borelli, B.; Tamburini, E.; Randon, G.; Galuppo, S.; et al. Phase II study of preoperative (PREOP) chemoradiotherapy (CTRT) plus avelumab (AVE) in patients (PTS) with locally advanced rectal cancer (LARC): The AVANA study. J. Clin. Oncol. 2021, 39, 3511. [Google Scholar] [CrossRef]
- Rahma, O.E.; Yothers, G.; Hong, T.S.; Russell, M.M.; You, Y.N.; Parker, W.; Jacobs, S.A.; Colangelo, L.H.; Lucas, P.C.; Gollub, M.J.; et al. NRG-GI002: A phase II clinical trial platform using total neoadjuvant therapy (TNT) in locally advanced rectal cancer (LARC)—Pembrolizumab experimental arm (EA) primary results. J. Clin. Oncol. 2021, 39, 8. [Google Scholar] [CrossRef]
- Lin, Z.; Cai, M.; Zhang, P.; Li, G.; Liu, T.; Li, X.; Cai, K.; Nie, X.; Wang, J.; Liu, J.; et al. Phase II, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer. J. Immunother Cancer 2021, 9, e003554. [Google Scholar] [CrossRef]
- Shamseddine, A.; Zeidan, Y.; Bouferraa, Y.; Turfa, R.; Kattan, J.; Mukherji, D.; Temraz, S.; Alqasem, K.; Amarin, R.; Al Awabdeh, T.; et al. SO-30 Efficacy and safety of neoadjuvant short-course radiation followed by mFOLFOX-6 plus avelumab for locally-advanced rectal adenocarcinoma: Averectal study. Ann. Oncol. 2021, 32, S215. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.G.; Yuan, H.; Deng, W.; Li, J.; Huang, Y.; Kim, B.Y.S.; Story, M.D.; Jiang, W. The Reciprocity between Radiotherapy and Cancer Immunotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 1709–1717. [Google Scholar] [CrossRef] [Green Version]
- Popp, I.; Grosu, A.L.; Niedermann, G.; Duda, D.G. Immune modulation by hypofractionated stereotactic radiation therapy: Therapeutic implications. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2016, 120, 185–194. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Ding, Y.; Huang, F.; Huang, W.; Lan, R.; Chen, R.; Wu, B.; Fu, L.; Yang, Y.; et al. Hypofractionated Irradiation Suppressed the Off-Target Mouse Hepatocarcinoma Growth by Inhibiting Myeloid-Derived Suppressor Cell-Mediated Immune Suppression. Front. Oncol. 2020, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.D.; Brown, G.; Heald, R.J.; Cunningham, D.; Tait, D.M. Non-operative treatment after neoadjuvant chemoradiotherapy for rectal cancer. Lancet Oncol. 2007, 8, 625–633. [Google Scholar] [CrossRef]
- Garant, A.; Vasilevsky, C.A.; Boutros, M.; Khosrow-Khavar, F.; Kavan, P.; Diec, H.; Des Groseilliers, S.; Faria, J.; Ferland, E.; Pelsser, V.; et al. MORPHEUS Phase II-III Study: A Pre-Planned Interim Safety Analysis and Preliminary Results. Cancers 2022, 14, 3665. [Google Scholar] [CrossRef]
- Myint, A.S.; Thamphya, B.; Gerard, J.-P. Does non-TME surgery of rectal cancer compromise the chance of cure? Preliminary surgical salvage data from OPERA phase III randomized trial. J. Clin. Oncol. 2021, 39, 12. [Google Scholar] [CrossRef]
