Prognostic Role of Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR) and Lymphocyte-to-C Reactive Protein Ratio (LCR) in Patients with Hepatocellular Carcinoma (HCC) undergoing Chemoembolizations (TACE) of the Liver: The Unexplored Corner Linking Tumor Microenvironment, Biomarkers and Interventional Radiology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Data Collection Strategy
3. Neutrophil-to-Lymphocyte Ratio (NLR)
4. Lymphocyte-to-Monocyte Ratio (LMR)
5. Platelet-to-Lymphocyte Ratio (PLR)
6. Lymphocyte-to-C Reactive Protein Ratio (LCR)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Brú, C.; Bruix, J. Prognosis of Hepatocellular Carcinoma: The BCLC Staging Classification. Semin. Liver Dis. 1999, 19, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Reig, M.E.; Rodriguez De Lope, C.; Bruix, J. Current Strategy for Staging and Treatment: The BCLC Update and Future Prospects. Semin. Liver Dis. 2010, 30, 61–74. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC Strategy for Prognosis Prediction and Treatment Recommendation: The 2022 Update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.L.; Schirmacher, P.; Vilgrain, V. EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [Green Version]
- Yao, F.Y.; Mehta, N.; Flemming, J.; Dodge, J.; Hameed, B.; Fix, O.; Hirose, R.; Fidelman, N.; Kerlan, R.K.; Roberts, J.P. Downstaging of Hepatocellular Cancer before Liver Transplant: Long-Term Outcome Compared to Tumors within Milan Criteria. Hepatology 2015, 61, 1968–1977. [Google Scholar] [CrossRef] [Green Version]
- Mazzaferro, V.; Bhoori, S.; Sposito, C.; Bongini, M.; Langer, M.; Miceli, R.; Mariani, L. Milan Criteria in Liver Transplantation for Hepatocellular Carcinoma: An Evidence-Based Analysis of 15 Years of Experience. Liver Transplant. 2011, 17, S44–S57. [Google Scholar] [CrossRef]
- Minici, R.; Ammendola, M.; Manti, F.; Siciliano, M.A.; Minici, M.; Komaei, I.; Currò, G.; Laganà, D. Safety and Efficacy of Degradable Starch Microspheres Transcatheter Arterial Chemoembolization (DSM-TACE) in the Downstaging of Intermediate-Stage Hepatocellular Carcinoma (HCC) in Patients With a Child-Pugh Score of 8-9. Front. Pharmacol. 2021, 12, 634087. [Google Scholar] [CrossRef]
- Bryce, K.; Tsochatzis, E.A. Downstaging for Hepatocellular Cancer: Harm or Benefit? Transl. Gastroenterol. Hepatol. 2017, 2, 106. [Google Scholar] [CrossRef]
- Affonso, B.B.; Galastri, F.L.; Da Motta Leal Filho, J.M.; Nasser, F.; Falsarella, P.M.; Cavalcante, R.N.; De Almeida, M.D.; Gonçalves Felga, G.E.; Moreira Valle, L.G.; Wolosker, N. Long-Term Outcomes of Hepatocellular Carcinoma That Underwent Chemoembolization for Bridging or Downstaging. World J. Gastroenterol. 2019, 25, 5687–5701. [Google Scholar] [CrossRef]
- Parikh, N.D.; Waljee, A.K.; Singal, A.G. Downstaging Hepatocellular Carcinoma: A Systematic Review and Pooled Analysis. Liver Transplant. 2015, 21, 1142–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlacchio, A.; Chegai, F.; Merolla, S.; Francioso, S.; Del Giudice, C.; Angelico, M.; Tisone, G.; Simonetti, G. Downstaging Disease in Patients with Hepatocellular Carcinoma Outside Up-to-Seven Criteria: Strategies Using Degradable Starch Microspheres Transcatheter Arterial Chemo-Embolization. World J. Hepatol. 2015, 7, 1694–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minici, R.; Ammendola, M.; Manti, F.; Siciliano, M.A.; Giglio, E.; Minici, M.; Melina, M.; Currò, G.; Laganà, D. Safety and Efficacy of Degradable Starch Microspheres Transcatheter Arterial Chemoembolization as a Bridging Therapy in Patients with Early Stage Hepatocellular Carcinoma and Child-Pugh Stage B Eligible for Liver Transplant. Front. Pharmacol. 2021, 12, 634087. [Google Scholar] [CrossRef]
- Fontana, R.J.; Hamidullah, H.; Nghiem, H.; Greenson, J.K.; Hussain, H.; Marrero, J.; Rudich, S.; McClure, L.A.; Arenas, J. Percutaneous Radiofrequency Thermal Ablation of Hepatocellular Carcinoma: A Safe and Effective Bridge to Liver Transplantation. Liver Transplant. 2002, 8, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
- Harnois, D.M.; Steers, J.; Andrews, J.C.; Rubin, J.C.; Pitot, H.C.; Burgart, L.; Wiesner, R.H.; Gores, G.J. Preoperative Hepatic Artery Chemoembolization Followed by Orthotopic Liver Transplantation for Hepatocellular Carcinoma. Liver Transplant. Surg. 1999, 5, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Raman, S.S.; Asvadi, N.H.; Siripongsakun, S.; Hicks, R.M.; Chen, J.; Worakitsitisatorn, A.; McWilliams, J.; Tong, M.J.; Finn, R.S.; et al. Radiofrequency Ablation of Hepatocellular Carcinoma as Bridge Therapy to Liver Transplantation: A 10-Year Intention-to-Treat Analysis. Hepatology 2017, 65, 1979–1990. [Google Scholar] [CrossRef] [Green Version]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD Guidelines for the Treatment of Hepatocellular Carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.; Meyer, T.; Nault, J.C.; Neumann, U.; Ricke, J.; Sangro, B.; et al. Hepatocellular Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2018, 29, iv238–iv255. [Google Scholar] [CrossRef]
