Radiation-Induced Brain Injury: Age Dependency of Neurocognitive Dysfunction Following Radiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results of Clinical Studies on Humans
3.1. Radiation Effects of Low-to-Moderate Doses on Neurocognitive Development
3.2. Radiation Effects on Neurocognitive Function in Brain Cancer Survivors
3.2.1. Childhood Cancer Survivors
3.2.2. Adulthood Cancer Survivors
3.3. Summary of Clinical Trials in Humans
4. Results of Pre-Clinical Studies in Animal Models
4.1. Elucidating the Mechanisms of Radiation-Induced Brain Injury Using Rodent Models
4.2. Age-Dependent Effects of IR Exposure on Hippocampal Neurogenesis
4.3. Radiation-Induced Neurovascular Damage
4.4. Radiation-Induced Neuroinflammation
4.5. Summary of Preclinical Studies in Rodents
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hauptmann, M.; Byrnes, G.; Cardis, E.; Bernier, M.O.; Blettner, M.; Dabin, J.; Engels, H.; Istad, T.S.; Johansen, C.; Kaijser, M.; et al. Brain cancer after radiation exposure from CT examinations of children and young adults: Results from the EPI-CT cohort study. Lancet Oncol. 2023, 24, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Otake, M.; Schull, W.J. In utero exposure to A-bomb radiation and mental retardation; a reassessment. Br. J. Radiol. 1984, 57, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Schull, W.J.; Otake, M. Learning disabilities in individuals exposed prenatally to ionizing radiation: The Hiroshima and Nagasaki experiences. Adv. Space Res. 1986, 6, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.W.; Johnson, K.G.; Omori, Y.; Kawamoto, S.; Keehn, R.J. Mental retardation in children exposed in utero to the atomic bombs in Hiroshima and Nagasaki. Am. J. Public Health Nations Health 1967, 57, 1381–1389. [Google Scholar] [CrossRef]
- Yoshimaru, H.; Otake, M.; Fujikoshi, Y.; Schull, W.J. Effect on school performance of prenatal exposure to the Hiroshima atomic bomb. Nihon Eiseigaku Zasshi 1991, 46, 747–754. [Google Scholar] [CrossRef]
- Ikenoue, T.; Ikeda, T.; Ibara, S.; Otake, M.; Schull, W.J. Effects of environmental factors on perinatal outcome: Neurological development in cases of intrauterine growth retardation and school performance of children perinatally exposed to ionizing radiation. Environ. Health Perspect. 1993, 101 (Suppl. 2), 53–57. [Google Scholar] [CrossRef]
- Otake, M.; Schull, W.J. Radiation-related small head sizes among prenatally exposed A-bomb survivors. Int. J. Radiat. Biol. 1993, 63, 255–270. [Google Scholar] [CrossRef]
- Yoshimaru, H.; Otake, M.; Schull, W.J.; Funamoto, S. Further observations on abnormal brain development caused by prenatal A-bomb exposure to ionizing radiation. Int. J. Radiat. Biol. 1995, 67, 359–371. [Google Scholar] [CrossRef]
- Otake, M.; Schull, W.J.; Yoshimaru, H. A review of forty-five years study of Hiroshima and Nagasaki atomic bomb survivors. Brain damage among the prenatally exposed. J. Radiat. Res. 1991, 32, 249–264. [Google Scholar] [CrossRef]
- Yamada, M.; Sasaki, H.; Kasagi, F.; Akahoshi, M.; Mimori, Y.; Kodama, K.; Fujiwara, S. Study of cognitive function among the Adult Health Study (AHS) population in Hiroshima and Nagasaki. Radiat. Res. 2002, 158, 236–240. [Google Scholar] [CrossRef]
- Ishihara, K.; Kato, N.; Misumi, M.; Kitamura, H.; Hida, A.; Yamada, M. Radiation Effects on Late-life Neurocognitive Function in Childhood Atomic Bomb Survivors: A Radiation Effects Research Foundation Adult Health Study. Radiat. Res. 2022, 197, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kasagi, F.; Mimori, Y.; Miyachi, T.; Ohshita, T.; Sasaki, H. Incidence of dementia among atomic-bomb survivors--Radiation Effects Research Foundation Adult Health Study. J. Neurol. Sci. 2009, 281, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kato, N.; Kitamura, H.; Ishihara, K.; Hida, A. Cognitive Function Among Elderly Survivors Prenatally Exposed to Atomic Bombings. Am. J. Med. 2021, 134, e264–e267. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Landes, R.D.; Mimori, Y.; Nagano, Y.; Sasaki, H. Radiation Effects on Cognitive Function Among Atomic Bomb Survivors Exposed at or After Adolescence. Am. J. Med. 2016, 129, 586–591. [Google Scholar] [CrossRef]
- Pasqual, E.; Boussin, F.; Bazyka, D.; Nordenskjold, A.; Yamada, M.; Ozasa, K.; Pazzaglia, S.; Roy, L.; Thierry-Chef, I.; de Vathaire, F.; et al. Cognitive effects of low dose of ionizing radiation—Lessons learned and research gaps from epidemiological and biological studies. Environ. Int. 2021, 147, 106295. [Google Scholar] [CrossRef]
