Targeted Therapy in the Palliative Setting of Colorectal Cancer—Survival and Medical Costs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemotherapy and Targeted Therapy
2.2. Classification of Patients
2.3. Costs of Chemotherapy and Targeted Therapy
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Patients Treated with and without Targeted Therapy
3.2. Characteristics of the Palliative Subgroups
3.3. Chemotherapy and Targeted Therapy
3.4. Administration Patterns of Targeted Therapy
3.5. Overall Survival and Characteristics of Targeted Therapies
3.6. Medical Costs of Targeted Therapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tejpar, S.; Stintzing, S.; Ciardiello, F.; Tabernero, J.; Van Cutsem, E.; Beier, F.; Esser, R.; Lenz, H.J.; Heinemann, V. Prognostic and Predictive Relevance of Primary Tumor Location in Patients with RAS Wild-Type Metastatic Colorectal Cancer: Retrospective Analyses of the CRYSTAL and FIRE-3 Trials. JAMA Oncol. 2017, 3, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Missiaglia, E.; Jacobs, B.; D’Ario, G.; Di Narzo, A.F.; Soneson, C.; Budinska, E.; Popovici, V.; Vecchione, L.; Gerster, S.; Yan, P.; et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann. Oncol. 2014, 25, 1995–2001. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.Z.; Li, J.L.; Cai, Z.M.; Li, K.Z.; Hu, B.L. Impact of primary colorectal Cancer location on the KRAS status and its prognostic value. BMC Gastroenterol. 2019, 19, 46. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Carbonero, N.; Martinez-Useros, J.; Li, W.; Orta, A.; Perez, N.; Carames, C.; Hernandez, T.; Moreno, I.; Serrano, G.; Garcia-Foncillas, J. KRAS and BRAF Mutations as Prognostic and Predictive Biomarkers for Standard Chemotherapy Response in Metastatic Colorectal Cancer: A Single Institutional Study. Cells 2020, 9, 219. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, B.; Carlsson, G.; Machover, D.; Petrelli, N.; Roth, A.; Schmoll, H.J.; Tveit, K.M.; Gibson, F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Color. Cancer 2015, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, L.Z.; Xu, L.; Zhang, J.S.; Song, X. Neoadjuvant chemoradiation for locally advanced rectal cancer: A systematic review of the literature with network meta-analysis. Cancer Manag. Res. 2019, 11, 741–758. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Lenz, H.J.; Köhne, C.H.; Heinemann, V.; Tejpar, S.; Melezínek, I.; Beier, F.; Stroh, C.; Rougier, P.; van Krieken, J.H.; et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J. Clin. Oncol. 2015, 33, 692–700. [Google Scholar] [CrossRef]
- Stintzing, S.; Modest, D.P.; Rossius, L.; Lerch, M.M.; von Weikersthal, L.F.; Decker, T.; Kiani, A.; Vehling-Kaiser, U.; Al-Batran, S.E.; Heintges, T.; et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): A post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol. 2016, 17, 1426–1434. [Google Scholar] [CrossRef]
- Sobrero, A.F.; Maurel, J.; Fehrenbacher, L.; Scheithauer, W.; Abubakr, Y.A.; Lutz, M.P.; Vega-Villegas, M.E.; Eng, C.; Steinhauer, E.U.; Prausova, J.; et al. EPIC: Phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 2311–2319. [Google Scholar] [CrossRef]
- Cunningham, D.; Humblet, Y.; Siena, S.; Khayat, D.; Bleiberg, H.; Santoro, A.; Bets, D.; Mueser, M.; Harstrick, A.; Verslype, C.; et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 2004, 351, 337–345. [Google Scholar] [CrossRef]