- Cescon, M.; Cucchetti, A.; Ravaioli, M.; Pinna, A.D. Hepatocellular Carcinoma Locoregional Therapies for Patients in the Waiting List. Impact on Transplantability and Recurrence Rate. J. Hepatol. 2013, 58, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Llovet, J.M.; Real, M.I.; Montaña, X.; Planas, R.; Coll, S.; Aponte, J.; Ayuso, C.; Sala, M.; Muchart, J.; Solà, R.; et al. Arterial Embolisation or Chemoembolisation versus Symptomatic Treatment in Patients with Unresectable Hepatocellular Carcinoma: A Randomised Controlled Trial. Lancet 2002, 359, 1734–1739. [Google Scholar] [CrossRef]
- Lo, C.M.; Ngan, H.; Tso, W.K.; Liu, C.L.; Lam, C.M.; Poon, R.T.P.; Fan, S.T.; Wong, J. Randomized Controlled Trial of Transarterial Lipiodol Chemoembolization for Unresectable Hepatocellular Carcinoma. Hepatology 2002, 35, 1164–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pompili, M.; Francica, G.; Ponziani, F.R.; Iezzi, R.; Avolio, A.W. Bridging and Downstaging Treatments for Hepatocellular Carcinoma in Patients on the Waiting List for Liver Transplantation. World J. Gastroenterol. 2013, 19, 7515–7530. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.Y.; Hirose, R.; LaBerge, J.M.; Davern, T.J.; Bass, N.M.; Kerlan, R.K.; Merriman, R.; Feng, S.; Freise, C.E.; Ascher, N.L.; et al. A Prospective Study on Downstaging of Hepatocellular Carcinoma Prior to Liver Transplantation. Liver Transplant. 2005, 11, 1505–1514. [Google Scholar] [CrossRef]
- Sandow, T.A.; Arndt, S.E.; Albar, A.A.; DeVun, D.A.; Kirsch, D.S.; Gimenez, J.M.; Bohorquez, H.E.; Gilbert, P.J.; Thevenot, P.T.; Nunez, K.G.; et al. Assessment of Response to Transcatheter Arterial Chemoembolization with Doxorubicin-Eluting Microspheres: Tumor Biology and Hepatocellular Carcinoma Recurrence in a 5-Year Transplant Cohort. Radiology 2018, 286, 1072–1083. [Google Scholar] [CrossRef]
- Mazzaferro, V. Squaring the Circle of Selection and Allocation in Liver Transplantation for HCC: An Adaptive Approach. Hepatology 2016, 63, 1707–1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.T.; Corken, A.; Ware, J. Platelets at the Interface of Thrombosis, Inflammation, and Cancer. Blood 2015, 126, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Beyer, M.; Schultze, J.L. Regulatory T Cells in Cancer. Blood 2006, 108, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-Related Inflammation and Treatment Effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef]
- Cho, E.J.; Yu, S.J.; Lee, Y.B.; Lee, J.H.; Kim, Y.J.; Yoon, J.H. Prognostic Values of Inflammation-Based Scores and Fibrosis Markers in Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization. Diagnostics 2022, 12, 1170. [Google Scholar] [CrossRef]
- Xiao, W.K.; Chen, D.; Li, S.Q.; Fu, S.J.; Peng, B.G.; Liang, L.J. Prognostic Significance of Neutrophil-Lymphocyte Ratio in Hepatocellular Carcinoma: A Meta-Analysis. BMC Cancer 2014, 14, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMillan, D.C. Systemic Inflammation, Nutritional Status and Survival in Patients with Cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 223–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iseda, N.; Itoh, S.; Yoshizumi, T.; Tomiyama, T.; Morinaga, A.; Shimagaki, T.; Wang, H.; Kurihara, T.; Toshima, T.; Nagao, Y.; et al. Lymphocyte-to-C-Reactive Protein Ratio as a Prognostic Factor for Hepatocellular Carcinoma. Int. J. Clin. Oncol. 2021, 26, 1890–1900. [Google Scholar] [CrossRef]
- Danek, P.; Kardosova, M.; Janeckova, L.; Karkoulia, E.; Vanickova, K.; Fabisik, M.; Lozano-Asencio, C.; Benoukraf, T.; Tirado-Magallanes, R.; Zhou, Q.; et al. Β-Catenin-TCF/LEF Signaling Promotes Steady-State and Emergency Granulopoiesis via G-CSF Receptor Upregulation. Blood 2020, 136, 2574–2587. [Google Scholar] [CrossRef]
- Thanabalasuriar, A.; Scott, B.N.V.; Peiseler, M.; Willson, M.E.; Zeng, Z.; Warrener, P.; Keller, A.E.; Surewaard, B.G.J.; Dozier, E.A.; Korhonen, J.T.; et al. Neutrophil Extracellular Traps Confine Pseudomonas Aeruginosa Ocular Biofilms and Restrict Brain Invasion. Cell Host Microbe 2019, 25, 526–536.e4. [Google Scholar] [CrossRef] [Green Version]