- WHO. Health Effects of the Chernobyl Accident and Special Health Care Programes; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- UNSCEAR. Health Effects Due to Radiation from the Chernobyl Accident; Annex, D., Ed.; UNSCEAR: Vienna, Austria, 2008. [Google Scholar]
- Albert, R.E.; Omran, A.R.; Brauer, E.W.; Dove, D.C.; Cohen, N.C.; Schmidt, H.; Baumring, R.; Morrill, S.; Schulz, R.; Baer, R.L. Follow-up study of patients treated by x-ray for tinea capitis. Am. J. Public Health Nations Health 1966, 56, 2114–2120. [Google Scholar] [CrossRef]
- Ron, E.; Modan, B.; Floro, S.; Harkedar, I.; Gurewitz, R. Mental function following scalp irradiation during childhood. Am. J. Epidemiol. 1982, 116, 149–160. [Google Scholar] [CrossRef]
- Hall, P.; Adami, H.O.; Trichopoulos, D.; Pedersen, N.L.; Lagiou, P.; Ekbom, A.; Ingvar, M.; Lundell, M.; Granath, F. Effect of low doses of ionising radiation in infancy on cognitive function in adulthood: Swedish population based cohort study. BMJ 2004, 328, 19. [Google Scholar] [CrossRef]
- Blomstrand, M.; Holmberg, E.; Aberg, M.A.; Lundell, M.; Bjork-Eriksson, T.; Karlsson, P.; Blomgren, K. No clinically relevant effect on cognitive outcomes after low-dose radiation to the infant brain: A population-based cohort study in Sweden. Acta Oncol. 2014, 53, 1143–1150. [Google Scholar] [CrossRef]
- Nordenskjold, A.C.; Palme, M.; Kaijser, M. X-ray exposure in utero and school performance: A population-based study of X-ray pelvimetry. Clin. Radiol. 2015, 70, 830–834. [Google Scholar] [CrossRef]
- Salonen, E.; Nyman, H.; Kizling, I.; Geijerstam, J.A.; Flodmark, O.; Aspelin, P.; Kaijser, M. Cognitive function following head CT in childhood: A randomized controlled follow-up trial. Acta Radiol. 2018, 59, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Rahman, R.; Sulman, E.; Haas-Kogan, D.; Cagney, D.N. Update on Radiation Therapy for Central Nervous System Tumors. Hematol. Oncol. Clin. N. Am. 2022, 36, 77–93. [Google Scholar] [CrossRef] [PubMed]
- Yahya, N.; Manan, H.A. Neurocognitive impairment following proton therapy for paediatric brain tumour: A systematic review of post-therapy assessments. Support Care Cancer 2021, 29, 3035–3047. [Google Scholar] [CrossRef]
- Smith, J.D.; Mandel, G.; Niazi, T.; Bradley, J.A.; Indelicato, D.J.; Khatib, Z. Multifocal and Multiphasic Demyelinating Lesions After Radiation for Ependymoma in a Pediatric Population. J. Child Neurol. 2022, 37, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Balentova, S.; Adamkov, M. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review. Int. J. Mol. Sci. 2015, 16, 27796–27815. [Google Scholar] [CrossRef]
- Kosmin, M.; Rees, J. Radiation and the nervous system. Pract. Neurol. 2022, 22, 450–460. [Google Scholar] [CrossRef]
- Ariello, K.; Tan, H.; Soliman, H. Narrative review of neurocognitive and quality of life tools used in brain metastases trials. Ann. Palliat. Med. 2021, 10, 923–935. [Google Scholar] [CrossRef]
- Castellino, S.M.; Ullrich, N.J.; Whelen, M.J.; Lange, B.J. Developing interventions for cancer-related cognitive dysfunction in childhood cancer survivors. J. Natl. Cancer Inst. 2014, 106, dju186. [Google Scholar] [CrossRef]
- Mulhern, R.K.; Merchant, T.E.; Gajjar, A.; Reddick, W.E.; Kun, L.E. Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004, 5, 399–408. [Google Scholar] [CrossRef]
- Padovani, L.; Andre, N.; Constine, L.S.; Muracciole, X. Neurocognitive function after radiotherapy for paediatric brain tumours. Nat. Rev. Neurol. 2012, 8, 578–588. [Google Scholar] [CrossRef]
- Merchant, T.E.; Conklin, H.M.; Wu, S.; Lustig, R.H.; Xiong, X. Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: Prospective evaluation of cognitive, endocrine, and hearing deficits. J. Clin. Oncol. 2009, 27, 3691–3697. [Google Scholar] [CrossRef] [PubMed]
- Packer, R.J. Radiation-induced neurocognitive decline: The risks and benefits of reducing the amount of whole-brain irradiation. Curr. Neurol. Neurosci. Rep. 2002, 2, 131–133. [Google Scholar] [CrossRef]