- Abraha, I.; Aristei, C.; Palumbo, I.; Lupattelli, M.; Trastulli, S.; Cirocchi, R.; De Florio, R.; Valentini, V. Preoperative radiotherapy and curative surgery for the management of localised rectal carcinoma. Cochrane Database Syst. Rev. 2018, 10, Cd002102. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.R.; Wang, X.Z.; Li, Y.F.; Sun, Y.M.; Yang, C.K.; Wu, Z.G.; Zhang, R.; Wang, W.; Li, Y.; Zhuang, Y.Z.; et al. LBA22 Neoadjuvant chemotherapy with oxaliplatin and capecitabine versus chemoradiation with capecitabine for locally advanced rectal cancer with uninvolved mesorectal fascia (CONVERT): Initial results of a multicenter randomised, open-label, phase III trial. Ann. Oncol. 2021, 32, S1296. [Google Scholar] [CrossRef]
- Heald, R.J.; Ryall, R.D. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet 1986, 1, 1479–1482. [Google Scholar] [CrossRef] [PubMed]
- Eveno, C.; Lamblin, A.; Mariette, C.; Pocard, M. Sexual and urinary dysfunction after proctectomy for rectal cancer. J. Visc. Surg. 2010, 147, e21–e30. [Google Scholar] [CrossRef]
- Habr-Gama, A.; Perez, R.O.; Nadalin, W.; Sabbaga, J.; Ribeiro, U., Jr.; Silva e Sousa, A.H., Jr.; Campos, F.G.; Kiss, D.R.; Gama-Rodrigues, J. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: Long-term results. Ann. Surg. 2004, 240, 711–717, discussion 717–718. [Google Scholar] [CrossRef]
- van der Valk, M.J.M.; Hilling, D.E.; Bastiaannet, E.; Meershoek-Klein Kranenbarg, E.; Beets, G.L.; Figueiredo, N.L.; Habr-Gama, A.; Perez, R.O.; Renehan, A.G.; van de Velde, C.J.H. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): An international multicentre registry study. Lancet 2018, 391, 2537–2545. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Aguilar, J.; Patil, S.; Gollub, M.J.; Kim, J.K.; Yuval, J.B.; Thompson, H.M.; Verheij, F.S.; Omer, D.M.; Lee, M.; Dunne, R.F.; et al. Organ Preservation in Patients With Rectal Adenocarcinoma Treated With Total Neoadjuvant Therapy. J. Clin. Oncol. 2022, 40, 2546–2556. [Google Scholar] [CrossRef]
- Rullier, E.; Rouanet, P.; Tuech, J.J.; Valverde, A.; Lelong, B.; Rivoire, M.; Faucheron, J.L.; Jafari, M.; Portier, G.; Meunier, B.; et al. Organ preservation for rectal cancer (GRECCAR 2): A prospective, randomised, open-label, multicentre, phase 3 trial. Lancet 2017, 390, 469–479. [Google Scholar] [CrossRef]
- Rullier, E.; Vendrely, V.; Asselineau, J.; Rouanet, P.; Tuech, J.J.; Valverde, A.; de Chaisemartin, C.; Rivoire, M.; Trilling, B.; Jafari, M.; et al. Organ preservation with chemoradiotherapy plus local excision for rectal cancer: 5-year results of the GRECCAR 2 randomised trial. Lancet Gastroenterol. Hepatol. 2020, 5, 465–474. [Google Scholar] [CrossRef]
- Serra-Aracil, X.; Pericay, C.; Golda, T.; Mora, L.; Targarona, E.; Delgado, S.; Reina, A.; Vallribera, F.; Enriquez-Navascues, J.M.; Serra-Pla, S.; et al. Non-inferiority multicenter prospective randomized controlled study of rectal cancer T(2)-T(3s) (superficial) N(0), M(0) undergoing neoadjuvant treatment and local excision (TEM) vs total mesorectal excision (TME). Int. J. Colorectal. Dis. 2018, 33, 241–249. [Google Scholar] [CrossRef]