- El-Benna, J.; Hurtado-Nedelec, M.; Marzaioli, V.; Marie, J.C.; Gougerot-Pocidalo, M.A.; Dang, P.M.C. Priming of the Neutrophil Respiratory Burst: Role in Host Defense and Inflammation. Immunol. Rev. 2016, 273, 180–193. [Google Scholar] [CrossRef]
- Venet, F.; Monneret, G. Advances in the Understanding and Treatment of Sepsis-Induced Immunosuppression. Nat. Rev. Nephrol. 2018, 14, 121–137. [Google Scholar] [CrossRef]
- Döring, Y.; Soehnlein, O.; Weber, C. Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circ. Res. 2017, 120, 736–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdomo, J.; Leung, H.H.L.; Ahmadi, Z.; Yan, F.; Chong, J.J.H.; Passam, F.H.; Chong, B.H. Neutrophil Activation and NETosis Are the Major Drivers of Thrombosis in Heparin-Induced Thrombocytopenia. Nat. Commun. 2019, 10, 1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lood, C.; Blanco, L.P.; Purmalek, M.M.; Carmona-Rivera, C.; De Ravin, S.S.; Smith, C.K.; Malech, H.L.; Ledbetter, J.A.; Elkon, K.B.; Kaplan, M.J. Neutrophil Extracellular Traps Enriched in Oxidized Mitochondrial DNA Are Interferogenic and Contribute to Lupus-like Disease. Nat. Med. 2016, 22, 146–153. [Google Scholar] [CrossRef]
- Xiong, S.; Dong, L.; Cheng, L. Neutrophils in Cancer Carcinogenesis and Metastasis. J. Hematol. Oncol. 2021, 14, 173. [Google Scholar] [CrossRef] [PubMed]
- van der Windt, D.J.; Sud, V.; Zhang, H.; Varley, P.R.; Goswami, J.; Yazdani, H.O.; Tohme, S.; Loughran, P.; O’Doherty, R.M.; Minervini, M.I.; et al. Neutrophil Extracellular Traps Promote Inflammation and Development of Hepatocellular Carcinoma in Nonalcoholic Steatohepatitis. Hepatology 2018, 68, 1347–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhang, H.; Wang, Y.; Brown, Z.J.; Xia, Y.; Huang, Z.; Shen, C.; Hu, Z.; Beane, J.; Ansa-Addo, E.A.; et al. Regulatory T-Cell and Neutrophil Extracellular Trap Interaction Contributes to Carcinogenesis in Non-Alcoholic Steatohepatitis. J. Hepatol. 2021, 75, 1271–1283. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Ko, S.Y.; Mohamed, M.S.; Kenny, H.A.; Lengyel, E.; Naora, H. Neutrophils Facilitate Ovarian Cancer Premetastatic Niche Formation in the Omentum. J. Exp. Med. 2019, 216, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Grieshaber-Bouyer, R.; Radtke, F.A.; Cunin, P.; Stifano, G.; Levescot, A.; Vijaykumar, B.; Nelson-Maney, N.; Blaustein, R.B.; Monach, P.A.; Nigrovic, P.A.; et al. The Neutrotime Transcriptional Signature Defines a Single Continuum of Neutrophils across Biological Compartments. Nat. Commun. 2021, 12, 2856. [Google Scholar] [CrossRef] [PubMed]
- Fridlender, Z.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.; Albelda, S. Polarization of Tumor-Associated Neutrophil Phenotype by TGF-Beta: “N1” versus “N2” TAN. Cancer Cell 2009, 16, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nat. Immunol. 2013, 14, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [Green Version]
- Xue, T.C.; Jia, Q.A.; Ge, N.L.; Zhang, B.H.; Wang, Y.H.; Ren, Z.G.; Ye, S.L. The Platelet-to-Lymphocyte Ratio Predicts Poor Survival in Patients with Huge Hepatocellular Carcinoma That Received Transarterial Chemoembolization. Tumor Biol. 2015, 36, 6045–6051. [Google Scholar] [CrossRef]
- Nicolini, D.; Agostini, A.; Montalti, R.; Mocchegiani, F.; Mincarelli, C.; Mandolesi, A.; Robertson, N.L.; Candelari, R.; Giovagnoni, A.; Vivarelli, M. Radiological Response and Inflammation Scores Predict Tumour Recurrence in Patients Treated with Transarterial Chemoembolization before Liver Transplantation. World J. Gastroenterol. 2017, 23, 3690–3701. [Google Scholar] [CrossRef]
- Motomura, T.; Shirabe, K.; Mano, Y.; Muto, J.; Toshima, T.; Umemoto, Y.; Fukuhara, T.; Uchiyama, H.; Ikegami, T.; Yoshizumi, T.; et al. Neutrophil-Lymphocyte Ratio Reflects Hepatocellular Carcinoma Recurrence after Liver Transplantation via Inflammatory Microenvironment. J. Hepatol. 2013, 58, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahorec, R. Ratio of Neutrophil to Lymphocyte Counts--Rapid and Simple Parameter of Systemic Inflammation and Stress in Critically Ill. Bratisl. Lek. Listy 2001, 102, 5–14. [Google Scholar] [PubMed]
- Jaiswal, M.; LaRusso, N.F.; Burgart, L.J.; Gores, G.J. Inflammatory Cytokines Induce DNA Damage and Inhibit DNA Repair in Cholangiocarcinoma Cells by a Nitric Oxide-Dependent Mechanism. Cancer Res. 2000, 60, 184–190. [Google Scholar]
- McMillan, D.C.; Canna, K.; McArdle, C.S. Systemic Inflammatory Response Predicts Survival Following Curative Resection of Colorectal Cancer. Br. J. Surg. 2003, 90, 215–219. [Google Scholar] [CrossRef]