- Duffner, P.K. Risk factors for cognitive decline in children treated for brain tumors. Eur. J. Paediatr. Neurol. 2010, 14, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Meadows, A.T.; Gordon, J.; Massari, D.J.; Littman, P.; Fergusson, J.; Moss, K. Declines in IQ scores and cognitive dysfunctions in children with acute lymphocytic leukaemia treated with cranial irradiation. Lancet 1981, 2, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Duffner, P.K. Long-term effects of radiation therapy on cognitive and endocrine function in children with leukemia and brain tumors. Neurologist 2004, 10, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Mabbott, D.J.; Spiegler, B.J.; Greenberg, M.L.; Rutka, J.T.; Hyder, D.J.; Bouffet, E. Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J. Clin. Oncol. 2005, 23, 2256–2263. [Google Scholar] [CrossRef]
- Broadbent, V.A.; Barnes, N.D.; Wheeler, T.K. Medulloblastoma in childhood: Long-term results of treatment. Cancer 1981, 48, 26–30. [Google Scholar] [CrossRef]
- Danoff, B.F.; Cowchock, F.S.; Marquette, C.; Mulgrew, L.; Kramer, S. Assessment of the long-term effects of primary radiation therapy for brain tumors in children. Cancer 1982, 49, 1580–1586. [Google Scholar] [CrossRef]
- Edelstein, K.; Spiegler, B.J.; Fung, S.; Panzarella, T.; Mabbott, D.J.; Jewitt, N.; D’Agostino, N.M.; Mason, W.P.; Bouffet, E.; Tabori, U.; et al. Early aging in adult survivors of childhood medulloblastoma: Long-term neurocognitive, functional, and physical outcomes. Neuro-Oncol. 2011, 13, 536–545. [Google Scholar] [CrossRef]
- Mulhern, R.K.; Hancock, J.; Fairclough, D.; Kun, L. Neuropsychological status of children treated for brain tumors: A critical review and integrative analysis. Med. Pediatr. Oncol. 1992, 20, 181–191. [Google Scholar] [CrossRef]
- Radcliffe, J.; Bunin, G.R.; Sutton, L.N.; Goldwein, J.W.; Phillips, P.C. Cognitive deficits in long-term survivors of childhood medulloblastoma and other noncortical tumors: Age-dependent effects of whole brain radiation. Int. J. Dev. Neurosci. 1994, 12, 327–334. [Google Scholar] [CrossRef]
- Skowronska-Gardas, A. Radiotherapy of central nervous system tumors in young children: Benefits and pitfalls. Med. Pediatr. Oncol. 1999, 33, 572–576. [Google Scholar] [CrossRef]
- Stadskleiv, K.; Stensvold, E.; Stokka, K.; Bechensteen, A.G.; Brandal, P. Neuropsychological functioning in survivors of childhood medulloblastoma/CNS-PNET: The role of secondary medical complications. Clin. Neuropsychol. 2022, 36, 600–625. [Google Scholar] [CrossRef] [PubMed]
- Tso, W.W.Y.; Liu, A.P.Y.; Lee, T.M.C.; Cheuk, K.L.; Shing, M.K.; Luk, C.W.; Ling, S.C.; Ku, D.T.L.; Li, K.; Yung, A.W.Y.; et al. Neurocognitive function, performance status, and quality of life in pediatric intracranial germ cell tumor survivors. J. Neurooncol. 2019, 141, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Ventura, L.M.; Grieco, J.A.; Evans, C.L.; Kuhlthau, K.A.; MacDonald, S.M.; Tarbell, N.J.; Yock, T.I.; Pulsifer, M.B. Executive functioning, academic skills, and quality of life in pediatric patients with brain tumors post-proton radiation therapy. J. Neurooncol. 2018, 137, 119–126. [Google Scholar] [CrossRef]
- Yock, T.I.; Yeap, B.Y.; Ebb, D.H.; Weyman, E.; Eaton, B.R.; Sherry, N.A.; Jones, R.M.; MacDonald, S.M.; Pulsifer, M.B.; Lavally, B.; et al. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: A phase 2 single-arm study. Lancet Oncol. 2016, 17, 287–298. [Google Scholar] [CrossRef]
- Chessells, J.M.; Cox, T.C.; Kendall, B.; Cavanagh, N.P.; Jannoun, L.; Richards, S. Neurotoxicity in lymphoblastic leukaemia: Comparison of oral and intramuscular methotrexate and two doses of radiation. Arch. Dis. Child 1990, 65, 416–422. [Google Scholar] [CrossRef]
- Iuvone, L.; Mariotti, P.; Colosimo, C.; Guzzetta, F.; Ruggiero, A.; Riccardi, R. Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer 2002, 95, 2562–2570. [Google Scholar] [CrossRef]
- Ladavas, E.; Missiroli, G.; Rosito, P.; Serra, L.; Vecchi, V. Intellectual function in long-term survivors of childhood acute lymphoblastic leukemia. Ital. J. Neurol. Sci. 1985, 6, 451–455. [Google Scholar] [CrossRef]
- MacLean, W.E., Jr.; Noll, R.B.; Stehbens, J.A.; Kaleita, T.A.; Schwartz, E.; Whitt, J.K.; Cantor, N.L.; Waskerwitz, M.; Ruymann, F.; Novak, L.J.; et al. Neuropsychological effects of cranial irradiation in young children with acute lymphoblastic leukemia 9 months after diagnosis. The Children’s Cancer Group. Arch. Neurol. 1995, 52, 156–160. [Google Scholar] [CrossRef]
- Reinhardt, D.; Thiele, C.; Creutzig, U.; Studiengruppe, A.B. Neuropsychological sequelae in children with AML treated with or without prophylactic CNS-irradiation. Klin. Padiatr. 2002, 214, 22–29. [Google Scholar] [CrossRef]
