Neoadjuvant and Adjuvant Systemic Therapies in Loco-Regional Treatments for Hepatocellular Carcinoma: Are We at the Dawn of a New Era?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Loco-Regional Treatments for HCC
3. Systemic Therapies for HCC
4. New Scenarios of Systemic Therapy for HCC
4.1. Neoadjuvant Systemic Therapy for HCC
Ref. | Year | First Author | Sample Size | Study Typology | Neoadjuvant Treatment | Loco-Regional Therapy | Control Group | Results |
---|---|---|---|---|---|---|---|---|
[46] | 2021 | Ho | 15 patients with locally advanced HCC | Single arm, phase Ib trial | Cabozantinib + Nivolumab | LR | NA | Neoadjuvant Cabozantinib + Nivolumab is feasible and can result in margin-negative resections |
[51] | 2021 | Woei-A-Jin | 24 patients with early/intermediate-stage HCC | Single-arm trial | Dovitinib | RFA or MWA, TACE ± RFA, LR, Radioembolization | NA | Neoadjuvant Dovitinib is associated with intratumoral blood flow reduction and modest antitumor responses |
[47] | 2022 | Marron | 21 patients with resectable HCC | Single-arm, open-label, phase II trial | Cemiplimab (neoadjuvant and adjuvant) | LR | NA | 20% of treated patients had obtained tumoral necrosis > 70%; 15% had a partial response; all other patients showed stable disease |
[48] | 2022 | Kaseb | 27 patients with resectable HCC | Single-center, randomized, open-label, phase II trial | Perioperative Nivolumab vs. Nivolumab + Ipilimumab | LR | NA | Perioperative nivolumab and nivolumab + ipilimumab is safe and feasible in patients with resectable HCC |
[49] | 2022 | Xia | 18 patients with resectable HCC | Single-arm, open-label, phase II trial | Camrelizumab + Apatinib (neoadjuvant and adjuvant) | LR | NA | Perioperative camrelizumab plus apatinib show a promising efficacy and manageable toxicity in patients with resectable HCC |
[50] | 2022 | Zhu | 20 patients with intermediate-stage HCC | NS | PD-1 inhibitor (camrelizumab or sintilimab) + TACE | LR | NA | Neoadjuvant TACE plus PD-1 inhibitor determines a downstaging rate of 70% and an acceptable survival profile |
[52] | 2022 | Wu | 24 cases and 76 controls | Retrospective | Lenvatinib + PD-1 + TACE | LR | LR alone | Neoadjuvant triple therapy significantly increased both the OS and DFS rates in resectable HCC with high risk of recurrence, compared with surgery alone |
[55] | 2022 | Xia | 14 cases and 115 controls | Retrospective | Camrelizumab + Apatinib | LR | LR alone | Neoadjuvant camrelizumab plus apatinib for resectable HCC can reduce the 1-year recurrence rate and improve the 1-year survival rate, especially for those with solitary tumor |
4.2. Adjuvant Systemic Therapy for HCC
4.2.1. TKIs-Based Adjuvant Treatments
Ref. | Year | First Author | Sample Size | Study Typology | Loco-Regional Therapy | Adjuvant Treatment | Control Group | Results | |
---|---|---|---|---|---|---|---|---|---|
TKIs | [67] | 2014 | Wang | 31 HCC patients who had undergone curative LR | Open label, controlled, phase II trial | LR | Sorafenib | LR alone | Adjuvant Sorafenib therapy significantly prolong time to recurrence after LR |
[59] | 2014 | Zhang | 78 HCC patients | Retrospective | LR | Sorafenib | LR alone | Sorafenib did not significantly prolong RFS and did not reduce recurrence rate but significantly prolonged OS | |
[69] | 2015 | Bruix | 1114 HCC patients with a complete response after LR or RFA | Double-blind, phase III trial | LR or RFA | Sorafenib | Placebo | No difference in median RFS between Sorafenib and placebo | |
[60] | 2016 | Xia | 34 patients with BCLC-C stage HCC | Retrospective | LR | Sorafenib | LR alone | Adjuvant Sorafenib therapy is associated with significantly lower recurrence rate | |
[61] | 2016 | Li | 34 BCLC stage C HCC patients with portal vein thrombus | Retrospective | LR | Sorafenib | LR alone | Adjuvant Sorafenib therapy is associated with significantly longer TTP and OS compared to LR alone | |
[68] | 2016 | Antoniou | 30 HCC patients | NS | LR | Sorafenib | LR alone | No clinical benefits from adjuvant Sorafenib therapy | |
[62] | 2017 | Liao | 42 patients with advanced HCC and at a high risk of recurrence | Retrospective | LR | Sorafenib | BSC | Sorafenib improves RFS, but not OS, in patients with advanced HCC who underwent LR. | |
[63] | 2017 | Zhuang | 81 patients with intermediate/advanced HCC | Retrospective | LR | Sorafenib | LR alone | OS is significantly longer in the surgery and Sorafenib group than in the surgery-only group. RFS does not differ significantly between the two groups | |
[64] | 2019 | Zhang | 226 HCC patients with MVI who underwent R0 LR | Retrospective (PSM analysis) | LR | Sorafenib | LR alone | Adjuvant Sorafenib is associated with significantly better survival outcomes than LR alone for HCC patients with MVI | |
[65] | 2019 | Huang | 49 HCC patients with MVI after curative LR | Retrospective | LR | Sorafenib | LR alone | Adjuvant Sorafenib therapy in HCC patients with MVI is associated to better OS e RFS than LR alone | |
[66] | 2019 | Wang | 209 HCC patients | Retrospective | LR | Sorafenib | LR alone | One-year survival rate is significantly higher with sorafenib than observed with control | |