- Aliustaoglu, M.; Bilici, A.; Ustaalioglu, B.B.O.; Konya, V.; Gucun, M.; Seker, M.; Gumus, M. The Effect of Peripheral Blood Values on Prognosis of Patients with Locally Advanced Gastric Cancer before Treatment. Med. Oncol. 2010, 27, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Hur, H.W.; Kim, S.W.; Kim, S.H.; Kim, J.H.; Kim, Y.T.; Lee, K. Pre-Treatment Neutrophil to Lymphocyte Ratio Is Elevated in Epithelial Ovarian Cancer and Predicts Survival after Treatment. Cancer Immunol. Immunother. 2009, 58, 15–23. [Google Scholar] [CrossRef]
- Walsh, S.R.; Cook, E.J.; Goulder, F.; Justin, T.A.; Keeling, N.J. Neutrophil-Lymphocyte Ratio as a Prognostic Factor in Colorectal Cancer. J. Surg. Oncol. 2005, 91, 181–184. [Google Scholar] [CrossRef]
- Halazun, K.J.; Aldoori, A.; Malik, H.Z.; Al-Mukhtar, A.; Prasad, K.R.; Toogood, G.J.; Lodge, J.P.A. Elevated Preoperative Neutrophil to Lymphocyte Ratio Predicts Survival Following Hepatic Resection for Colorectal Liver Metastases. Eur. J. Surg. Oncol. 2008, 34, 55–60. [Google Scholar] [CrossRef]
- Kishi, Y.; Kopetz, S.; Chun, Y.S.; Palavecino, M.; Abdalla, E.K.; Vauthey, J.N. Blood Neutrophil-to-Lymphocyte Ratio Predicts Survival in Patients with Colorectal Liver Metastases Treated with Systemic Chemotherapy. Ann. Surg. Oncol. 2009, 16, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Gomez, D.; Morris-Stiff, G.; Toogood, G.J.; Lodge, J.P.A.; Prasad, K.R. Impact of Systemic Inflammation on Outcome Following Resection for Intrahepatic Cholangiocarcinoma. J. Surg. Oncol. 2008, 97, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef]
- Schobert, I.T.; Savic, L.J.; Chapiro, J.; Bousabarah, K.; Chen, E.; Laage-Gaupp, F.; Tefera, J.; Nezami, N.; De Lin, M.; Pollak, J.; et al. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios as Predictors of Tumor Response in Hepatocellular Carcinoma after DEB-TACE. Eur. Radiol. 2020, 30, 5663–5673. [Google Scholar] [CrossRef]
- Chu, H.H.; Kim, J.H.; Shim, J.H.; Gwon, D., II; Ko, H.K.; Shin, J.H.; Ko, G.Y.; Yoon, H.K.; Kim, N. Neutrophil-to-Lymphocyte Ratio as a Biomarker Predicting Overall Survival after Chemoembolization for Intermediate-Stage Hepatocellular Carcinoma. Cancers 2021, 13, 2830. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.; Zhang, X.; Zhao, S.; Hu, J.; Han, G.; Liu, L. The Neutrophil-to-Lymphocyte Ratio Is a Predictive Factor for the Survival of Patients with Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Ann. Transl. Med. 2020, 8, 541. [Google Scholar] [CrossRef]
- Fan, W.; Zhang, Y.; Wang, Y.; Yao, X.; Yang, J.; Li, J. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios as Predictors of Survival and Metastasis for Recurrent Hepatocellular Carcinoma after Transarterial Chemoembolization. PLoS ONE 2015, 10, e0119312. [Google Scholar] [CrossRef]
- Rebonato, A.; Graziosi, L.; Maiettini, D.; Marino, E.; De Angelis, V.; Brunese, L.; Mosca, S.; Metro, G.; Rossi, M.; Orgera, G.; et al. Inflammatory Markers as Prognostic Factors of Survival in Patients Affected by Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Gastroenterol Res Pract. 2017, 2017, 4164130. [Google Scholar] [CrossRef]
- He, C.; Zhang, Y.; Cai, Z.; Lin, X. The Prognostic and Predictive Value of the Combination of the Neutrophil-to-Lymphocyte Ratio and the Platelet-to-Lymphocyte Ratio in Patients with Hepatocellular Carcinoma Who Receive Transarterial Chemoembolization Therapy. Cancer Manag. Res. 2019, 11, 1391–1400. [Google Scholar] [CrossRef] [Green Version]
- Taussig, M.D.; Irene Koran, M.E.; Mouli, S.K.; Ahmad, A.; Geevarghese, S.; Baker, J.C.; Lipnik, A.J.; Banovac, F.; Brown, D.B. Neutrophil to lymphocyte ratio predicts disease progression following intra-arterial therapy of hepatocellular carcinoma. HPB 2017, 19, 458–464. [Google Scholar] [CrossRef]
- Li, S.; Feng, X.; Cao, G.; Wang, Q.; Wang, L. Prognostic significance of inflammatory indices in hepatocellular carcinoma treated with transarterial chemoembolization: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0230879. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; Sharma, R. An inflammation-based prognostic index predicts survival advantage after transarterial chemoembolization in hepatocellular carcinoma. Transl Res. 2012, 160, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Stotz, M.; Pichler, M.; Absenger, G.; Szkandera, J.; Arminger, F.; Schaberl-Moser, R.; Samonigg, H.; Stojakovic, T.; Gerger, A. The Preoperative Lymphocyte to Monocyte Ratio Predicts Clinical Outcome in Patients with Stage III Colon Cancer. Br. J. Cancer 2014, 110, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozawa, T.; Ishihara, S.; Kawai, K.; Kazama, S.; Yamaguchi, H.; Sunami, E.; Kitayama, J.; Watanabe, T. Impact of a Lymphocyte to Monocyte Ratio in Stage IV Colorectal Cancer. J. Surg. Res. 2015, 199, 386–392. [Google Scholar] [CrossRef]