- Said, J.A.; Waters, B.G.; Cousens, P.; Stevens, M.M. Neuropsychological sequelae of central nervous system prophylaxis in survivors of childhood acute lymphoblastic leukemia. J. Consult. Clin. Psychol. 1989, 57, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Twaddle, V.; Britton, P.G.; Craft, A.C.; Noble, T.C.; Kernahan, J. Intellectual function after treatment for leukaemia or solid tumours. Arch. Dis. Child 1983, 58, 949–952. [Google Scholar] [CrossRef]
- Richards, S.; Pui, C.H.; Gayon, P.; Childhood Acute Lymphoblastic Leukemia Collaborative, G. Systematic review and meta-analysis of randomized trials of central nervous system directed therapy for childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 2013, 60, 185–195. [Google Scholar] [CrossRef]
- Pui, C.H.; Howard, S.C. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008, 9, 257–268. [Google Scholar] [CrossRef]
- Mavrea, K.; Efthymiou, V.; Katsibardi, K.; Tsarouhas, K.; Kanaka-Gantenbein, C.; Spandidos, D.A.; Chrousos, G.; Kattamis, A.; Bacopoulou, F. Cognitive function of children and adolescent survivors of acute lymphoblastic leukemia: A meta-analysis. Oncol. Lett. 2021, 21, 262. [Google Scholar] [CrossRef]
- Armstrong, G.T.; Reddick, W.E.; Petersen, R.C.; Santucci, A.; Zhang, N.; Srivastava, D.; Ogg, R.J.; Hillenbrand, C.M.; Sabin, N.; Krasin, M.J.; et al. Evaluation of memory impairment in aging adult survivors of childhood acute lymphoblastic leukemia treated with cranial radiotherapy. J. Natl. Cancer Inst. 2013, 105, 899–907. [Google Scholar] [CrossRef] [PubMed]
- Scoccianti, S.; Detti, B.; Cipressi, S.; Iannalfi, A.; Franzese, C.; Biti, G. Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. J. Neurooncol. 2012, 108, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Correa, D.D.; Shi, W.; Thaler, H.T.; Cheung, A.M.; DeAngelis, L.M.; Abrey, L.E. Longitudinal cognitive follow-up in low grade gliomas. J. Neurooncol. 2008, 86, 321–327. [Google Scholar] [CrossRef]
- Douw, L.; Klein, M.; Fagel, S.S.; van den Heuvel, J.; Taphoorn, M.J.; Aaronson, N.K.; Postma, T.J.; Vandertop, W.P.; Mooij, J.J.; Boerman, R.H.; et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: Long-term follow-up. Lancet Neurol. 2009, 8, 810–818. [Google Scholar] [CrossRef]
- Olson, J.D.; Riedel, E.; DeAngelis, L.M. Long-term outcome of low-grade oligodendroglioma and mixed glioma. Neurology 2000, 54, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Postma, T.J.; Klein, M.; Verstappen, C.C.; Bromberg, J.E.; Swennen, M.; Langendijk, J.A.; Taphoorn, M.J.; Scheltens, P.; Slotman, B.J.; van der Ploeg, H.M.; et al. Radiotherapy-induced cerebral abnormalities in patients with low-grade glioma. Neurology 2002, 59, 121–123. [Google Scholar] [CrossRef]
- Surma-aho, O.; Niemela, M.; Vilkki, J.; Kouri, M.; Brander, A.; Salonen, O.; Paetau, A.; Kallio, M.; Pyykkonen, J.; Jaaskelainen, J. Adverse long-term effects of brain radiotherapy in adult low-grade glioma patients. Neurology 2001, 56, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C.L.; Hunter, J.V.; Ledakis, G.E.; Cohen, B.; Tallent, E.M.; Goldstein, B.H.; Tochner, Z.; Lustig, R.; Judy, K.D.; Pruitt, A.; et al. Late cognitive and radiographic changes related to radiotherapy: Initial prospective findings. Neurology 2002, 59, 40–48. [Google Scholar] [CrossRef]
- Brown, P.D.; Buckner, J.C.; O’Fallon, J.R.; Iturria, N.L.; Brown, C.A.; O’Neill, B.P.; Scheithauer, B.W.; Dinapoli, R.P.; Arusell, R.M.; Curran, W.J.; et al. Effects of radiotherapy on cognitive function in patients with low-grade glioma measured by the folstein mini-mental state examination. J. Clin. Oncol. 2003, 21, 2519–2524. [Google Scholar] [CrossRef]
- Klein, M.; Heimans, J.J.; Aaronson, N.K.; van der Ploeg, H.M.; Grit, J.; Muller, M.; Postma, T.J.; Mooij, J.J.; Boerman, R.H.; Beute, G.N.; et al. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: A comparative study. Lancet 2002, 360, 1361–1368. [Google Scholar] [CrossRef]
- Laack, N.N.; Brown, P.D.; Ivnik, R.J.; Furth, A.F.; Ballman, K.V.; Hammack, J.E.; Arusell, R.M.; Shaw, E.G.; Buckner, J.C.; North Central Cancer Treatment Group. Cognitive function after radiotherapy for supratentorial low-grade glioma: A North Central Cancer Treatment Group prospective study. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 1175–1183. [Google Scholar] [CrossRef]