- Bach, S.P.; Wilt, J.H.W.d.; Peters, F.; Spindler, K.-L.G.; Appelt, A.L.; Teo, M.; Homer, V.; Abbott, N.L.; Geh, I.; Korsgen, S.; et al. STAR-TREC phase II: Can we save the rectum by watchful waiting or transanal surgery following (chemo)radiotherapy versus total mesorectal excision for early rectal cancer? J. Clin. Oncol. 2022, 40, 3502. [Google Scholar] [CrossRef]
- Rombouts, A.J.M.; Al-Najami, I.; Abbott, N.L.; Appelt, A.; Baatrup, G.; Bach, S.; Bhangu, A.; Garm Spindler, K.L.; Gray, R.; Handley, K.; et al. Can we Save the rectum by watchful waiting or TransAnal microsurgery following (chemo) Radiotherapy versus Total mesorectal excision for early REctal Cancer (STAR-TREC study)?: Protocol for a multicentre, randomised feasibility study. BMJ Open 2017, 7, e019474. [Google Scholar] [CrossRef]
Trials | Patients (n) | Treatment Methods | Results (Con vs. Exp) | Conclusion | Ref | |
---|---|---|---|---|---|---|
RT | Concurrent Chemotherapy | |||||
CAO/ARO/AIO-04 | Con = 623 | 50.4 Gy(5 × 1.8 Gy/w) | Con: 5-FU 1000 mg/m2/d d1–5, d29–33 | pCR: 13% vs. 17%, p = 0.031 | Adding oxaliplatin significantly improved DFS and pCR in patients. | [12,18] |
Exp = 613 | Exp: 5-FU 250 mg/m2/d d1–14, d22–35 Oxaliplatin 50 mg/m²/d d1, 8, 22, 29 | 3 y-DFS: 71.2% vs. 75.9%, p = 0.03 | ||||
Preoperative grade 3–4 adverse events: 20% vs. 24%, ns | ||||||
ACCORD12 | Con = 299 | Con: 45 Gy (5 × 1.8 Gy/w) | Con: Capecitabine 800 mg/m2 × 2/d 5 d/w | ypCR: 13.9% vs. 19.2%, p = 0.09 | The benefit of oxaliplatin was not demonstrated. | [11] |
Exp = 299 | Exp: 50 Gy(5 × 2 Gy/w) | Exp: Capecitabine 800 mg/m2 × 2/d 5 d/w Oxaliplatin 50 mg/m2/w qw | Preoperative grade 3 to 4 adverse events: 11% vs. 25%, p < 0.001 | |||
STAR-01 | Con = 379 | 50.4 Gy(5 × 1.8 Gy/w) | Con: FU 225 mg/m2/d | pCR: 16% vs. 16%, p = 0.904 | Adding oxaliplatin significantly increases toxicity without affecting primary tumor response. | [10] |
Exp = 368 | Exp: 5-FU 225 mg/m2/d Oxaliplatin 60 mg/m2/w × 6 w | Preoperative grade 3 to 4 adverse events: 8% vs. 24%, p < 0.001 | ||||
NSBP R-04 | Con = 949 | 45 Gy or 50.4 Gy or 55.8 Gy (5 × 1.8 Gy/w) | Con: 5-FU 225 mg/m2/d 5 d/w or Capecitabine 825 mg/m2 × 2/d 5 d/w | pCR:17.8% vs. 19.5%, p = 0.42 | Adding oxaliplatin did not improve surgical outcomes but added significant toxicity. | [13] |
Exp = 659 | Exp: 5-FU 225 mg/m2/d 5 d/w or Capecitabine 825 mg/m2 × 2/d 5 d/w Oxaliplatin 50 mg/m2/w × 5 w | Grade 3 to 5 adverse events: 6.9% vs. 16.5%, p < 0.001 | ||||
PETACC 6 | Con = 543 | 45 Gy or 50.4 Gy (5 × 1.8 Gy/w) | Con: Capecitabine 2 × 825 mg/m2 × 2/d | pCR: 11.6% vs. 14.0%, p = 0.225 | The addition of oxaliplatin to preoperative capecitabine-based chemoradiation and postoperative adjuvant chemotherapy impaired tolerability and feasibility without improving efficacy. | [14] |
Exp = 525 | Exp: Capecitabine 2 × 825 mg/m2 × 2/d Oxaliplatin 50 mg/m2/d d1, 8, 15, 22, 29 | 7 y-DFS: 66.1% vs. 65.5%, p = 0.861 | ||||
7 y-OS: 73.5% vs. 73.7%, p = 0.205 | ||||||