- Wu, S.J.; Lin, Y.X.; Ye, H.; Li, F.Y.; Xiong, X.Z.; Cheng, N.S. Lymphocyte to Monocyte Ratio and Prognostic Nutritional Index Predict Survival Outcomes of Hepatitis B Virus-Associated Hepatocellular Carcinoma Patients after Curative Hepatectomy. J. Surg. Oncol. 2016, 114, 202–210. [Google Scholar] [CrossRef]
- Lin, Z.X.; Ruan, D.Y.; Li, Y.; Wu, D.H.; Ma, X.K.; Chen, J.; Chen, Z.H.; Li, X.; Wang, T.T.; Lin, Q.; et al. Lymphocyte-to-Monocyte Ratio Predicts Survival of Patients with Hepatocellular Carcinoma after Curative Resection. World J. Gastroenterol. 2015, 21, 10898–10906. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Li, L.; Chen, G.; Zhang, Y.; Gao, Q. The Lymphocyte-to-Monocyte Ratio Could Predict the Efficacy of PD-1 Inhibitors in Patients with Advanced Cancer. Transl. Cancer Res. 2020, 9, 4111–4120. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The Immunobiology of Cancer Immunosurveillance and Immunoediting. Immunity 2004, 21, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front. Immunol. 2020, 11, 940. [Google Scholar] [CrossRef] [PubMed]
- Väyrynen, J.P.; Tuomisto, A.; Klintrup, K.; Mäkelä, J.; Karttunen, T.J.; Mäkinen, M.J. Detailed Analysis of Inflammatory Cell Infiltration in Colorectal Cancer. Br. J. Cancer 2013, 109, 1839–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, T.K.; Dworacki, G.; Tsukihiro, T.; Meidenbauer, N.; Gooding, W.; Johnson, J.T.; Whiteside, T.L. Spontaneous Apoptosis of Circulating T Lymphocytes in Patients with Head and Neck Cancer and Its Clinical Importance. Clin. Cancer Res. 2002, 8, 2553–2562. [Google Scholar] [PubMed]
- Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers 2014, 6, 1670–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsutsui, S.; Yasuda, K.; Suzuki, K.; Tahara, K.; Higashi, H.; Era, S. Macrophage Infiltration and Its Prognostic Implications in Breast Cancer: The Relationship with VEGF Expression and Microvessel Density. Oncol. Rep. 2005, 14, 425–431. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.-J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Itoh, S.; Yugawa, K.; Shimokawa, M.; Yoshiya, S.; Mano, Y.; Takeishi, K.; Toshima, T.; Maehara, Y.; Mori, M.; Yoshizumi, T. Prognostic Significance of Inflammatory Biomarkers in Hepatocellular Carcinoma Following Hepatic Resection. BJS Open 2019, 3, 500–508. [Google Scholar] [CrossRef]
- Gu, L.; Li, H.; Chen, L.; Ma, X.; Li, X.; Gao, Y.; Zhang, Y.; Xie, Y.; Zhang, X. Prognostic Role of Lymphocyte to Monocyte Ratio for Patients with Cancer: Evidence from a Systematic Review and Meta-Analysis. Oncotarget 2016, 7, 31926–31942. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Zhu, J.; Zhao, L.; Mai, K.; Ye, J.; Huang, S.; Zhao, Y. Lymphocyte to Monocyte Ratio and Neutrophil to Lymphocyte Ratio Are Superior Inflammation-Based Predictors of Recurrence in Patients with Hepatocellular Carcinoma after Hepatic Resection. J. Surg. Oncol. 2017, 115, 718–728. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Chen, X.; Li, W.; Chen, J. Prognostic Significance of Lymphocyte-to-Monocyte Ratio and Platelet-to-Lymphocyte Ratio in Patients with Hepatocellular Carcinoma Undergoing Transcatheter Arterial Chemoembolization and Radiofrequency Ablation. Onco Targets Ther. 2019, 12, 7129–7137. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, W.; Niu, R.; Li, Y.; Zhou, X.; Han, X. A Combination of the Preoperative Neutrophil-to-Lymphocyte and Lymphocyte-to-Monocyte Ratios as a Useful Predictor of Survival Outcomes Following the Transarterial Chemoembolization of Huge Hepatocellular Carcinoma. Saudi Med. J. 2020, 41, 376–382. [Google Scholar] [CrossRef]
- Wang, Q.; Qiao, W.; Liu, B.; Li, J.; Yuan, C.; Long, J.; Hu, C.; Zang, C.; Zheng, J.; Zhang, Y. The Monocyte to Lymphocyte Ratio Not Only at Baseline but Also at Relapse Predicts Poor Outcomes in Patients with Hepatocellular Carcinoma Receiving Locoregional Therapy. BMC Gastroenterol. 2022, 22, 98. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, M.; Chen, S.; Wan, W.; Shen, L.; Shen, B.; Qi, H.; Cao, F.; Wu, Y.; Huang, T.; et al. Intermediate Stage Hepatocellular Carcinoma: Comparison of the Value of Inflammation-Based Scores in Predicting Progression-Free Survival of Patients Receiving Transarterial Chemoembolization. J. Cancer Res. Ther. 2021, 17, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Jiang, H.; Shu, C.; Hu, M.Q.; Huang, Y.; Liu, Q.; Li, R.F. Prognostic Value of Lymphocyte-to-Monocyte Ratio in Ovarian Cancer: A Meta-Analysis. J. Ovarian Res. 2019, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Koh, Y.W.; Park, C.S.; Yoon, D.H.; Suh, C.; Huh, J. Should the Cut-off Values of the Lymphocyte to Monocyte Ratio for Prediction of Prognosis in Diffuse Large B-Cell Lymphoma Be Changed in Elderly Patients? Eur. J. Haematol. 2014, 93, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhou, P.; Liu, Y.; Wei, H.; Yang, X.; Chen, T.; Xiao, J. Platelet-to-Lymphocyte Ratio in Advanced Cancer: Review and Meta-Analysis. Clin. Chim. Acta 2018, 483, 48–56. [Google Scholar] [CrossRef]