- Douillard, J.Y.; Siena, S.; Cassidy, J.; Tabernero, J.; Burkes, R.; Barugel, M.; Humblet, Y.; Bodoky, G.; Cunningham, D.; Jassem, J.; et al. Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: The PRIME study. J. Clin. Oncol. 2010, 28, 4697–4705. [Google Scholar] [CrossRef] [PubMed]
- Peeters, M.; Price, T.J.; Cervantes, A.; Sobrero, A.F.; Ducreux, M.; Hotko, Y.; Andre, T.; Chan, E.; Lordick, F.; Punt, C.J.; et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J. Clin. Oncol. 2010, 28, 4706–4713. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Elme, A.; Kusic, Z.; Park, J.O.; Udrea, A.A.; Kim, S.Y.; Ahn, J.B.; Valencia, R.V.; Krishnan, S.; Bilic, A.; et al. A phase 3 trial evaluating panitumumab plus best supportive care vs best supportive care in chemorefractory wild-type KRAS or RAS metastatic colorectal cancer. Br. J. Cancer 2016, 115, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Bennouna, J.; Phelip, J.M.; André, T.; Asselain, B.; Sébastien, K.; Ducreux, M. Observational Cohort Study of Patients with Metastatic Colorectal Cancer Initiating Chemotherapy in Combination with Bevacizumab (CONCERT). Clin. Color. Cancer 2017, 16, 129–140.e124. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Cervantes, A.; Adam, R.; Sobrero, A.; Van Krieken, J.H.; Aderka, D.; Aranda Aguilar, E.; Bardelli, A.; Benson, A.; Bodoky, G.; et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016, 27, 1386–1422. [Google Scholar] [CrossRef]
- Goldstein, D.A.; Chen, Q.; Ayer, T.; Chan, K.K.W.; Virik, K.; Hammerman, A.; Brenner, B.; Flowers, C.R.; Hall, P.S. Bevacizumab for Metastatic Colorectal Cancer: A Global Cost-Effectiveness Analysis. Oncologist 2017, 22, 694–699. [Google Scholar] [CrossRef]
- Goldstein, D.A.; Chen, Q.; Ayer, T.; Howard, D.H.; Lipscomb, J.; El-Rayes, B.F.; Flowers, C.R. First- and second-line bevacizumab in addition to chemotherapy for metastatic colorectal cancer: A United States-based cost-effectiveness analysis. J. Clin. Oncol. 2015, 33, 1112–1118. [Google Scholar] [CrossRef]
- Sacco, J.J.; Botten, J.; Macbeth, F.; Bagust, A.; Clark, P. The average body surface area of adult cancer patients in the UK: A multicentre retrospective study. PLoS ONE 2010, 5, e8933. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Tabernero, J.; Lakomy, R.; Prenen, H.; Prausová, J.; Macarulla, T.; Ruff, P.; van Hazel, G.A.; Moiseyenko, V.; Ferry, D.; et al. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 2012, 30, 3499–3506. [Google Scholar] [CrossRef]
- Ivanova, J.I.; Saverno, K.R.; Sung, J.; Duh, M.S.; Zhao, C.; Cai, S.; Vekeman, F.; Peevyhouse, A.; Dhawan, R.; Fuchs, C.S. Real-world treatment patterns and effectiveness among patients with metastatic colorectal cancer treated with ziv-aflibercept in community oncology practices in the USA. Med. Oncol. 2017, 34, 193. [Google Scholar] [CrossRef]
- Van Helden, E.J.; Menke-van der Houven van Oordt, C.W.; Heymans, M.W.; Ket, J.C.F.; van den Oord, R.; Verheul, H.M.W. Optimal use of anti-EGFR monoclonal antibodies for patients with advanced colorectal cancer: A meta-analysis. Cancer Metastasis Rev. 2017, 36, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Takagane, A.; Miyake, Y.; Shimada, K.; Nagata, N.; Sato, A.; Ogata, Y.; Fukunaga, M.; Otsuka, K.; Takahashi, T.; et al. A Phase II Study of Third-Line Combination Chemotherapy with Bevacizumab Plus S-1 for Metastatic Colorectal Cancer with Mutated KRAS (SAVIOR Study). Oncology 2016, 91, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Crosara Teixeira, M.; Marques, D.F.; Ferrari, A.C.; Alves, M.F.; Alex, A.K.; Sabbaga, J.; Hoff, P.M.; Riechelmann, R.P. The effects of palliative chemotherapy in metastatic colorectal cancer patients with an ECOG performance status of 3 and 4. Clin. Color. Cancer 2015, 14, 52–57. [Google Scholar] [CrossRef]