FOWARC | Con = 155 | Con and Exp1: 46.0 Gy (5 × 2 Gy/w) or 50.4 Gy (5 × 1.8 Gy/w) | Con: (Leucovorin 400 mg/m2 + 5-FU 400 mg/m2 + 5-FU 2.4 g/m2 d1–2/2 w)× 5 cycles | pCR: Con vs. Exp1: 14.0% vs. 27.5%, p = 0.005 | mFOLFOX6-based preoperative chemoradiotherapy results in a higher pCR rate than 5-FU-based treatment but did not significantly improve 3 y-DFS. | [16,17] |
Exp1 = 157 | Exp1 and Exp2: (Leucovorin 400 mg/m2 + 5-FU 400 mg/m2 + 5-FU 2.4 g/m2 d1–2/2 w + oxaliplatin 85 mg/m2/2 w)× 5 cycles | 3 y-DFS: Con vs. Exp1 vs. Exp2: 72.9% vs. 77.2% vs. 73.5%, p = 0.709 | ||||
Exp2 = 163 | 3 y-OS: Con vs. Exp1 vs. Exp2: 91.3% vs. 89.1% vs. 90.7%, p = 0.971 | |||||
CinClare | Con = 178 | 50 Gy (5 × 2 Gy/w) | Con: Capecitabine 825 mg/m2 × 2/d 5 d/w Oxaliplatin 130 mg/m2 d1 Capecitabine 1000 mg/m2 × 2/d d1–14 | pCR: 15% vs. 30%, p = 0.001 | Adding irinotecan guided by the UGT1A1 genotype to capecitabine-based neoadjuvant chemoradiotherapy significantly increased complete tumor response in Chinese patients. | [19] |
Exp = 178 | Exp: Capecitabine 625 mg/m2 × 2/d 5 d/w Irinotecan UGT1A1*1*1, 80 mg/m2 /w UGT1A1*1*28, 65 mg/m2/w Irinotecan 200 mg/m2 d1 Capecitabine 1000 mg/m2 2/d d1–14 | Grade 3–4 adverse events: 6% vs. 38%, p < 0.001 | ||||
ARISTOTLE | Con = 284 | 45 Gy (5 × 1.8 Gy/w) | Con: Capecitabine 900 mg/m2 × 2/d | pCR: 17.4% vs. 20.2%, p = 0.45 | The addition of irinotecan did not significantly improve the pCR rate and was associated with a decrease in the RT and capecitabine compliance and a higher rate of adverse events. | [20] |
Exp = 280 | Exp: Capecitabine 650 mg/m2 × 2/d Irinotecan 60 mg/m2 /w × 4 w | Grade 3–4 adverse events: 12% vs. 21%, p = 0.004 |
Trials | Patients (n) | Treatment Methods | Results(INCT vs. CNCT) | Conclusion | Ref |
---|---|---|---|---|---|
CAO/ARO/ AIO-12 | INCT = 156 | INCT: chemotherapy/CRT/surgery | pCR: 17% vs. 25% | CNCT resulted in better compliance with CRT but worse compliance with chemotherapy compared with INCT. | [33,34] |
3 y-DFS: 73% vs. 73%, p = 0.82 | |||||
CNCT = 150 | OS: 92% vs. 92%, p = 0.81 | ||||
CRT-related grade 3 or 4 toxicity: 37% vs. 27% | |||||
OPRA | INCT = 152 | DFS: 78% vs. 77%, p = 0.90 | CNCT resulted in a numerically higher WW rate compared to induction chemotherapy followed by CRT. | [36] | |
CNCT = 155 | CNCT: CRT/chemotherapy/surgery | DMFS: 81% vs. 83%, p = 0.86 | |||
OP: 43% vs. 58%, p = 0.01 | |||||
PRODIGE 23 | INCT = 230 | 3 y-DFS: 69% vs. 76%, p = 0.034 | Neoadjuvant mFOLFIRINOX plus CRT is safe and significantly increases ypCR rate, DFS and MFS. | [37,38] | |
3 y-MFS: 71.7% vs. 78.8%, p < 0.02 | |||||
CNCT = 231 | pCR: 11.7% vs. 27.5%, p < 0.001 | ||||
3 y-OS: 87.7% vs. 90.8%, p = 0.077 | |||||
RAPIDO | standard arm = 441 | standard arm: RT: 50 Gy (5 × 2 Gy/w) or 50.4 Gy (5 × 1.8 Gy/w) | 3 y-DrTF: 30.4% vs. 23.7%, p = 0.019 | The 3 y-DrTF rate was significantly reduced by 7%, and the pCR rate was increased from 14% to 28% in the short-course radiotherapy, followed by consolidation chemotherapy and TME. | [39] |