- Halthore, A.; Goenka, A.; Sharma, R.; Knisely, J.P.S. Prophylactic Cranial Irradiation for Resectable Small-Cell Lung Cancer. Clin. Lung Cancer 2018, 19, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Harder, H.; Duivenvoorden, H.J.; van Gool, A.R.; Cornelissen, J.J.; van den Bent, M.J. Neurocognitive functions and quality of life in haematological patients receiving haematopoietic stem cell grafts: A one-year follow-up pilot study. J. Clin. Exp. Neuropsychol. 2006, 28, 283–293. [Google Scholar] [CrossRef]
- Begum, N.; Wang, B.; Mori, M.; Vares, G. Does ionizing radiation influence Alzheimer’s disease risk? J. Radiat. Res. 2012, 53, 815–822. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Yin, G.; Huang, J.R.; Xi, S.J.; Qian, F.; Lee, R.X.; Peng, X.C.; Tang, F.R. Ionizing Radiation-Induced Brain Cell Aging and the Potential Underlying Molecular Mechanisms. Cells 2021, 10, 3570. [Google Scholar] [CrossRef] [PubMed]
- Makale, M.T.; McDonald, C.R.; Hattangadi-Gluth, J.A.; Kesari, S. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat. Rev. Neurol. 2017, 13, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Navarro Negredo, P.; Yeo, R.W.; Brunet, A. Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell 2020, 27, 202–223. [Google Scholar] [CrossRef]
- Santello, M.; Toni, N.; Volterra, A. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 2019, 22, 154–166. [Google Scholar] [CrossRef]
- Song, W.M.; Colonna, M. The identity and function of microglia in neurodegeneration. Nat. Immunol. 2018, 19, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019, 8, 1424. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, P.; Jethwa, K.; Rathawa, A.; Chauhan, G.; Mehra, S. The Anatomy of the Hippocampus. In Cerebral Ischemia; Pluta, R., Ed.; Exon Publications: Brisbane, Australia, 2021. [Google Scholar]
- Toda, T.; Gage, F.H. Review: Adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res. 2018, 373, 693–709. [Google Scholar] [CrossRef]
- Gotz, M.; Nakafuku, M.; Petrik, D. Neurogenesis in the Developing and Adult Brain-Similarities and Key Differences. Cold Spring Harb. Perspect. Biol. 2016, 8, a018853. [Google Scholar] [CrossRef] [PubMed]
- Monje, M.L.; Mizumatsu, S.; Fike, J.R.; Palmer, T.D. Irradiation induces neural precursor-cell dysfunction. Nat. Med. 2002, 8, 955–962. [Google Scholar] [CrossRef]
- Fukuda, A.; Fukuda, H.; Swanpalmer, J.; Hertzman, S.; Lannering, B.; Marky, I.; Bjork-Eriksson, T.; Blomgren, K. Age-dependent sensitivity of the developing brain to irradiation is correlated with the number and vulnerability of progenitor cells. J. Neurochem. 2005, 92, 569–584. [Google Scholar] [CrossRef]
- Verreet, T.; Rangarajan, J.R.; Quintens, R.; Verslegers, M.; Lo, A.C.; Govaerts, K.; Neefs, M.; Leysen, L.; Baatout, S.; Maes, F.; et al. Persistent Impact of In utero Irradiation on Mouse Brain Structure and Function Characterized by MR Imaging and Behavioral Analysis. Front. Behav. Neurosci. 2016, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Casciati, A.; Dobos, K.; Antonelli, F.; Benedek, A.; Kempf, S.J.; Belles, M.; Balogh, A.; Tanori, M.; Heredia, L.; Atkinson, M.J.; et al. Age-related effects of X-ray irradiation on mouse hippocampus. Oncotarget 2016, 7, 28040–28058. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Woodbine, L.; Haines, J.; Coster, M.; Ricket, N.; Barazzuol, L.; Ainsbury, E.; Sienkiewicz, Z.; Jeggo, P. Increased apoptosis and DNA double-strand breaks in the embryonic mouse brain in response to very low-dose X-rays but not 50 Hz magnetic fields. J. R. Soc. Interface 2014, 11, 20140783. [Google Scholar] [CrossRef] [PubMed]
- Etienne, O.; Roque, T.; Haton, C.; Boussin, F.D. Variation of radiation-sensitivity of neural stem and progenitor cell populations within the developing mouse brain. Int. J. Radiat. Biol. 2012, 88, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Nowak, E.; Etienne, O.; Millet, P.; Lages, C.S.; Mathieu, C.; Mouthon, M.A.; Boussin, F.D. Radiation-induced H2AX phosphorylation and neural precursor apoptosis in the developing brain of mice. Radiat. Res. 2006, 165, 155–164. [Google Scholar] [CrossRef]
- Verreet, T.; Quintens, R.; Van Dam, D.; Verslegers, M.; Tanori, M.; Casciati, A.; Neefs, M.; Leysen, L.; Michaux, A.; Janssen, A.; et al. A multidisciplinary approach unravels early and persistent effects of X-ray exposure at the onset of prenatal neurogenesis. J. Neurodev. Disord. 2015, 7, 3. [Google Scholar] [CrossRef]
- Mokrani, S.; Granotier-Beckers, C.; Etienne, O.; Kortulewski, T.; Grisolia, C.; de Villartay, J.P.; Boussin, F.D. Higher chromosome stability in embryonic neural stem and progenitor cells than in fibroblasts in response to acute or chronic genotoxic stress. DNA Repair 2020, 88, 102801. [Google Scholar] [CrossRef]