- Kohne, C.H.; Cunningham, D.; Di Costanzo, F.; Glimelius, B.; Blijham, G.; Aranda, E.; Scheithauer, W.; Rougier, P.; Palmer, M.; Wils, J.; et al. Clinical determinants of survival in patients with 5-fluorouracil-based treatment for metastatic colorectal cancer: Results of a multivariate analysis of 3825 patients. Ann. Oncol. 2002, 13, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Dawood, S.; Sirohi, B.; Shrikhande, S.V.; Toh, H.C.; Eng, C. Potential Prognostic Impact of Baseline CEA Level and Surgery of Primary Tumor Among Patients with Synchronous Stage IV Colorectal Cancer: A Large Population Based Study. Indian J. Surg. Oncol. 2015, 6, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Quidde, J.; Denne, L.; Kutscheidt, A.; Kindler, M.; Kirsch, A.; Kripp, M.; Petersen, V.; Schulze, M.; Seraphin, J.; Tummes, D.; et al. Baseline and On-Treatment Markers Determining Prognosis of First-Line Chemotherapy in Combination with Bevacizumab in Patients with Metastatic Colorectal Cancer. Oncol. Res. Treat. 2017, 40, 21–26. [Google Scholar] [CrossRef]
- Tharin, Z.; Blanc, J.; Alaoui, I.C.; Bertaut, A.; Ghiringhelli, F. Influence of primary tumor location and resection on survival in metastatic colorectal cancer. World J. Gastrointest. Oncol. 2020, 12, 1296–1310. [Google Scholar] [CrossRef]
- Kwak, M.S.; Cha, J.M.; Yoon, J.Y.; Jeon, J.W.; Shin, H.P.; Chang, H.J.; Kim, H.K.; Joo, K.R.; Lee, J.I. Prognostic value of KRAS codon 13 gene mutation for overall survival in colorectal cancer: Direct and indirect comparison meta-analysis. Medicine 2017, 96, e7882. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, X.; Tan, X.; Fan, Z. Effect of Age on Survival Outcome in Operated and Non-Operated Patients with Colon Cancer: A Population-Based Study. PLoS ONE 2016, 11, e0147383. [Google Scholar] [CrossRef]
- Lieu, C.H.; Renfro, L.A.; de Gramont, A.; Meyers, J.P.; Maughan, T.S.; Seymour, M.T.; Saltz, L.; Goldberg, R.M.; Sargent, D.J.; Eckhardt, S.G.; et al. Association of age with survival in patients with metastatic colorectal cancer: Analysis from the ARCAD Clinical Trials Program. J. Clin. Oncol. 2014, 32, 2975–2984. [Google Scholar] [CrossRef]
- Franchi, M.; Garau, D.; Kirchmayer, U.; Di Martino, M.; Romero, M.; De Carlo, I.; Scondotto, S.; Corrao, G. Effectiveness and Costs Associated to Adding Cetuximab or Bevacizumab to Chemotherapy as Initial Treatment in Metastatic Colorectal Cancer: Results from the Observational FABIO Project. Cancers 2020, 12, 839. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, R.; Ektare, V.; Stephens, J.; Shelbaya, A. Does Biosimilar Bevacizumab Offer Affordable Treatment Options for Cancer Patients in the USA? A Budget Impact Analysis from US Commercial and Medicare Payer Perspectives. Appl. Health Econ. Health Policy 2021, 9, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Busse, A.; Luftner, D. What Does the Pipeline Promise about Upcoming Biosimilar Antibodies in Oncology? Breast Care 2019, 14, 10–16. [Google Scholar] [CrossRef] [PubMed]