[70] | 2021 | Huang | 2655 patients (from 13 studies) | Meta-analysis | LR | Sorafenib | LR alone or placebo | Adjuvant Sorafenib therapy after LR could prolong OS and RFS and reduce recurrence rates | |
[71] | 2022 | Lin | 199 HCC patients with a high risk of early recurrence after LR | Multicenter retrospective | LR | TACE + TKI | TACE | TACE plus TKI treatment can reduce the incidence of early recurrence with tolerable adverse events | |
Tumor vaccine | [73] | 2004 | Kuang | 41 HCC patients | Randomized phase II trial | LR | Autologous tumor vaccine | LR alone | Adjuvant autologous formalin-fixed tumor vaccine is a safe, feasible, and effective treatment for preventing postsurgical recurrence of HCC |
[74] | 2014 | Shimizu | 94 patients with invasive HCC | Non-randomized phase II trial | LR | DCs vaccine + ATVAC | LR alone | Adjuvant DCs vaccine plus ATVAC significantly improve RFS and OS compared with LR alone | |
[75] | 2017 | Lee | 156 HCC patients | Multicenter phase II RCT | LR or RFA | Autologous DCs | LR or RFA alone | DCs immunotherapy significantly reduced the risk of recurrence of non-RFA group. Baseline serum IL-15 was correlated with RFS prolongation | |
AIT | [76] | 2000 | Takayama | 150 HCC patients | RCT | LR | Autologous lymphocytes | LR alone | Adjuvant adoptive immunotherapy decreased the recurrence rate by 18% e significantly prolonged the time to first recurrence. No impact on OS |
[77] | 2009 | Hui | 127 HCC patients | RCT | LR | CIK cells | LR alone | Adjuvant CIK cells therapy may prevent recurrence/metastasis after LR. No impact on OS | |
[78] | 2015 | Xu | 200 HCC patients | Single center RCT | LR | CIK cells | LR alone | Adjuvant CIK therapy prolong the TTR, but the treatment did not improve the RFS and OS | |
[79] | 2015 | Lee | 230 HCC patients | Multicenter RCT | LR, RFA, PEI | CIK cells | Loco-regional therapy alone | Adjuvant immunotherapy with CIK cells significantly increased both RFS and OS | |
[80] | 2016 | Wang | 844 HCC patients | Meta-analysis | LR, RFA, PEI | CIK cells | Loco-regional therapy alone | Adjuvant immunotherapy with CIK cells significantly increased both RFS and OS. The effect is significant only in the first 3 years from treatment | |
[81] | 2017 | Mo | 1861 HCC patients | Meta-analysis | LR, RFA, PEI | AIT | Loco-regional therapy alone | Adjuvant AIT lowers risk of mortality and tumor recurrence | |
[82] | 2018 | Zhao | 964 HCC patients | Meta-analysis | LR, RFA, PEI | AIT | Loco-regional therapy alone | Adjuvant AIT decrease the early recurrence and mortality of postoperative HCC | |
[83] | 2019 | Lee | 162 HCC patients with extended follow-up for 60 months | Multicenter RCT | LR, RFA, PEI | CIK cells | Loco-regional therapy alone | Adjuvant immunotherapy with CIK cells significantly increased both RFS and OS |
4.2.2. Immunotherapy-Based Adjuvant Treatments
4.2.3. Impact of Other Therapies on the Risk of HCC Recurrence
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res. 2021, 149, 1–61. [Google Scholar] [CrossRef]
- Ascione, A.; Fontanella, L.; Imparato, M.; Rinaldi, L.; De Luca, M. Mortality from cirrhosis and hepatocellular carcinoma in Western Europe over the last 40 years. Liver Int. 2017, 37, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed]
- Tampaki, M.; Papatheodoridis, G.V.; Cholongitas, E. Intrahepatic recurrence of hepatocellular carcinoma after resection: An update. Clin. J. Gastroenterol. 2021, 14, 699–713. [Google Scholar] [CrossRef]
- Nevola, R.; Ruocco, R.; Criscuolo, L.; Villani, A.; Alfano, M.; Beccia, D.; Imbriani, S.; Claar, E.; Cozzolino, D.; Sasso, F.C.; et al. Predictors of early and late hepatocellular carcinoma recurrence. World J. Gastroenterol. 2023, 29, 1243–1260. [Google Scholar] [CrossRef] [PubMed]
- Nahon, P.; Vibert, E.; Nault, J.C.; Ganne-Carrié, N.; Ziol, M.; Seror, O. Optimizing curative management of hepatocellular carcinoma. Liver Int. 2020, 40 (Suppl. S1), 109–115. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Zhang, W.G.; Cescon, M.; Liang, L.; Li, C.; Wang, M.D.; Wu, H.; Lau, W.Y.; Zhou, Y.H.; Gu, W.M.; et al. Defining and predicting early recurrence after liver resection of hepatocellular carcinoma: A multi-institutional study. HPB 2020, 22, 677–689. [Google Scholar] [CrossRef]
- Tan, D.J.H.; Wong, C.; Ng, C.H.; Poh, C.W.; Jain, S.R.; Huang, D.Q.; Muthiah, M.D. A Meta-Analysis on the Rate of Hepatocellular Carcinoma Recurrence after Liver Transplant and Associations to Etiology, Alpha-Fetoprotein, Income and Ethnicity. J. Clin. Med. 2021, 10, 238. [Google Scholar] [CrossRef]
- Lee, I.C.; Lei, H.J.; Chau, G.Y.; Yeh, Y.C.; Wu, C.J.; Su, C.W.; Huo, T.I.; Chao, Y.; Lin, H.C.; Hou, M.C.; et al. Predictors of long-term recurrence and survival after resection of HBV-related hepatocellular carcinoma: The role of HBsAg. Am. J. Cancer Res. 2021, 11, 3711–3725. [Google Scholar]