- Lai, Q.; Castro Santa, E.; Rico Juri, J.M.; Pinheiro, R.S.; Lerut, J. Neutrophil and Platelet-to-Lymphocyte Ratio as New Predictors of Dropout and Recurrence after Liver Transplantation for Hepatocellular Cancer. Transpl. Int. 2014, 27, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Cai, J.; Li, H.; Zeng, K.; He, L.; Fu, H.; Zhang, J.; Chen, L.; Yao, J.; Zhang, Y.; et al. Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio as Prognostic Predictors for Hepatocellular Carcinoma Patients with Various Treatments: A Meta-Analysis and Systematic Review. Cell. Physiol. Biochem. 2017, 44, 967–981. [Google Scholar] [CrossRef]
- Nieswandt, B.; Hafner, M.; Echtenacher, B.; Männel, D.N. Lysis of Tumor Cells by Natural Killer Cells in Mice Is Impeded by Platelets. Cancer Res. 1999, 59, 1295–1300. [Google Scholar]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-Related Inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Uriell-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-ΚB Functions as a Tumour Promoter in Inflammation-Associated Cancer. Nature 2004, 431, 461–466. [Google Scholar] [CrossRef]
- Nickoloff, B.J.; Ben-Neriah, Y.; Pikarsky, E. Inflammation and Cancer: Is the Link as Simple as We Think? J. Investig. Dermatol. 2005, 124, x–xiv. [Google Scholar] [CrossRef] [Green Version]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Kim, D.H.; Jang, J.Y.; Kang, Y.J.; Yoon, J.H.; Moon, J.O.; Chung, H.Y.; Kim, G.Y.; Choi, Y.H.; Copple, B.L.; et al. Aspirin Induces Apoptosis in Vitro and Inhibits Tumor Growth of Human Hepatocellular Carcinoma Cells in a Nude Mouse Xenograft Model. Int. J. Oncol. 2012, 40, 1298–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H.K.; Jung, H.C.; Rhee, K.H.; Yoon, J.H.; Soon, H.K.; Song, K.; Kun, W.L.; Chang, I.C.; Ju, H.J.; Kim, K.S. Cyclooxygenase Inhibitors Induce Apoptosis in Sinonasal Cancer Cells by Increased Expression of Nonsteroidal Anti-Inflammatory Drug-Activated Gene. Int. J. Cancer 2008, 122, 1765–1773. [Google Scholar] [CrossRef]
- Parisi, I.; Tsochatzis, E.; Wijewantha, H.; Rodríuez-Perálvarez, M.; De Luca, L.; Manousou, P.; Fatourou, E.; Pieri, G.; Papastergiou, V.; Davies, N.; et al. Inflammation-Based Scores Do Not Predict Post-Transplant Recurrence of Hepatocellular Carcinoma in Patients within Milan Criteria. Liver Transplant. 2014, 20, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Chen, Y.Y.; Kee, K.M.; Wang, C.C.; Tsai, M.C.; Kuo, Y.H.; Hung, C.H.; Li, W.F.; Lai, H.L.; Chen, Y.H. The Prognostic Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio in Patients with Hepatocellular Carcinoma Receiving Atezolizumab Plus Bevacizumab. Cancers 2022, 14, 343. [Google Scholar] [CrossRef]
- Liu, L.; Gong, Y.; Zhang, Q.; Cai, P.; Feng, L. Prognostic Roles of Blood Inflammatory Markers in Hepatocellular Carcinoma Patients Taking Sorafenib. A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 9, 01557. [Google Scholar] [CrossRef]
- Tada, T.; Kumada, T.; Hiraoka, A.; Michitaka, K.; Atsukawa, M.; Hirooka, M.; Tsuji, K.; Ishikawa, T.; Takaguchi, K.; Kariyama, K.; et al. Platelet-Lymphocyte Ratio Predicts Survival in Patients with Hepatocellular Carcinoma Who Receive Lenvatinib: An Inverse Probability Weighting Analysis. Eur. J. Gastroenterol. Hepatol. 2021, 32, 261–268. [Google Scholar] [CrossRef]
- Dharmapuri, S.; Özbek, U.; Lin, J.Y.; Sung, M.; Schwartz, M.; Branch, A.D.; Ang, C. Predictive Value of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Advanced Hepatocellular Carcinoma Patients Treated with Anti–PD-1 Therapy. Cancer Med. 2020, 9, 4962–4970. [Google Scholar] [CrossRef]
- Qin, S.; Li, Q.; Gu, S.; Chen, X.; Lin, L.; Wang, Z.; Xu, A.; Chen, X.; Zhou, C.; Ren, Z.; et al. Apatinib as Second-Line or Later Therapy in Patients with Advanced Hepatocellular Carcinoma (AHELP): A Multicentre, Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Gastroenterol. Hepatol. 2021, 6, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ke, Z.; Xiong, F.; Kan, X.; Ren, Y.; Cao, Y.; Sun, T.; Yan, L.; Zhou, G.; Zheng, C. Platelet-to-Lymphocyte Ratio Predicts Therapy Outcomes of Transarterial Chemoembolization plus Apatinib in the Treatment of Advanced Hepatocellular Carcinoma. Anticancer. Drugs 2020, 31, 966–972. [Google Scholar] [CrossRef]