Chemotherapy (n = 169) n (%) | Targeted Therapy (n = 168) n (%) | |
---|---|---|
Gender | ||
Male | 99 (59) | 99 (59) |
Female | 70 (41) | 69 (41) |
Age (mean ± SD) * | 67.1 ± 10.7 | 61.3 ± 9.6 |
ECOG PS | ||
0 | 68 (40) | 81 (48) |
1 | 89 (53) | 83 (50) |
2, 3 | 12 (7) | 4 (2) |
Comorbidity | ||
Cardiovascular disease * | 42 (25) | 19 (11) |
Hypertonia * | 64 (38) | 46 (27) |
Diabetes mellitus | 21 (12) | 16 (10) |
Location of the primary tumor | ||
Right colon | 46 (27) | 45 (27) |
Left colon | 64 (38) | 61 (36) |
Rectum | 57 (34) | 57 (34) |
Multiple tumors | 2 (1) | 5 (3) |
Metastatic sites | ||
1 | 90 (53) | 89 (53) |
2 | 58 (34) | 52 (31) |
≥3 | 21 (12) | 27 (16) |
Liver metastases | 123 (73) | 129 (77) |
Lung metastases | 60 (36) | 50 (30) |
CEA at baseline (mean ± SD) * | 106 ± 289 ng/mL (n = 132) | 171 ± 363 ng/mL (n = 133) |
Liver surgery | 31 (18) | 29 (17) |
RAS * | ||
Wild type | 64 (38) | 90 (54) |
Mutated | 65 (38) | 61 (36) |
Unknown | 40 (24) | 17 (10) |
Surgery of the primary tumor | 99 (59) | 101 (60) |
Treatment intention | ||
Palliative | 121 (72) | 108 (64) |
Neoadjuvant | 48 (28) | 60 (36) |
Group | Average Costs per Treatment Cycle (EUR) |
---|---|
Bevacizumab | 1351 |
Cetuximab | 1353 |
Panitumumab | 1619 |
5-Fluorouracil | 83 |
Irinotecan | 77 |
Oxaliplatin | 68 |
Capecitabine | 105 |
Trifluridine/tipiracil | 2200 |
Tegafur/gimeracil/oteracil | 306 |
Regorafenib | 2174 |
Chemotherapy (n = 121) n (%) | Early Targeted (n = 54) n (%) | Late Chemo (n = 107) n (%) | Late Targeted (n = 54) n (%) | |
---|---|---|---|---|
Gender | ||||
Male | 71 (59) | 31 (57) | 64 (60) | 33 (61) |
Female | 50 (41) | 23 (43) | 43 (40) | 21 (39) |
Age (mean ± SD) | 68.5 ± 10.7 | 59.8 ± 9.8 *** | 68.3 ± 10.7 | 64.7 ± 7.8 * |
ECOG PS | ||||
0 | 43 (36) | 20 (37) | 41 (38) | 33 (61) |
1 | 68 (56) | 32 (59) | 58 (54) | 20 (37) |
2, 3 | 10 (8) | 2 (4) | 8 (7) | 1 (2) |
Comorbidity | ||||
Cardiovascular disease | 29 (24) | 5 (9) | 28 (26) | 8 (15) |
Hypertonia | 47 (38) | 11 (20) * | 44 (41) | 18 (33) |
Diabetes mellitus | 15 (12) | 5 (9) * | 14 (13) | 6 (11) |
Location of the primary tumor | ||||
Right colon | 37 (31) | 16 (30) | 29 (27) | 17 (31) |
Left colon | 42 (35) | 17 (32) | 40 (37) | 21 (39) |
Rectum | 40 (33) | 18 (33) | 37 (35) | 16 (30) |
Multiple tumors | 2 (2) | 3 (6) | 1 (1) | 0 (0) |
Metastatic sites | ||||
1 | 52 (53) | 26 (48) | 48 (45) | 26 (48) |
2 | 50 (34) | 21 (39) | 44 (41) | 21 (39) |
3 | 17 (11) | 5 (9) | 13 (12) | 5 (9) |
4 | 2 (1) | 2 (4) | 2 (2) | 2 (4) |
5 | 0 (0) | 0 (0) | 0 (0) | 3 (6) |
Metastatic sites | ||||
1 | 52 (53) | 26 (48) | 48 (45) | 26 (48) |
2 | 50 (34) | 21 (39) | 44 (41) | 21 (39) |
≥3 | 19 (16) | 7 (13) | 15 (14) | 10 (19) |
Liver metastases | 84 (69) | 40 (74) | 73 (68) | 41 (76) |
Lung metastases | 51 (42) | 12 (22) | 44 (41) | 24 (44) |
CEA at baseline (mean ± SD) | 137 ± 334 ng/mL (n = 95) | 214 ± 431 ng/mL (n = 46) | 128 ± 331 ng/mL (n = 85) | 140 ± 272 ng/mL (n = 46) |
Liver surgery | 31 (18) | 29 (17) | 5 (5) | 3 (6) |
RAS | ||||
Wild type | 51 (42) | 30 (56) | 41 (38) | 28 (52) |
Mutated | 45 (37) | 18 (33) | 44 (41) | 20 (37) |
Unknown | 25 (21) | 6 (11) | 22 (21) | 6 (11) |
Surgery of the primary tumor | 55 (46) | 24 (44) | 52 (49) | 31 (57) |
Palliative (n = 229) | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age | 1.00 (0.99–1.02) | 0.58 | 1.70 (0.87–3.32) | 0.12 |
Gender | ||||