- Gory, I.; Fink, M.; Bell, S.; Gow, P.; Nicoll, A.; Knight, V.; Dev, A.; Rode, A.; Bailey, M.; Cheung, W.; et al. Radiofrequency ablation versus resection for the treatment of early stage hepatocellular carcinoma: A multicenter Australian study. Scand. J. Gastroenterol. 2015, 50, 567–576. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Citterio, D.; Bhoori, S.; Bongini, M.; Miceli, R.; De Carlis, L.; Colledan, M.; Salizzoni, M.; Romagnoli, R.; Antonelli, B.; et al. Liver transplantation in hepatocellular carcinoma after tumour downstaging (XXL): A randomised, controlled, phase 2b/3 trial. Lancet Oncol. 2020, 21, 947–956. [Google Scholar] [CrossRef]
- Parikh, N.D.; Waljee, A.K.; Singal, A.G. Downstaging hepatocellular carcinoma: A systematic review and pooled analysis. Liver Transpl. 2015, 21, 1142–1152, Erratum in Liver Transpl. 2016, 22, 138. [Google Scholar] [CrossRef]
- Bruix, J.; Gores, G.J.; Mazzaferro, V. Hepatocellular carcinoma: Clinical frontiers and perspectives. Gut 2014, 63, 844–855. [Google Scholar] [CrossRef]
- Zheng, J.; Chou, J.F.; Gönen, M.; Vachharajani, N.; Chapman, W.C.; Majella Doyle, M.B.; Turcotte, S.; Vandenbroucke-Menu, F.; Lapointe, R.; Buettner, S.; et al. Prediction of Hepatocellular Carcinoma Recurrence Beyond Milan Criteria After Resection: Validation of a Clinical Risk Score in an International Cohort. Ann. Surg. 2017, 266, 693–701. [Google Scholar] [CrossRef]
- Xin, Y.; Zhang, X.; Yang, Y.; Chen, Y.; Wang, Y.; Zhou, X.; Li, X. Prediction of late recurrence after radiofrequency ablation of HBV-related hepatocellular carcinoma with the age-male-albumin-bilirubin-platelets (aMAP) risk score: A multicenter study. J. Gastrointest. Oncol. 2021, 12, 2930–2942. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Wang, C.C.; Hung, C.H.; Chen, C.L.; Lu, S.N. Survival comparison between surgical resection and radiofrequency ablation for patients in BCLC very early/early stage hepatocellular carcinoma. J. Hepatol. 2012, 56, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Preel, A.; Hermida, M.; Allimant, C.; Assenat, E.; Guillot, C.; Gozzo, C.; Aho-Glele, S.; Pageaux, G.P.; Cassinotto, C.; Guiu, B. Uni-, Bi- or Trifocal Hepatocellular Carcinoma in Western Patients: Recurrence and Survival after Percutaneous Thermal Ablation. Cancers 2021, 13, 2700. [Google Scholar] [CrossRef]
- Lencioni, R.; de Baere, T.; Soulen, M.C.; Rilling, W.S.; Geschwind, J.F. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data. Hepatology 2016, 64, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Su, G.L.; Altayar, O.; O’Shea, R.; Shah, R.; Estfan, B.; Wenzell, C.; Sultan, S.; Falck-Ytter, Y. AGA Clinical Practice Guideline on Systemic Therapy for Hepatocellular Carcinoma. Gastroenterology 2022, 162, 920–934. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef]
- Cervello, M.; Bachvarov, D.; Lampiasi, N.; Cusimano, A.; Azzolina, A.; McCubrey, J.A.; Montalto, G. Molecular mechanisms of sorafenib action in liver cancer cells. Cell Cycle 2012, 11, 2843–2855. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009, 10, 25–34. [Google Scholar] [CrossRef]
- Galle, P.R.; Dufour, J.F.; Peck-Radosavljevic, M.; Trojan, J.; Vogel, A. Systemic therapy of advanced hepatocellular carcinoma. Future Oncol. 2021, 17, 1237–1251. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, B.; Chen, X.P. Adjuvant treatment strategy after curative resection for hepatocellular carcinoma. Front. Med. 2021, 15, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Chen, D.; Liang, S.; Li, X. Neoadjuvant Therapy for Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2022, 9, 929–946. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Voron, T.; Colussi, O.; Marcheteau, E.; Pernot, S.; Nizard, M.; Pointet, A.L.; Latreche, S.; Bergaya, S.; Benhamouda, N.; Tanchot, C.; et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 2015, 212, 139–148. [Google Scholar] [CrossRef]
- Hegde, P.S.; Wallin, J.J.; Mancao, C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin. Cancer Biol. 2018, 52, 117–124. [Google Scholar] [CrossRef]
- Yi, C.; Chen, L.; Lin, Z.; Liu, L.; Shao, W.; Zhang, R.; Lin, J.; Zhang, J.; Zhu, W.; Jia, H.; et al. Lenvatinib Targets FGF Receptor 4 to Enhance Antitumor Immune Response of Anti-Programmed Cell Death-1 in HCC. Hepatology 2021, 74, 2544–2560. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Ren, Z.; Feng, Y.H.; Yau, T.; Wang, B.; Zhao, H.; Bai, Y.; Gu, S.; Li, L.; Hernandez, S.; et al. Atezolizumab plus Bevacizumab versus Sorafenib in the Chinese Subpopulation with Unresectable Hepatocellular Carcinoma: Phase 3 Randomized, Open-Label IMbrave150 Study. Liver Cancer 2021, 10, 296–308. [Google Scholar] [CrossRef]
- D’Alessio, A.; Fulgenzi, C.A.M.; Nishida, N.; Schönlein, M.; von Felden, J.; Schulze, K.; Wege, H.; Gaillard, V.E.; Saeed, A.; Wietharn, B.; et al. Preliminary evidence of safety and tolerability of atezolizumab plus bevacizumab in patients with hepatocellular carcinoma and Child-Pugh A and B cirrhosis: A real-world study. Hepatology 2022, 76, 1000–1012. [Google Scholar] [CrossRef]
- Yau, T.; Zagonel, V.; Santoro, A.; Acosta-Rivera, M.; Choo, S.P.; Matilla, A.; He, A.R.; Cubillo Gracian, A.; El-Khoueiry, A.B.; Sangro, B.; et al. Nivolumab Plus Cabozantinib with or Without Ipilimumab for Advanced Hepatocellular Carcinoma: Results From Cohort 6 of the CheckMate 040 Trial. J. Clin. Oncol. 2023, 41, 1747–1757. [Google Scholar] [CrossRef]