- Roque, T.; Haton, C.; Etienne, O.; Chicheportiche, A.; Rousseau, L.; Martin, L.; Mouthon, M.A.; Boussin, F.D. Lack of a p21waf1/cip -dependent G1/S checkpoint in neural stem and progenitor cells after DNA damage in vivo. Stem Cells 2012, 30, 537–547. [Google Scholar] [CrossRef]
- Eom, H.S.; Park, H.R.; Jo, S.K.; Kim, Y.S.; Moon, C.; Kim, S.H.; Jung, U. Ionizing Radiation Induces Altered Neuronal Differentiation by mGluR1 through PI3K-STAT3 Signaling in C17.2 Mouse Neural Stem-Like Cells. PLoS ONE 2016, 11, e0147538. [Google Scholar] [CrossRef]
- Daynac, M.; Chicheportiche, A.; Pineda, J.R.; Gauthier, L.R.; Boussin, F.D.; Mouthon, M.A. Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. Stem Cell Res. 2013, 11, 516–528. [Google Scholar] [CrossRef]
- Kempf, S.J.; Moertl, S.; Sepe, S.; von Toerne, C.; Hauck, S.M.; Atkinson, M.J.; Mastroberardino, P.G.; Tapio, S. Low-dose ionizing radiation rapidly affects mitochondrial and synaptic signaling pathways in murine hippocampus and cortex. J. Proteome Res. 2015, 14, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Pineda, J.R.; Daynac, M.; Chicheportiche, A.; Cebrian-Silla, A.; Sii Felice, K.; Garcia-Verdugo, J.M.; Boussin, F.D.; Mouthon, M.A. Vascular-derived TGF-beta increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol. Med. 2013, 5, 548–562. [Google Scholar] [CrossRef] [PubMed]
- Schmal, Z.; Isermann, A.; Hladik, D.; von Toerne, C.; Tapio, S.; Rube, C.E. DNA damage accumulation during fractionated low-dose radiation compromises hippocampal neurogenesis. Radiother. Oncol. 2019, 137, 45–54. [Google Scholar] [CrossRef]
- Schmal, Z.; Hammer, B.; Muller, A.; Rube, C.E. Fractionated Low-Dose Radiation Induces Long-Lasting Inflammatory Responses in the Hippocampal Stem Cell Niche. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 1262–1275. [Google Scholar] [CrossRef]
- Killer, K.; Le, O.; Beausejour, C. The Intracerebroventricular Injection of Murine Mesenchymal Stromal Cells Engineered to Secrete Epidermal Growth Factor Does Not Prevent Loss of Neurogenesis in Irradiated Mice. Radiat. Res. 2021, 196, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, F.; Casciati, A.; Belles, M.; Serra, N.; Linares-Vidal, M.V.; Marino, C.; Mancuso, M.; Pazzaglia, S. Long-Term Effects of Ionizing Radiation on the Hippocampus: Linking Effects of the Sonic Hedgehog Pathway Activation with Radiation Response. Int. J. Mol. Sci. 2021, 22, 12605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, X.; He, R.; Ma, Q.; Sun, R.; Ji, S.; Wang, B.; Tian, Y. The effect of brain-derived neurotrophic factor on radiation-induced neuron architecture impairment is associated with the NFATc4/3 pathway. Brain Res. 2018, 1681, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Merz, K.; Herold, S.; Lie, D.C. CREB in adult neurogenesis--master and partner in the development of adult-born neurons? Eur. J. Neurosci. 2011, 33, 1078–1086. [Google Scholar] [CrossRef]
- Hladik, D.; Dalke, C.; von Toerne, C.; Hauck, S.M.; Azimzadeh, O.; Philipp, J.; Ung, M.C.; Schlattl, H.; Rossler, U.; Graw, J.; et al. CREB Signaling Mediates Dose-Dependent Radiation Response in the Murine Hippocampus Two Years after Total Body Exposure. J. Proteome Res. 2020, 19, 337–345. [Google Scholar] [CrossRef]
- Gorbunov, N.V.; Kiang, J.G. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat. Res. 2021, 196, 1–16. [Google Scholar] [CrossRef]
- Rubin, D.B.; Drab, E.A.; Ward, W.F. Physiological and biochemical markers of the endothelial cell response to irradiation. Int. J. Radiat. Biol. 1991, 60, 29–32. [Google Scholar] [CrossRef]
- Li, Y.Q.; Chen, P.; Haimovitz-Friedman, A.; Reilly, R.M.; Wong, C.S. Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res. 2003, 63, 5950–5956. [Google Scholar] [PubMed]
- Pena, L.A.; Fuks, Z.; Kolesnick, R.N. Radiation-induced apoptosis of endothelial cells in the murine central nervous system: Protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res. 2000, 60, 321–327. [Google Scholar] [PubMed]
- Allen, B.D.; Limoli, C.L. Breaking barriers: Neurodegenerative repercussions of radiotherapy induced damage on the blood-brain and blood-tumor barrier. Free Radic. Biol. Med. 2022, 178, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Luo, M.; Huang, G.; Zhang, J.; Tong, F.; Cheng, Y.; Cai, Q.; Dong, J.; Wu, G.; Cheng, J. Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int. J. Radiat. Biol. 2015, 91, 224–239. [Google Scholar] [CrossRef]