Female | Reference | Reference | ||
Male | 1.04 (0.78–1.38) | 0.79 | 0.94 (0.69–1.28) | 0.68 |
ECOG PS | ||||
0 | Reference | <0.001 | Reference | <0.001 |
1 | 1.66 (1.23–2.24) | <0.001 | 1.79 (1.27–2.52) | <0.001 |
2 | 1.62 (0.75–3.53) | 0.22 | 2.94 (1.24–6.99 | <0.05 |
3 | 7.31 (2.91–18.37) | <0.001 | 10.72 (3.79–30.3) | <0.001 |
Hypertonia | ||||
No | Reference | Reference | ||
Yes | 1.15 (0.85–1.55) | 0.36 | 1.11 (0.78–1.58) | 0.57 |
Cardiovascular disease | ||||
No | Reference | Reference | ||
Yes | 1.08 (0.76–1.55) | 0.67 | 0.93 (0.61–1.41) | 0.73 |
Diabetes mellitus | ||||
No | Reference | Reference | ||
Yes | 1.24 (0.81–1.91) | 0.32 | 0.81 (0.51–1.30) | 0.39 |
Tumor location | 0.06 | <0.001 | ||
Right colon | Reference | Reference | ||
Left colon | 0.74 (0.53–1.05) | 0.09 | 0.55 (0.38–0.79) | <0.01 |
Rectum | 0.62 (0.44–0.88) | <0.01 | 0.45 (0.30–0.67) | <0.001 |
Multiple tumors | 0.75 (0.30–1.88) | 0.55 | 0.72 (0.28–1.89) | 0.51 |
Liver metastases | ||||
No | Reference | Reference | ||
Yes | 1.65 (1.18–2.31) | <0.01 | 1.53 (1.06–2.19) | <0.05 |
Lung metastases | ||||
No | Reference | Reference | ||
Yes | 0.71 (0.53–0.94) | <0.05 | 0.80 (0.55–1.17) | 0.25 |
No. of metastatic sites | 1.04 (0.89–1.21) | 0.64 | 1.11 (0.92–1.35) | 0.27 |
RAS | 0.19 | <0.01 | ||
Wild type | Reference | Reference | ||
Mutated | 1.14 (0.83–1.56) | 0.43 | 1.27 (0.88–1.81) | 0.20 |
Unknown | 1.44 (0.97–2.12) | 0.07 | 1.62 (1.30–3.09) | <0.01 |
Targeted therapy | ||||
Chemotherapy | Reference | 0.05 | Reference | <0.05 |
Bevacizumab | 0.89 (0.62–1.27) | 0.52 | 0.81 (0.54–1.20) | 0.30 |
EGFr | 1.55 (1.05–2.30) | <0.05 | 1.74 (1.11–2.72) | 0.05 |
Both therapies | 1.49 (0.78–2.83) | 0.23 | 1.70 (0.87–3.32) | 0.12 |
CEA * n = 183 | 1.0009 (1.0004–1.0013) | <0.001 | 1.0006 (0.9999–1.0012) | 0.06 |
Group | No. of Patients | Average Total Costs ± SD (EUR) | Average Annual Costs ± SD (EUR) |
---|---|---|---|
Neoadjuvant | |||
Chemotherapy + targeted therapy | 60 | 22,150 ± 24,079 *** | 7249 ± 4801 *** |
Chemotherapy | 48 | 1184 ± 712 | 737 ± 1188 |
Palliative | |||
Chemotherapy + targeted therapy | 108 | 20,925 ± 17,480 *** | 11,437 ± 6868 *** |
Chemotherapy # | 120 | 1514 ± 1962 | 1322 ± 1351 |
Early targeted | 54 | 23,982 ± 18,129 † | 15,190 ± 6569 *** |
Late targeted | 54 | 17,868 ± 16,407 | 7685 ± 4836 |
Late chemo | 106 | 1668 ± 2037 | 1270 ± 1227 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inci, K.; Nilsson, B.; Ny, L.; Strömberg, U.; Wilking, N.; Lindskog, S.; Giglio, D. Targeted Therapy in the Palliative Setting of Colorectal Cancer—Survival and Medical Costs. Cancers 2023, 15, 3022. https://doi.org/10.3390/cancers15113022
Inci K, Nilsson B, Ny L, Strömberg U, Wilking N, Lindskog S, Giglio D. Targeted Therapy in the Palliative Setting of Colorectal Cancer—Survival and Medical Costs. Cancers. 2023; 15(11):3022. https://doi.org/10.3390/cancers15113022
Chicago/Turabian StyleInci, Kamuran, Bengt Nilsson, Lars Ny, Ulf Strömberg, Nils Wilking, Stefan Lindskog, and Daniel Giglio. 2023. "Targeted Therapy in the Palliative Setting of Colorectal Cancer—Survival and Medical Costs" Cancers 15, no. 11: 3022. https://doi.org/10.3390/cancers15113022
APA StyleInci, K., Nilsson, B., Ny, L., Strömberg, U., Wilking, N., Lindskog, S., & Giglio, D. (2023). Targeted Therapy in the Palliative Setting of Colorectal Cancer—Survival and Medical Costs. Cancers, 15(11), 3022. https://doi.org/10.3390/cancers15113022