- Kelley, R.K.; Rimassa, L.; Cheng, A.L.; Kaseb, A.; Qin, S.; Zhu, A.X.; Chan, S.L.; Melkadze, T.; Sukeepaisarnjaroen, W.; Breder, V.; et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2022, 23, 995–1008. [Google Scholar] [CrossRef]
- Finn, R.S.; Kudo, M.; Merle, P.; Meyer, T.; Qin, S.; Ikeda, M.; Xu, R.; Edeline, J.; Ryoo, B.; Ren, Z.; et al. LBA34 Primary Results from the Phase III LEAP-002 Study: Lenvatinib plus Pembrolizumab versus Lenvatinib as First-Line (1L) Therapy for Advanced Hepatocellular Carcinoma (AHCC). Ann. Oncol. 2022, 33, S1401. [Google Scholar] [CrossRef]
- Qin, S.; Chan, L.S.; Gu, S.; Bai, Y.; Ren, Z.; Lin, X.; Chen, Z.; Jia, W.; Jin, Y.; Guo, Y.; et al. LBA35 Camrelizumab (C) plus Rivoceranib (R) vs. Sorafenib (S) as First-Line Therapy for Unresectable Hepatocellular Carcinoma (UHCC): A Randomized, Phase III Trial. Ann. Oncol. 2022, 33, S1401–S1402. [Google Scholar] [CrossRef]
- Keam, S.J. Tremelimumab: First Approval. Drugs 2023, 83, 93–102. [Google Scholar] [CrossRef]
- de Castria, T.B.; Khalil, D.N.; Harding, J.J.; O’Reilly, E.M.; Abou-Alfa, G.K. Tremelimumab and durvalumab in the treatment of unresectable, advanced hepatocellular carcinoma. Future Oncol. 2022, 18, 3769–3782. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, H.; Tehreem, A.; Ting, P.S.; Gurakar, M.; Li, S.Y.; Simsek, C.; Alqahtani, S.A.; Kim, A.K.; Kohli, R.; Gurakar, A. Hepatocellular Carcinoma and the Role of Liver Transplantation: A Review. J. Clin. Transl. Hepatol. 2021, 9, 738–748. [Google Scholar] [CrossRef]
- Samuel, M.; Chow, P.K.; Chan Shih-Yen, E.; Machin, D.; Soo, K.C. Neoadjuvant and adjuvant therapy for surgical resection of hepatocellular carcinoma. Cochrane Database Syst. Rev. 2009, 2009, CD001199. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.J.; Zhu, Q.; Durham, J.; Popovic, A.; Xavier, S.; Leatherman, J.; Mohan, A.; Mo, G.; Zhang, S.; Gross, N.; et al. Neoadjuvant Cabozantinib and Nivolumab Converts Locally Advanced HCC into Resectable Disease with Enhanced Antitumor Immunity. Nat. Cancer 2021, 2, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Marron, T.U.; Fiel, M.I.; Hamon, P.; Fiaschi, N.; Kim, E.; Ward, S.C.; Zhao, Z.; Kim, J.; Kennedy, P.; Gunasekaran, G.; et al. Neoadjuvant cemiplimab for resectable hepatocellular carcinoma: A single-arm, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2022, 7, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Kaseb, A.O.; Hasanov, E.; Cao, H.S.T.; Xiao, L.; Vauthey, J.N.; Lee, S.S.; Yavuz, B.G.; Mohamed, Y.I.; Qayyum, A.; Jindal, S.; et al. Perioperative nivolumab monotherapy versus nivolumab plus ipilimumab in resectable hepatocellular carcinoma: A randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2022, 7, 208–218. [Google Scholar] [CrossRef]
- Xia, Y.; Tang, W.; Qian, X.; Li, X.; Cheng, F.; Wang, K.; Zhang, F.; Zhang, C.; Li, D.; Song, J.; et al. Efficacy and safety of camrelizumab plus apatinib during the perioperative period in resectable hepatocellular carcinoma: A single-arm, open label, phase II clinical trial. J. Immunother. Cancer 2022, 10, e004656. [Google Scholar] [CrossRef]
- Zhu, C.; Dai, B.; Zhan, H.; Deng, R. Neoadjuvant transarterial chemoembolization (TACE) plus PD-1 inhibitor bridging to tumor resection in intermediate-stage hepatocellular carcinoma patients. Ir. J. Med. Sci. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Woei-A-Jin, F.J.S.H.; Weijl, N.I.; Burgmans, M.C.; Fariña Sarasqueta, A.; van Wezel, J.T.; Wasser, M.N.J.M.; Coenraad, M.J.; Burggraaf, J.; Osanto, S. Neoadjuvant Treatment with Angiogenesis-Inhibitor Dovitinib Prior to Local Therapy in Hepatocellular Carcinoma: A Phase II Study. Oncologist 2021, 26, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Wu, J.Y.; Li, Y.N.; Qiu, F.N.; Zhou, S.Q.; Yin, Z.Y.; Chen, Y.F.; Li, B.; Zhou, J.Y.; Yan, M.L. Lenvatinib combined with anti-PD-1 antibodies plus transcatheter arterial chemoembolization for neoadjuvant treatment of resectable hepatocellular carcinoma with high risk of recurrence: A multicenter retrospective study. Front. Oncol. 2022, 12, 985380. [Google Scholar] [CrossRef]
- Wu, J.Y.; Yin, Z.Y.; Bai, Y.N.; Chen, Y.F.; Zhou, S.Q.; Wang, S.J.; Zhou, J.Y.; Li, Y.N.; Qiu, F.N.; Li, B.; et al. Lenvatinib Combined with Anti-PD-1 Antibodies Plus Transcatheter Arterial Chemoembolization for Unresectable Hepatocellular Carcinoma: A Multicenter Retrospective Study. J. Hepatocell. Carcinoma 2021, 8, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.F.; Ding, Z.B.; Qu, X.D.; Tang, Z.; Zhu, G.Q.; Fu, X.T.; Zhang, Z.H.; Zhang, X.; Huang, A.; Tang, M.; et al. Conversion therapy for initially unresectable hepatocellular carcinoma using a combination of toripalimab, lenvatinib plus TACE: Real-world study. BJS Open 2022, 6, zrac114. [Google Scholar] [CrossRef]
- Xia, Y.X.; Zhang, H.; Zhang, F.; Li, X.C.; Rong, D.W.; Tang, W.W.; Cao, H.S.; Zhao, J.; Wang, P.; Pu, L.Y.; et al. Efficacy and safety of neoadjuvant immunotherapy for hepatocellular carcinoma. Zhonghua Wai Ke Za Zhi 2022, 60, 688–694. [Google Scholar] [CrossRef]