- Osman, A.M.; Sun, Y.; Burns, T.C.; He, L.; Kee, N.; Oliva-Vilarnau, N.; Alevyzaki, A.; Zhou, K.; Louhivuori, L.; Uhlen, P.; et al. Radiation Triggers a Dynamic Sequence of Transient Microglial Alterations in Juvenile Brain. Cell Rep. 2020, 31, 107699. [Google Scholar] [CrossRef]
- Giuseppe, Z.R.; Silvia, C.; Eleonora, F.; Gabriella, M.; Marica, F.; Silvia, C.; Mario, B.; Francesco, D.; Savino, C.; Milly, B.; et al. Hippocampal-sparing radiotherapy and neurocognitive impairment: A systematic literature review. J. Cancer Res. Ther. 2020, 16, 1215–1222. [Google Scholar] [CrossRef]
- Auerbach, H.; Dzierma, Y.; Schurmann, M.; Rube, C.; Rube, C.E. Measuring out-of-field dose to the hippocampus in common radiotherapy indications. Radiat. Oncol. 2023, 18, 64. [Google Scholar] [CrossRef]
Reference | Study Population (Location) | Sample Size | Type of Exposure | Age at Exposure | Brain Dose | Outcome | Age at Outcome Measurement |
---|---|---|---|---|---|---|---|
Wood, Johnson et al., 1967 [4] | atomic bomb survivors (Japan) | 183 | γ-rays and neutrons | in-utero | ≤4 Gy | small head size, mental retardation | n.s. |
Otake, Schull; 1984 [2] | atomic bomb survivors (Japan) | n.s. | γ-rays and neutrons | in-utero | ≤4 Gy | forebrain damage, mental retardation | n.s. |
Schull, Otake; 1986 [3] | atomic bomb survivors (Japan) | n.s. | γ-rays and neutrons | in-utero | ≤4 Gy | mental retardation | n.s. |
Otake, Schull; 1991 [9] | atomic bomb survivors (Japan) | 1673 | γ-rays and neutrons | in-utero | 0.6–1.4 Gy | IQ decline, lower school performance | 10–11 years |
Yoshimaru, Otake et al., 1991 [8] | atomic bomb survivors (Japan) | 929 | γ-rays and neutrons | in-utero | ≤4 Gy | lower school performance | n.s. |
Ikenoue, Ikeda et al., 1993 [6] | atomic bomb survivors (Japan) | 929 | γ-rays and neutrons | in-utero | ≤4 Gy | lower school performance | n.s. |
Otake, Schull; 1993 [7] | atomic bomb survivors (Japan) | 1473 | γ-rays and neutrons | in-utero | ≤4 Gy | small head size, mental retardation | 9–19 years |
Yoshimaru, Otake et al., 1995 [8] | atomic bomb survivors (Japan) | 888 | γ-rays and neutrons | in-utero | ≤4 Gy | IQ decline, mental retardation | 15–16 years |
Yamada, Sasaki et al., 2002 [10] | atomic bomb survivors (Japan) | 3113 | γ-rays and neutrons | ≥13 years | ≤4 Gy | no neurocognitive dysfunction | adulthood |
Yamada, Kasagi et al., 2009 [12] | atomic bomb survivors (Japan) | 2286 | γ-rays and neutrons | ≥13 years | ≤4 Gy | no increased risk of neurodegeneration | ≥60 years |
Yamada, Landes et al., 2016 [14] | atomic bomb survivors (Japan) | 1844 | γ-rays and neutrons | ≥13 years | ≤4 Gy | no increased risk of neurodegeneration | 60–80 years |
Yamada, Kato et al., 2021 [13] | atomic bomb survivors (Japan) | 303 | γ-rays and neutrons | in-utero | ≤4 Gy | no increased risk of neurodegeneration | 65–70 years |
Ishihara, Kato et al., 2022 [11] | atomic bomb survivors (Japan) | 469 | γ-rays and neutrons | ≤12 years | ≤4 Gy | no increased risk of neurodegeneration | ≥70 years |
Reference | Study Population | Sample Size | Type of Exposure | Age at Exposure | Brain Dose | Outcome | Age at Outcome Measurement |
---|---|---|---|---|---|---|---|
Albert, Omran et al., 1966 [18] | tinea capitis (New York) | 1908 | X-ray RT | mean: 8 years | mean: 1.3 Gy | mental disorders, psychosis | 21 years |
Ron, Modan et al., 1982 [19] | tinea capitis (Israel) | 10,842 | X-ray RT | range: 1–15 years mean: 7 years | range: 0.7–1.6 Gy mean: 1.5Gy | IQ decline, lower school performance | 24 years |
Hall, Adami et al., 2004 [20] | haemangioma (Sweden) | 2816 | X-ray RT | range: 0–18 months mean: 7 months | range: 0–2.8 Gy mean: 0.02 Gy | neurocognitive dysfunction ≥0.25 Gy | 18 years |
Blomstrand, Holmberg et al., 2014 [21] | haemangioma (Sweden) | 3030 | RT (different IR qualities) | range: 0–18 months median: 5 months | range: 0–1.1 Gy median: 0.02Gy | hippocampus ≥0.2Gy → lower verbal skills | 18 years |
Nordenskjöld, Palme et al., 2015 [22] | maternal X-ray pelvimetry (Sweden) | 1612 | diagnostic X-ray | in-utero | estimated fetal dose: 0.0015 Gy | no effect on school performance | 15 years |
Salonen, Nyman et al., 2018 [23] | CT scan (Sweden) | 147 | diagnostic head CT | range: 6–16 years mean: 11 years | estimated dose 0.03–0.05 Gy | no cognitive dysfunction | 18 years |