experimental arm = 460 | capecitabine experimental arm: RT: 5 × 5 Gy CAPOX × 6 cycles or FOLFOX4 × 9 cycles | 3 y-OS: 88.8% vs. 89.1%, p = 0.59 | |||
R0 resection rate: 90% vs. 90%, p = 0.87 | |||||
pCR: 14% vs. 28%, p < 0.0001 |
Trials | Patients (n) | Patients and Methods | Results | Conclusion | Ref | |
---|---|---|---|---|---|---|
RT | Chemotherapy and Immunotherapy | |||||
VOLTAGE-A | A1(MSS) = 37 | 50.4 Gy | Capecitabine + nivolumab | A1: pCR: 30% (11/37) mpR: 38% (14/37) | Promising pCR rates of 30% and 60%, with mild toxicities, were shown in MSS and MSI-H LARC patients treated with Nivolumab plus radical surgery after CRT, suggesting the candidate therapy for the future non-surgical approach. | [51] |
A2(MSI-H) = 5 | A2: pCR: 60% (3/5) mpR: 60% (3/5) | |||||
ANAVA | 101 | 50.4 Gy | Capecitabine + avelumab | pCR: 23% (22/96) | The combination of preop CRT plus avelumab showed promising activity and a feasible safety profile. | [52] |
grade 3–4 non-immune adverse events: 8% | ||||||
grade 3–4 immune-related adverse events: 4% | ||||||
NRG-GI002 | Con = 95 | 50.4 Gy | Con: FOLFOX + capecitabine Exp: FOLFOX + capecitabine + pembrolizumab | Mean NAR: con vs. exp =14.08 vs. 11.53 p = 0.26 | Pembrolizumab added to CRT as part of TNT was safe and without unexpected short-term toxicities but failed to improve the NAR score. | [53] |
pCR: 29.4% vs. 31.9%, p = 0.75 | ||||||
Exp = 90 | cCR: 13.6% vs. 13.9%, p = 0.95 | |||||
SSS: 71.0% vs. 59.4%, p = 0.15 | ||||||
NCT04231552 | 30 | 25 Gy | Oxaliplatin + capecitabine + camrelizumab | pCR: 48.1% (13/27) | SC-RT combined with subsequent CAPOX plus camrelizumab followed by delayed surgery showed a favorable pCR rate with good tolerance in patients with LARC, especially in the proficient MMR setting. | [54] |
pMMR/MSS: 46% (12/26) | ||||||
dMMR/MSI-H: 100% (1/1) | ||||||
Averectal | 44 | 25 Gy | mFOLFOX6 + avelumab | pCR: 37.5% (15/40) mpR: 67.5% (27/40) | The primary endpoint was successfully met with significant improvement in pCR and mpR rates in the setting of an acceptable safety profile. | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Xue, Z.; He, K.; Tian, Y.; Chen, Y.; Zhao, M.; Yu, J.; Yue, J. Strategies to Optimize Treatment for Locally Advanced Rectal Cancer. Cancers 2023, 15, 219. https://doi.org/10.3390/cancers15010219
Hu X, Xue Z, He K, Tian Y, Chen Y, Zhao M, Yu J, Yue J. Strategies to Optimize Treatment for Locally Advanced Rectal Cancer. Cancers. 2023; 15(1):219. https://doi.org/10.3390/cancers15010219
Chicago/Turabian StyleHu, Xiaoyu, Zhuang Xue, Kewen He, Yaru Tian, Yu Chen, Mengyu Zhao, Jinming Yu, and Jinbo Yue. 2023. "Strategies to Optimize Treatment for Locally Advanced Rectal Cancer" Cancers 15, no. 1: 219. https://doi.org/10.3390/cancers15010219
APA StyleHu, X., Xue, Z., He, K., Tian, Y., Chen, Y., Zhao, M., Yu, J., & Yue, J. (2023). Strategies to Optimize Treatment for Locally Advanced Rectal Cancer. Cancers, 15(1), 219. https://doi.org/10.3390/cancers15010219