- Pinato, D.J.; Cortellini, A.; Sukumaran, A.; Cole, T.; Pai, M.; Habib, N.; Spalding, D.; Sodergren, M.H.; Martinez, M.; Dhillon, T.; et al. PRIME-HCC: Phase Ib study of neoadjuvant ipilimumab and nivolumab prior to liver resection for hepatocellular carcinoma. BMC Cancer 2021, 21, 301. [Google Scholar] [CrossRef]
- Li, G.; Shu, B.; Zheng, Z.; Yin, H.; Zhang, C.; Xiao, Y.; Yang, Y.; Yan, Z.; Zhang, X.; Yang, S.; et al. Safety and efficacy of radiotherapy combined with lenvatinib plus PD-1 inhibitors as neo-adjuvant therapy in hepatocellular carcinoma with portal vein thrombus: Protocol of an open-label, single-arm, prospective, multi-center phase I trial. Front. Oncol. 2022, 12, 1051916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yue, J.; Shi, X.; Cui, K.; Li, L.; Zhang, C.; Sun, P.; Zhong, J.; Li, Z.; Zhao, L. Protocol of notable-HCC: A phase Ib study of neoadjuvant tislelizumab with stereotactic body radiotherapy in patients with resectable hepatocellular carcinoma. BMJ Open 2022, 12, e060955. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, G.; Wei, K.; Zhang, Q.; Ma, W.; Song, T.; Wu, Q.; Zhang, T.; Kong, D.; Li, Q. Adjuvant sorafenib reduced mortality and prolonged overall survival and post-recurrence survival in hepatocellular carcinoma patients after curative resection: A single-center experience. Biosci. Trends 2014, 8, 333–338. [Google Scholar] [CrossRef]
- Xia, F.; Wu, L.L.; Lau, W.Y.; Huan, H.B.; Wen, X.D.; Ma, K.S.; Li, X.W.; Bie, P. Adjuvant sorafenib after heptectomy for Barcelona Clinic Liver Cancer-stage C hepatocellular carcinoma patients. World J. Gastroenterol. 2016, 22, 5384–5392. [Google Scholar] [CrossRef]
- Li, J.; Hou, Y.; Cai, X.B.; Liu, B. Sorafenib after resection improves the outcome of BCLC stage C hepatocellular carcinoma. World J. Gastroenterol. 2016, 22, 4034–4040. [Google Scholar] [CrossRef]
- Liao, Y.; Zheng, Y.; He, W.; Li, Q.; Shen, J.; Hong, J.; Zou, R.; Qiu, J.; Li, B.; Yuan, Y. Sorafenib therapy following resection prolongs disease-free survival in patients with advanced hepatocellular carcinoma at a high risk of recurrence. Oncol. Lett. 2017, 13, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Wen, T.; Xu, M.; Yang, J.; Wang, W.; Wu, H.; Zeng, Y.; Yan, L.; Wei, Y.; Li, B. Sorafenib combined with hepatectomy in patients with intermediate-stage and advanced hepatocellular carcinoma. Arch. Med. Sci. 2017, 13, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.P.; Chai, Z.T.; Gao, Y.Z.; Chen, Z.H.; Wang, K.; Shi, J.; Guo, W.X.; Zhou, T.F.; Ding, J.; Cong, W.M.; et al. Postoperative adjuvant sorafenib improves survival outcomes in hepatocellular carcinoma patients with microvascular invasion after R0 liver resection: A propensity score matching analysis. HPB 2019, 21, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, Z.; Zhou, Y.; Yang, J.; Hu, K.; Wang, Z. Should we apply sorafenib in hepatocellular carcinoma patients with microvascular invasion after curative hepatectomy? Onco Targets Ther. 2019, 12, 541–548. [Google Scholar] [CrossRef]
- Wang, D.; Jia, W.; Wang, Z.; Wen, T.; Ding, W.; Xia, F.; Zhang, L.; Wu, F.; Peng, T.; Liu, B.; et al. Retrospective analysis of sorafenib efficacy and safety in Chinese patients with high recurrence rate of post-hepatic carcinectomy. Onco Targets Ther. 2019, 12, 5779–5791. [Google Scholar] [CrossRef]
- Wang, S.N.; Chuang, S.C.; Lee, K.T. Efficacy of sorafenib as adjuvant therapy to prevent early recurrence of hepatocellular carcinoma after curative surgery: A pilot study. Hepatol. Res. 2014, 44, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, E.A.; Margonis, G.A.; Amini, N.; Anastasiou, M.; Angelou, A.; Kim, Y.; Kouraklis, G. Sorafenib as an adjuvant therapy for resectable hepatocellular carcinoma: A single center experience. J. BUON 2016, 21, 1189–1194. [Google Scholar]
- Bruix, J.; Takayama, T.; Mazzaferro, V.; Chau, G.Y.; Yang, J.; Kudo, M.; Cai, J.; Poon, R.T.; Han, K.H.; Tak, W.Y.; et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015, 16, 1344–1354. [Google Scholar] [CrossRef]
- Huang, S.; Li, D.; Zhuang, L.; Sun, L.; Wu, J. A meta-analysis of the efficacy and safety of adjuvant sorafenib for hepatocellular carcinoma after resection. World J. Surg. Oncol. 2021, 19, 168. [Google Scholar] [CrossRef]
- Lin, K.; Wei, F.; Huang, Q.; Lai, Z.; Zhang, J.; Chen, Q.; Jiang, Y.; Kong, J.; Tang, S.; Lin, J.; et al. Postoperative Adjuvant Transarterial Chemoembolization Plus Tyrosine Kinase Inhibitor for Hepatocellular Carcinoma: A Multicentre Retrospective Study. J. Hepatocell. Carcinoma 2022, 9, 127–140. [Google Scholar] [CrossRef]
- Bethesda (MD): U.S. National Library of Medicine. Efficacy and Safety of Donafenib Combined with TACE as Adjuvant Therapy of Patients with Hepatocellular Carcinoma at a High Risk of Recurrence after Radical Resection. ClinicalTrials.gov Identifier: NCT05161143. Available online: https://clinicaltrials.gov/ct2/show/NCT05161143 (accessed on 15 February 2023).