Reference | Study Population | Sample Size | Type of Exposure | Age at Exposure | Dose | Outcome | Age at Outcome |
---|---|---|---|---|---|---|---|
Broadbent, Barnes et al., 1981 [39] | medulloblastoma (UK) | 8 | 60Co RT (neuroaxis) | 1–12 years | tumor: 43–50 Gy | mental retardation, younger children (≤2y) more affected | n.s. |
Danoff, Cowchock et al., 1982 [40] | primary brain tumors (USA) | 38 | 60Co RT | 1–16 years | tumor: 40–65 Gy | mental retardation, younger children (≤3y) more affected | n.s. |
Mulhern, Hancock et al., 1992 [42] | primary brain tumors (USA) | 544 | RT (local/ whole brain) | 1–18 years | n.s. | IQ decline, younger children (≤4y) more affected | 1–21 years after RT |
Radcliffe, Bunin et al., 1994 [43] | medulloblastoma | 24 | cranial RT | 1–20 years | n.s. | IQ decline, younger children (≤7y) more affected | 2–4 years after RT |
Skowrońska-Gardas, 1999 [44] | CNS tumors (Poland) | 52 | photon RT (neuroaxis) | 1–3 years | tumor: 50 Gy neuroaxis: 30 Gy | mental retardation, younger children (≤3y) more affected | 5 years after RT |
Edelstein, Spiegler et al., 2011 [41] | medulloblastoma | photon RT | tumor: 50 Gy neuroaxis: 23 Gy | IQ decline, younger children (≤7y) more affected | ≤40 years after RT | ||
Yock, Yeap et al., 2016 [48] | medulloblastoma (USA) | 59 | proton RT (neuroaxis) | 3–21 years | tumor: 54 Gy neuroaxis: 23 Gy | IQ decline, no age-dependent effect | 7 years after RT |
Ventura, Grieco et al., 2018 [47] | primary brain tumors (USA) | 65 | proton RT (local) | 2–17 years | n.s. | IQ decline, no age-dependent effect | 4–18 years after RT |
Tso, Liu et al., 2019 [46] | germ cell tumors (Hong Kong) | 25 | cranial RT | 7–18 years | tumor: 30–54 Gy | IQ decline, no age-dependent effect | 1–12 years after RT |
Stadskleiv, Stensvold et al., 2022 [45] | medulloblastoma (Norway) | 50 | photon RT (neuroaxis) | 5–51 years | tumor: 44–56 Gy | IQ decline, no age-dependent effect | 19 years after RT |
Reference | Study Population | Sample Size | Type of Exposure | Age at Exposure | Brain Dose | Outcome | Age at Outcome Measurement |
---|---|---|---|---|---|---|---|
Meadows, Gordon et al., 1981 [36] | children with ALL (USA) | 41 | WBRT | 2–15 years | 24 Gy, fractionated | IQ decline; younger children more affected | 1–3 years after RT |
Twaddle, Britton et al., 1983 [55] | children with ALL (England) | 23 | WBRT | 1–8 years | 24 Gy, fractionated | IQ decline; younger children more affected | 1–3 years after RT |
Ladavas, Missiroli et al., 1985 [51] | children with ALL (Italy) | 21 | WBRT | 2–9 years | 24 Gy, fractionated | IQ decline; younger children (<5 years) more affected | 1–3 years after RT |
Said, Waters et al., 1989 [54] | children with ALL (Australia) | 106 | WBRT | 1–8 years | 18–24 Gy, fractionated | IQ decline; younger children more affected | 1–13 years after RT |
Chessells, Cox et al., 1990 [49] | children with ALL (England) | 136 | WBRT | 1–12 years | 18–24 Gy, fractionated | IQ decline, younger children (≤2 years) more affected | 1–5 years after RT |
MacLean, Noll et al., 1995 [52] | children with ALL (USA) | 74 | WBRT | 3–7 years | 18 Gy, fractionated | neuropsychological deficits | 1 years after RT |
Iuvone, Mariotti et al., 2002 [50] | children with ALL (Italy) | 21 | WBRT | 1–12 years | 18–24 Gy, fractionated | no age-dependent effect | 4–12 years after RT |
Reinhardt, Thiele et al., 2002 [53] | children with AML (Germany) | 38 | WBRT | 0–18 years | 12–18 Gy, fractionated | learning deficits, younger children more affected | 4–11 years after RT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rübe, C.E.; Raid, S.; Palm, J.; Rübe, C. Radiation-Induced Brain Injury: Age Dependency of Neurocognitive Dysfunction Following Radiotherapy. Cancers 2023, 15, 2999. https://doi.org/10.3390/cancers15112999
Rübe CE, Raid S, Palm J, Rübe C. Radiation-Induced Brain Injury: Age Dependency of Neurocognitive Dysfunction Following Radiotherapy. Cancers. 2023; 15(11):2999. https://doi.org/10.3390/cancers15112999
Chicago/Turabian StyleRübe, Claudia E., Silvia Raid, Jan Palm, and Christian Rübe. 2023. "Radiation-Induced Brain Injury: Age Dependency of Neurocognitive Dysfunction Following Radiotherapy" Cancers 15, no. 11: 2999. https://doi.org/10.3390/cancers15112999
APA StyleRübe, C. E., Raid, S., Palm, J., & Rübe, C. (2023). Radiation-Induced Brain Injury: Age Dependency of Neurocognitive Dysfunction Following Radiotherapy. Cancers, 15(11), 2999. https://doi.org/10.3390/cancers15112999