- FDA Guidance for Industry and FDA Staff. Review Criteria for Assessment of C-Reactive Protein (CRP), High Sensitivity C-Reactive Protein (HsCRP) and Cardiac C-Reactive Protein (CCRP) Assays; Food and Drug Administration: Rockville, MD, USA, 2005; pp. 1–114. [Google Scholar]
- Arcone, R.; Gualandi, G.; Ciliberto, G. Identification of Sequences Responsible for Acute-Phase Induction of Human C-Reactive Protein. Nucleic Acids Res. 1988, 16, 3195–3207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, P.C.; Rajab, I.M.; Alebraheem, M.; Potempa, L.A. C-Reactive Protein and Cancer—Diagnostic and Therapeutic Insights. Front. Immunol. 2020, 11, 595835. [Google Scholar] [CrossRef]
- Ishizuka, M.; Kubota, K.; Kita, J.; Shimoda, M.; Kato, M.; Sawada, T. Impact of an Inflammation-Based Prognostic System on Patients Undergoing Surgery for Hepatocellular Carcinoma: A Retrospective Study of 398 Japanese Patients. Am. J. Surg. 2012, 203, 101–106. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, J.; Wu, Y.X.; Zhang, L.; Liu, Z.P.; Filep, J.G.; Potempa, L.A.; Wu, Y.; Ji, S.R. Topological Localization of Monomeric C-Reactive Protein Determines Proinflammatory Endothelial Cell Responses. J. Biol. Chem. 2014, 289, 14283–14290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, N.; Ma, F.R.; Han, J.; Liu, X.L.; Fu, Y.; Liu, Y.T.; Liang, Y.L.; Ouyang, H.; Li, H.Y. Monomeric C-Reactive Protein Regulates Fibronectin Mediated Monocyte Adhesion. Mol. Immunol. 2020, 117, 122–130. [Google Scholar] [CrossRef]
- Roxburgh, C.S.D.; McMillan, D.C. Cancer and Systemic Inflammation: Treat the Tumour and Treat the Host. Br. J. Cancer 2014, 110, 1409–1412. [Google Scholar] [CrossRef]
- Kinoshita, A.; Onoda, H.; Imai, N.; Iwaku, A.; Oishi, M.; Tanaka, K.; Fushiya, N.; Koike, K.; Nishino, H.; Matsushima, M. The C-Reactive Protein/Albumin Ratio, a Novel Inflammation-Based Prognostic Score, Predicts Outcomes in Patients with Hepatocellular Carcinoma. Ann. Surg. Oncol. 2015, 22, 803–810. [Google Scholar] [CrossRef]
- She, S.; Xiang, Y.; Yang, M.; Ding, X.; Liu, X.; Ma, L.; Liu, Q.; Liu, B.; Lu, Z.; Li, S.; et al. C-Reactive Protein Is a Biomarker of AFP-Negative HBV-Related Hepatocellular Carcinoma. Int. J. Oncol. 2015, 47, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Pang, Q.; Zhou, L.; Qu, K.; Cui, R.X.; Jin, H.; Liu, H.C. Validation of Inflammation-Based Prognostic Models in Patients with Hepatitis B-Associated Hepatocellular Carcinoma: A Retrospective Observational Study. Eur. J. Gastroenterol. Hepatol. 2018, 30, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Carr, B.I.; Akkiz, H.; Guerra, V.; Uskudar, O.; Kuran, S.; Karaogullarindan, U.; Tokmak, S.; Balli, T.; Ulku, A.; Akcam, T.; et al. C-Reactive Protein and Hepatocellular Carcinoma: Analysis of Its Relationships to Tumor Factors. Clin. Pract. 2018, 15, 775–784. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, L.; Gao, S.; Yang, Z.; Yao, J.; Zheng, S. Prognostic Role of C-Reactive Protein in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Int. J. Med. Sci. 2013, 10, 653–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Lu, L.; He, Z.; Xu, Z.; Xiang, Z.; Nie, R.C.; Lin, W.; Chen, W.; Zhou, J.; Yin, Y.; et al. C-Reactive Protein Levels Predict Responses to PD-1 Inhibitors in Hepatocellular Carcinoma Patients. Front. Immunol. 2022, 13, 808101. [Google Scholar] [CrossRef]
- Okugawa, Y.; Toiyama, Y.; Yamamoto, A.; Shigemori, T.; Ichikawa, T.; Yin, C.; Suzuki, A.; Fujikawa, H.; Yasuda, H.; Hiro, J.; et al. Lymphocyte-to-C-Reactive Protein Ratio and Score Are Clinically Feasible Nutrition-Inflammation Markers of Outcome in Patients with Gastric Cancer. Clin. Nutr. 2020, 39, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Okugawa, Y.; Toiyama, Y.; Yamamoto, A.; Shigemori, T.; Ide, S.; Kitajima, T.; Fujikawa, H.; Yasuda, H.; Hiro, J.; Yoshiyama, S.; et al. Lymphocyte-C-Reactive Protein Ratio as Promising New Marker for Predicting Surgical and Oncological Outcomes in Colorectal Cancer. Ann. Surg. 2020, 272, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.H.; Zhong, C.; Wei, W.; Li, S.H.; Mei, J.; Zou, J.W.; Guo, R.P.; Zhang, Y.F. Lymphocyte-C-Reactive Protein Ratio as a Novel Prognostic Index in Intrahepatic Cholangiocarcinoma: A Multicentre Cohort Study. Liver Int. 2021, 41, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.H.; Wei-Wei, W.W.; Li, S.H.; Guo, R.P.; Zhang, Y.F. The Lymphocyte-C-Reactive Protein Ratio as the Optimal Inflammation-Based Score in Patients with Hepatocellular Carcinoma Underwent TACE. Aging 2021, 13, 5358–5368. [Google Scholar] [CrossRef]