- Kuang, M.; Peng, B.G.; Lu, M.D.; Liang, L.J.; Huang, J.F.; He, Q.; Hua, Y.P.; Totsuka, S.; Liu, S.Q.; Leong, K.W.; et al. Phase II randomized trial of autologous formalin-fixed tumor vaccine for postsurgical recurrence of hepatocellular carcinoma. Clin. Cancer Res. 2004, 10, 1574–1579. [Google Scholar] [CrossRef]
- Shimizu, K.; Kotera, Y.; Aruga, A.; Takeshita, N.; Katagiri, S.; Ariizumi, S.; Takahashi, Y.; Yoshitoshi, K.; Takasaki, K.; Yamamoto, M. Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. Hum. Vaccin. Immunother. 2014, 10, 970–976. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Tak, W.Y.; Lee, Y.; Heo, M.K.; Song, J.S.; Kim, H.Y.; Park, S.Y.; Bae, S.H.; Lee, J.H.; Heo, J.; et al. Adjuvant immunotherapy with autologous dendritic cells for hepatocellular carcinoma, randomized phase II study. Oncoimmunology 2017, 6, e1328335. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Sekine, T.; Makuuchi, M.; Yamasaki, S.; Kosuge, T.; Yamamoto, J.; Shimada, K.; Sakamoto, M.; Hirohashi, S.; Ohashi, Y.; et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: A randomised trial. Lancet 2000, 356, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Hui, D.; Qiang, L.; Jian, W.; Ti, Z.; Da-Lu, K. A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. Dig. Liver Dis. 2009, 41, 36–41. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Kim, Y.; Shuang, Z.Y.; Zhang, Y.J.; Lao, X.M.; Li, Y.Q.; Chen, M.S.; Pawlik, T.M.; Xia, J.C.; et al. A randomized controlled trial on patients with or without adjuvant autologous cytokine-induced killer cells after curative resection for hepatocellular carcinoma. Oncoimmunology 2015, 5, e1083671. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.H.; Lim, Y.S.; Yeon, J.E.; Song, T.J.; Yu, S.J.; Gwak, G.Y.; Kim, K.M.; Kim, Y.J.; Lee, J.W.; et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 2015, 148, 1383–1391.e6. [Google Scholar] [CrossRef]
- Wang, H.; Liu, A.; Bo, W.; Feng, X.; Hu, Y.; Tian, L.; Zhang, H.; Tang, X. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma patients after curative resection, a systematic review and meta-analysis. Dig. Liver Dis. 2016, 48, 1275–1282. [Google Scholar] [CrossRef]
- Mo, H.Y.; Liao, Y.Y.; You, X.M.; Cucchetti, A.; Yuan, B.H.; Li, R.H.; Zhong, J.H.; Li, L.Q. Timely meta-analysis on the efficacy of adoptive immunotherapy for hepatocellular carcinoma patients after curative therapy. PLoS ONE 2017, 12, e0174222. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zheng, M.; Wang, K.; Wang, L.; He, H.; Wang, M.; Shi, Y.; Huang, S.; Ji, F.; Li, X.; et al. A meta-analysis of adoptive immunotherapy in postoperative hepatocellular carcinoma. J. Cancer Res. Ther. 2018, 14, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, J.H.; Lim, Y.S.; Yeon, J.E.; Song, T.J.; Yu, S.J.; Gwak, G.Y.; Kim, K.M.; Kim, Y.J.; Lee, J.W.; et al. Sustained efficacy of adjuvant immunotherapy with cytokine-induced killer cells for hepatocellular carcinoma: An extended 5-year follow-up. Cancer Immunol. Immunother. 2019, 68, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Gabrielson, A.; Wu, Y.; Wang, H.; Jiang, J.; Kallakury, B.; Gatalica, Z.; Reddy, S.; Kleiner, D.; Fishbein, T.; Johnson, L.; et al. Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free Survival in HCC. Cancer Immunol. Res. 2016, 4, 419–430. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, Z.; Zhou, L.; Qi, Z.; Xing, S.; Lv, J.; Shi, J.; Fu, B.; Liu, Z.; Zhang, J.Y.; et al. Impairment of CD4+ cytotoxic T cells predicts poor survival and high recurrence rates in patients with hepatocellular carcinoma. Hepatology 2013, 58, 139–149. [Google Scholar] [CrossRef]
- Dikilitas, M. Why Adjuvant and Neoadjuvant Therapy Failed in HCC. Can the New Immunotherapy Be Expected to Be Better? J. Gastrointest. Cancer 2020, 51, 1193–1196. [Google Scholar] [CrossRef]
- Hack, S.P.; Spahn, J.; Chen, M.; Cheng, A.L.; Kaseb, A.; Kudo, M.; Lee, H.C.; Yopp, A.; Chow, P.; Qin, S. IMbrave 050: A Phase III trial of atezolizumab plus bevacizumab in high-risk hepatocellular carcinoma after curative resection or ablation. Future Oncol. 2020, 16, 975–989, Erratum in Future Oncol. 2020, 16, 2371. [Google Scholar] [CrossRef] [PubMed]
- Bethesda (MD): U.S. National Library of Medicine. Safety and Efficacy of Pembrolizumab (MK-3475) versus Placebo as Adjuvant Therapy in Participants with Hepatocellular Carcinoma (HCC) and Complete Radiological Response after Surgical Resection or Local Ablation (MK-3475-937/KEYNOTE-937). ClinicalTrials.gov Identifier: NCT03867084. Available online: https://clinicaltrials.gov/ct2/show/NCT03867084?term=KEYNOTE-+937&draw=2&rank=1 (accessed on 15 February 2023).
- Bethesda (MD): U.S. National Library of Medicine. A Phase 3, Randomized, Double-Blind Study of Adjuvant Nivolumab versus Placebo for Participants with Hepatocellular Carcinoma Who Are at High Risk of Recurrence after Curative Hepatic Resection or Ablation. ClinicalTrials.gov Identifier: NCT03383458. Available online: https://clinicaltrials.gov/ct2/show/NCT03383458?term=CheckMate-9DX&draw=2&rank=1 (accessed on 15 February 2023).
- Bethesda (MD): U.S. National Library of Medicine. A Phase III, Randomized, Double-Blind, Placebo-Controlled, Multi Center Study of Durvalumab Monotherapy or in Combination with Bevacizumab as Adjuvant Therapy in Patients with Hepatocellular Carcinoma Who Are at High Risk of Recurrence after Curative Hepatic Resection or Ablation. ClinicalTrials.gov Identifier: NCT05161143. Available online: https://clinicaltrials.gov/ct2/show/NCT03847428?term=EMERALD-2&draw=2&rank=2 (accessed on 15 February 2023).
- Chan, A.W.H.; Zhong, J.; Berhane, S.; Toyoda, H.; Cucchetti, A.; Shi, K.; Tada, T.; Chong, C.C.N.; Xiang, B.D.; Li, L.Q.; et al. Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after surgical resection. J. Hepatol. 2018, 69, 1284–1293. [Google Scholar] [CrossRef]
- Sohn, W.; Paik, Y.H.; Kim, J.M.; Kwon, C.H.; Joh, J.W.; Cho, J.Y.; Gwak, G.Y.; Choi, M.S.; Lee, J.H.; Koh, K.C.; et al. HBV DNA and HBsAg levels as risk predictors of early and late recurrence after curative resection of HBV-related hepatocellular carcinoma. Ann. Surg. Oncol. 2014, 21, 2429–2435. [Google Scholar] [CrossRef]
- Li, Z.; Lei, Z.; Xia, Y.; Li, J.; Wang, K.; Zhang, H.; Wan, X.; Yang, T.; Zhou, W.; Wu, M.; et al. Association of Preoperative Antiviral Treatment with Incidences of Microvascular Invasion and Early Tumor Recurrence in Hepatitis B Virus-Related Hepatocellular Carcinoma. JAMA Surg. 2018, 153, e182721. [Google Scholar] [CrossRef]
- Wang, M.D.; Li, C.; Liang, L.; Xing, H.; Sun, L.Y.; Quan, B.; Wu, H.; Xu, X.F.; Wu, M.C.; Pawlik, T.M.; et al. Early and Late Recurrence of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Oncologist 2020, 25, e1541–e1551. [Google Scholar] [CrossRef]
- Huang, G.; Li, P.P.; Lau, W.Y.; Pan, Z.Y.; Zhao, L.H.; Wang, Z.G.; Wang, M.C.; Zhou, W.P. Antiviral Therapy Reduces Hepatocellular Carcinoma Recurrence in Patients with Low HBV-DNA Levels: A Randomized Controlled Trial. Ann. Surg. 2018, 268, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.Y.; Lin, J.T.; Zeng, Y.S.; Chen, Y.J.; Wu, M.S.; Wu, C.Y. Association between nucleos(t)ide analog and tumor recurrence in hepatitis B virus-related hepatocellular carcinoma after radiofrequency ablation. Hepatology 2016, 63, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Guan, R.Y.; Sun, B.Y.; Wang, Z.T.; Zhou, C.; Yang, Z.F.; Gan, W.; Huang, J.L.; Liu, G.; Zhou, J.; Fan, J.; et al. Antiviral therapy improves postoperative survival of patients with HBV-related hepatocellular carcinoma. Am. J. Surg. 2022, 224, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Jo, C.; Lim, Y.S. Tenofovir Versus Entecavir on Recurrence of Hepatitis B Virus-Related Hepatocellular Carcinoma After Surgical Resection. Hepatology 2021, 73, 661–673. [Google Scholar] [CrossRef]
- Murata, K.; Asano, M.; Matsumoto, A.; Sugiyama, M.; Nishida, N.; Tanaka, E.; Inoue, T.; Sakamoto, M.; Enomoto, N.; Shirasaki, T.; et al. Induction of IFN-λ3 as an additional effect of nucleotide, not nucleoside, analogues: A new potential target for HBV infection. Gut 2018, 67, 362–371. [Google Scholar] [CrossRef]
- Sato, A.; Ohtsuki, M.; Hata, M.; Kobayashi, E.; Murakami, T. Antitumor activity of IFN-lambda in murine tumor models. J. Immunol. 2006, 176, 7686–7694. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, L.; He, J.; Liu, P.; Lv, X.; Zhang, Y.; Xu, X.; Zhang, L.; Zhang, Y. Synergy with interferon-lambda 3 and sorafenib suppresses hepatocellular carcinoma proliferation. Biomed. Pharmacother. 2017, 88, 395–402. [Google Scholar] [CrossRef]
- Hu, Z.; Zeng, H.; Hou, J.; Wang, J.; Xu, L.; Zhang, Y.; Chen, M.; Zhou, Z. Tenofovir vs. Entecavir on Outcomes of Hepatitis B Virus-Related Hepatocellular Carcinoma after Radiofrequency Ablation. Viruses 2022, 14, 656. [Google Scholar] [CrossRef]
- Reig, M.; Mariño, Z.; Perelló, C.; Iñarrairaegui, M.; Ribeiro, A.; Lens, S.; Díaz, A.; Vilana, R.; Darnell, A.; Varela, M.; et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J. Hepatol. 2016, 65, 719–726. [Google Scholar] [CrossRef]
- Marrone, A.; Franci, G.; Perrella, A.; Nevola, R.; Chianese, A.; Adinolfi, L.E.; Sasso, F.C.; Rinaldi, L. Editorial—HCC in HCV patients and the direct acting antivirals: Is there really a link? Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 983–987. [Google Scholar] [CrossRef]
- Sapena, V.; Enea, M.; Torres, F.; Celsa, C.; Rios, J.; Rizzo, G.E.M.; Nahon, P.; Mariño, Z.; Tateishi, R.; Minami, T.; et al. Hepatocellular carcinoma recurrence after direct-acting antiviral therapy: An individual patient data meta-analysis. Gut 2022, 71, 593–604. [Google Scholar] [CrossRef]
- Singal, A.G.; Rich, N.E.; Mehta, N.; Branch, A.; Pillai, A.; Hoteit, M.; Volk, M.; Odewole, M.; Scaglione, S.; Guy, J.; et al. Direct-Acting Antiviral Therapy Not Associated with Recurrence of Hepatocellular Carcinoma in a Multicenter North American Cohort Study. Gastroenterology 2019, 156, 1683–1692.e1. [Google Scholar] [CrossRef]
- Kuromatsu, R.; Ide, T.; Okamura, S.; Noda, Y.; Kamachi, N.; Nakano, M.; Shirono, T.; Shimose, S.; Iwamoto, H.; Kuwahara, R.; et al. Hepatitis C Virus Elimination Using Direct Acting Antivirals after the Radical Cure of Hepatocellular Carcinoma Suppresses the Recurrence of the Cancer. Cancers 2022, 14, 2295. [Google Scholar] [CrossRef]
- Ochi, H.; Hiraoka, A.; Hirooka, M.; Koizumi, Y.; Amano, M.; Azemoto, N.; Watanabe, T.; Yoshida, O.; Tokumoto, Y.; Mashiba, T.; et al. Direct-acting antivirals improve survival and recurrence rates after treatment of hepatocellular carcinoma within the Milan criteria. J. Gastroenterol. 2021, 56, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Cabibbo, G.; Celsa, C.; Calvaruso, V.; Petta, S.; Cacciola, I.; Cannavò, M.R.; Madonia, S.; Rossi, M.; Magro, B.; Rini, F.; et al. Direct-acting antivirals after successful treatment of early hepatocellular carcinoma improve survival in HCV-cirrhotic patients. J. Hepatol. 2019, 71, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Nevola, R.; Rinaldi, L.; Zeni, L.; Romano, C.; Marrone, A.; Galiero, R.; Pafundi, P.C.; Acierno, C.; Vetrano, E.; Adinolfi, L.E. Changes in clinical scenarios, management, and perspectives of patients with chronic hepatitis C after viral clearance by direct-acting antivirals. Expert. Rev. Gastroenterol. Hepatol. 2021, 15, 643–656. [Google Scholar] [CrossRef]