Marker | Reference | Study Design | Sample Size | Treatment | Cut-off value | p-Value | Statistical Method | Endpoint |
---|---|---|---|---|---|---|---|---|
NLR | Li (2020) | Metanalysis | 4023 | TACE | 5 2.5–5 2.5 | <0.00001 <0.00001 <0.00001 | Random Effect Fixed Effect Fixed Effect | OS |
NLR | Xiao (2014) | Metanalysis | 302 | TACE | NA | <0.0001 | Fixed Effect | OS |
NLR | Cho (2022) | Retrospective | 605 | cTACE | 1.7 1.7 | 0.007 <0.001 | Cox (ROC) Cox (ROC) | TTP OS |
NLR | Chu (2021) | Retrospective | 495 | cTACE | 3 3 | 0.007 <0.001 | Cox (ROC) Logistic Regr. | OS 6m-PD * |
NLR | Wang (2020) | Retrospective | 380 | cTACE | 2.4 | 0.027 | Cox (Median) | OS |
NLR | Liu (2020) | Retrospective | 180 | cTACE | 3.94 | <0.001 | Cox (ROC) | OS |
NLR | Schobert (2020) | Retrospective | 46 | DEB-TACE | NA 3.22 | 0.014 0.002 | Linear Regr. Cox (Mean) | ETV ** PFS |
NLR | He (2019) | Retrospective | 216 | cTACE | 1.77 | <0.0001 | Log-rank | OS |
NLR | Rebonato (2017) | Retrospective | 72 | DEB-TACE | 2.03 | 0.0028 | Cox (median) | OS |
NLR | Fan (2015) | Retrospective | 132 | cTACE | 3.1 | 0.130 | Cox (mean) | OS |
LMR | Wang (2022) | Prospective | 606 | cTACE + ablation | 2.27 † 2.27 † 2.27 † | 0.022 0.029 0.011 | Cox (Youden) Cox (Youden) Logistic Regr. | RFS OS 2y-Recurrence |
LMR | Liu (2021) | Retrospective | 128 | TACE | 4.4 | 0.236 | Cox (ROC) | PFS |
LMR | Liu (2020) | Retrospective | 180 | cTACE | 2.2 | <0.001 | Cox (ROC) | OS |
LMR | Shen (2019) | Retrospective | 204 | cTACE + RFA | 2.13 | <0.0001 | Cox (ROC) | OS |
PLR | Li (2020) | Metanalysis | 856 | TACE | NA | 0.007 | Random effect | OS |
PLR | Liu (2021) | Retrospective | 128 | TACE | 92 | 0.000195 | Cox (ROC) | PFS |
PLR | Chen (2020) | Retrospective | 134 | cTACE + apatinib | 150 | 0.014 | Cox | OS |
PLR | Schobert (2020) | Retrospective | 46 | DEB TACE | NA 113.1 | 0.004 <0.001 | Linear Regr. Cox (mean) | ETV * PFS |
PLR | He (2019) | Retrospective | 216 | cTACE | 94.62 | 0.0022 | Log-rank | OS |
PLR | Shen (2019) | Retrospective | 204 | cTACE + RFA | 95.65 | <0.0001 | Cox (ROC) | OS |
PLR | Xue (2015) | Retrospective | 291 | cTACE | 150 | 0.002 | Cox (chi-square) | OS |
PLR | Fan (2015) | Retrospective | 132 | cTACE | 137 | <0.001 | Cox (mean) | OS |
LCR | Lu (2021) | Retrospective | 1625 | cTACE | 6000 | <0.001 | Cox (ROC) | OS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minici, R.; Siciliano, M.A.; Ammendola, M.; Santoro, R.C.; Barbieri, V.; Ranieri, G.; Laganà, D. Prognostic Role of Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR) and Lymphocyte-to-C Reactive Protein Ratio (LCR) in Patients with Hepatocellular Carcinoma (HCC) undergoing Chemoembolizations (TACE) of the Liver: The Unexplored Corner Linking Tumor Microenvironment, Biomarkers and Interventional Radiology. Cancers 2023, 15, 257. https://doi.org/10.3390/cancers15010257
Minici R, Siciliano MA, Ammendola M, Santoro RC, Barbieri V, Ranieri G, Laganà D. Prognostic Role of Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR) and Lymphocyte-to-C Reactive Protein Ratio (LCR) in Patients with Hepatocellular Carcinoma (HCC) undergoing Chemoembolizations (TACE) of the Liver: The Unexplored Corner Linking Tumor Microenvironment, Biomarkers and Interventional Radiology. Cancers. 2023; 15(1):257. https://doi.org/10.3390/cancers15010257
Chicago/Turabian StyleMinici, Roberto, Maria Anna Siciliano, Michele Ammendola, Rita Carlotta Santoro, Vito Barbieri, Girolamo Ranieri, and Domenico Laganà. 2023. "Prognostic Role of Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR) and Lymphocyte-to-C Reactive Protein Ratio (LCR) in Patients with Hepatocellular Carcinoma (HCC) undergoing Chemoembolizations (TACE) of the Liver: The Unexplored Corner Linking Tumor Microenvironment, Biomarkers and Interventional Radiology" Cancers 15, no. 1: 257. https://doi.org/10.3390/cancers15010257
APA StyleMinici, R., Siciliano, M. A., Ammendola, M., Santoro, R. C., Barbieri, V., Ranieri, G., & Laganà, D. (2023). Prognostic Role of Neutrophil-to-Lymphocyte Ratio (NLR), Lymphocyte-to-Monocyte Ratio (LMR), Platelet-to-Lymphocyte Ratio (PLR) and Lymphocyte-to-C Reactive Protein Ratio (LCR) in Patients with Hepatocellular Carcinoma (HCC) undergoing Chemoembolizations (TACE) of the Liver: The Unexplored Corner Linking Tumor Microenvironment, Biomarkers and Interventional Radiology. Cancers, 15(1), 257. https://doi.org/10.3390/cancers15010257