- Nevola, R.; Rinaldi, L.; Zeni, L.; Sasso, F.C.; Pafundi, P.C.; Guerrera, B.; Marrone, A.; Giordano, M.; Adinolfi, L.E. Metabolic and renal changes in patients with chronic hepatitis C infection after hepatitis C virus clearance by direct-acting antivirals. JGH Open 2020, 4, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Mazzaro, C.; Quartuccio, L.; Adinolfi, L.E.; Roccatello, D.; Pozzato, G.; Nevola, R.; Tonizzo, M.; Gitto, S.; Andreone, P.; Gattei, V. A Review on Extrahepatic Manifestations of Chronic Hepatitis C Virus Infection and the Impact of Direct-Acting Antiviral Therapy. Viruses 2021, 13, 2249. [Google Scholar] [CrossRef]
- Rinaldi, L.; Guarino, M.; Perrella, A.; Pafundi, P.C.; Valente, G.; Fontanella, L.; Nevola, R.; Guerrera, B.; Iuliano, N.; Imparato, M.; et al. Role of Liver Stiffness Measurement in Predicting HCC Occurrence in Direct-Acting Antivirals Setting: A Real-Life Experience. Dig. Dis. Sci. 2019, 64, 3013–3019. [Google Scholar] [CrossRef]
- Facciorusso, A.; Del Prete, V.; Crucinio, N.; Muscatiello, N.; Carr, B.I.; Di Leo, A.; Barone, M. Angiotensin receptor blockers improve survival outcomes after radiofrequency ablation in hepatocarcinoma patients. J. Gastroenterol. Hepatol. 2015, 30, 1643–1650. [Google Scholar] [CrossRef]
- Barone, M.; Viggiani, M.T.; Losurdo, G.; Principi, M.; Leo, A.D. Systematic review: Renin-angiotensin system inhibitors in chemoprevention of hepatocellular carcinoma. World J. Gastroenterol. 2019, 25, 2524–2538. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; McCaughan, G.W. How to select the appropriate “neoadjuvant therapy” for hepatocellular carcinoma. Expert. Opin. Pharmacother. 2018, 19, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Granito, A.; Facciorusso, A.; Sacco, R.; Bartalena, L.; Mosconi, C.; Cea, U.V.; Cappelli, A.; Antonino, M.; Modestino, F.; Brandi, N.; et al. TRANS-TACE: Prognostic Role of the Transient Hypertransaminasemia after Conventional Chemoembolization for Hepatocellular Carcinoma. J. Pers. Med. 2021, 11, 1041. [Google Scholar] [CrossRef]
- Memarnejadian, A.; Meilleur, C.E.; Shaler, C.R.; Khazaie, K.; Bennink, J.R.; Schell, T.D.; Haeryfar, S.M.M. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8+ T Cell Responses by Preventing Fratricidal Death of Subdominant Clones To Relieve Immunodomination. J. Immunol. 2017, 199, 3348–3359. [Google Scholar] [CrossRef]
- Finn, R.S.; Kudo, M.; Cheng, A.L.; Wyrwicz, L.; Ngan, R.K.C.; Blanc, J.F.; Baron, A.D.; Vogel, A.; Ikeda, M.; Piscaglia, F.; et al. Pharmacodynamic Biomarkers Predictive of Survival Benefit with Lenvatinib in Unresectable Hepatocellular Carcinoma: From the Phase III REFLECT Study. Clin. Cancer Res. 2021, 27, 4848–4858. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, A.; Zhao, Y.; Ying, W.; Sun, H.; Yang, X.; Xing, B.; Sun, W.; Ren, L.; Hu, B.; et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 2019, 567, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef]
- Huang, A.C.; Postow, M.A.; Orlowski, R.J.; Mick, R.; Bengsch, B.; Manne, S.; Xu, W.; Harmon, S.; Giles, J.R.; Wenz, B.; et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017, 545, 60–65. [Google Scholar] [CrossRef]
- Liu, J.; Rozeman, E.A.; O’Donnell, J.S.; Allen, S.; Fanchi, L.; Smyth, M.J.; Blank, C.U.; Teng, M.W.L. Batf3+ DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncoimmunology 2018, 8, e1546068. [Google Scholar] [CrossRef]
- He, G.; Chen, Y.; Zhu, C.; Zhou, J.; Xie, X.; Fei, R.; Wei, L.; Zhao, H.; Chen, H.; Zhang, H. Application of plasma circulating cell-free DNA detection to the molecular diagnosis of hepatocellular carcinoma. Am. J. Transl. Res. 2019, 11, 1428–1445. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevola, R.; Delle Femine, A.; Rosato, V.; Kondili, L.A.; Alfano, M.; Mastrocinque, D.; Imbriani, S.; Perillo, P.; Beccia, D.; Villani, A.; et al. Neoadjuvant and Adjuvant Systemic Therapies in Loco-Regional Treatments for Hepatocellular Carcinoma: Are We at the Dawn of a New Era? Cancers 2023, 15, 2950. https://doi.org/10.3390/cancers15112950
Nevola R, Delle Femine A, Rosato V, Kondili LA, Alfano M, Mastrocinque D, Imbriani S, Perillo P, Beccia D, Villani A, et al. Neoadjuvant and Adjuvant Systemic Therapies in Loco-Regional Treatments for Hepatocellular Carcinoma: Are We at the Dawn of a New Era? Cancers. 2023; 15(11):2950. https://doi.org/10.3390/cancers15112950
Chicago/Turabian StyleNevola, Riccardo, Augusto Delle Femine, Valerio Rosato, Loreta Anesti Kondili, Maria Alfano, Davide Mastrocinque, Simona Imbriani, Pasquale Perillo, Domenico Beccia, Angela Villani, and et al. 2023. "Neoadjuvant and Adjuvant Systemic Therapies in Loco-Regional Treatments for Hepatocellular Carcinoma: Are We at the Dawn of a New Era?" Cancers 15, no. 11: 2950. https://doi.org/10.3390/cancers15112950