Prognostic Value of Chromatin Structure Typing in Early-Stage Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. DNA Image Cytometry
2.3. Biomarker Measurements
2.3.1. DNA Ploidy
2.3.2. Nucleotyping
2.3.3. TSR
2.4. Outcome Assessment
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Prognostic Values of Individual Biomarkers
3.3. Prognostic Values of Combined Biomarkers
3.4. Prognostic Values of Individual and Combined Biomarkers Stratified by Postoperative Adjuvant Therapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of incidence, prevalence, survival, and initial treatment in patients with non-small cell lung cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Diagnosis and treatment of primary lung cancer (2018 edition). E-J. Compr. Oncol. 2019, 5, 100–120.
- Winton, T.; Livingston, R.; Johnson, D.; Rigas, J.; Johnston, M.; Butts, C.; Cormier, Y.; Goss, G.; Inculet, R.; Vallieres, E.; et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N. Engl. J. Med. 2005, 352, 2589–2597. [Google Scholar] [CrossRef] [Green Version]
- Lou, F.; Huang, J.; Sima, C.S.; Dycoco, J.; Rusch, V.; Bach, P.B. Patterns of recurrence and second primary lung cancer in early-stage lung cancer survivors followed with routine computed tomography surveillance. J. Thorac. Cardiovasc. Surg. 2013, 145, 75–81; discussion 81–82. [Google Scholar] [CrossRef] [Green Version]
- Danielsen, H.E.; Pradhan, M.; Novelli, M. Revisiting tumour aneuploidy—The place of ploidy assessment in the molecular era. Nat. Rev. Clin. Oncol. 2016, 13, 291–304. [Google Scholar] [CrossRef]
- Dixon, J.R.; Jung, I.; Selvaraj, S.; Shen, Y.; Antosiewicz-Bourget, J.E.; Lee, A.Y.; Ye, Z.; Kim, A.; Rajagopal, N.; Xie, W.; et al. Chromatin architecture reorganization during stem cell differentiation. Nature 2015, 518, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Schuster-Böckler, B.; Lehner, B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 2012, 488, 504–507. [Google Scholar] [CrossRef]
- Polak, P.; Karlić, R.; Koren, A.; Thurman, R.; Sandstrom, R.; Lawrence, M.; Reynolds, A.; Rynes, E.; Vlahoviček, K.; Stamatoyannopoulos, J.A.; et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 2015, 518, 360–364. [Google Scholar] [CrossRef] [Green Version]
- Kleppe, A.; Albregtsen, F.; Vlatkovic, L.; Pradhan, M.; Nielsen, B.; Hveem, T.S.; Askautrud, H.A.; Kristensen, G.B.; Nesbakken, A.; Trovik, J.; et al. Chromatin organisation and cancer prognosis: A pan-cancer study. Lancet Oncol. 2018, 19, 356–369. [Google Scholar] [CrossRef] [Green Version]
- Roselli, M.; Mariotti, S.; Ferroni, P.; Laudisi, A.; Mineo, D.; Pompeo, E.; Ambrogi, V.; Mineo, T.C. Postsurgical chemotherapy in stage IB nonsmall cell lung cancer: Long-term survival in a randomized study. Int. J. Cancer 2006, 119, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Asamura, H.; Goya, T.; Koshiishi, Y.; Sohara, Y.; Eguchi, K.; Mori, M.; Nakanishi, Y.; Tsuchiya, R.; Shimokata, K.; Inoue, H.; et al. A Japanese lung cancer registry study: Prognosis of 13,010 resected lung cancers. J. Thorac. Oncol. 2008, 3, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Douillard, J.Y.; Rosell, R.; De Lena, M.; Carpagnano, F.; Ramlau, R.; Gonzáles-Larriba, J.L.; Grodzki, T.; Pereira, J.R.; Le Groumellec, A.; Lorusso, V.; et al. Adjuvant vinorelbine plus cisplatin versus observation in patients with completely resected stage IB-IIIA non-small-cell lung cancer (Adjuvant Navelbine International Trialist Association [ANITA]): A randomised controlled trial. Lancet Oncol. 2006, 7, 719–727. [Google Scholar] [CrossRef]
- Heon, S.; Johnson, B.E. Adjuvant chemotherapy for surgically resected non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2012, 144, S39–S42. [Google Scholar] [CrossRef] [Green Version]
- Park, H.J.; Park, H.S.; Cha, Y.J.; Lee, S.; Jeung, H.C.; Cho, J.Y.; Kim, H.J.; Byun, M.K. Efficacy of adjuvant chemotherapy for completely resected stage IB non-small cell lung cancer: A retrospective study. J. Thorac. Dis. 2018, 10, 2279–2287. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Li, X.; Wang, Y.; Liu, J. Effect of adjuvant chemotherapy on DFS for patients with stage I NSCLC. Zhongguo Fei Ai Za Zhi 2017, 20, 485–489. [Google Scholar]
- Xie, J.; Zhang, X.; Hu, S.; Peng, W.D.; Xu, B.; Li, Y.; Zhang, S.J.; Li, Q.; Li, C. Effects of adjuvant chemotherapy on survival of patients with stage IB non-small cell lung cancer with visceral pleural invasion. J. Cancer Res. Clin. Oncol. 2020, 146, 2231–2239. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, C.; Lu, Y.; Yu, B.; Lv, F.; Zhu, Z. The predictive and prognostic values of factors associated with visceral pleural involvement in resected lung adenocarcinomas. Onco Targets Ther. 2016, 9, 2337–2348. [Google Scholar] [CrossRef] [Green Version]
- Bepler, G.; Olaussen, K.A.; Vataire, A.L.; Soria, J.C.; Zheng, Z.; Dunant, A.; Pignon, J.P.; Schell, M.J.; Fouret, P.; Pirker, R.; et al. ERCC1 and RRM1 in the international adjuvant lung trial by automated quantitative in situ analysis. Am. J. Pathol. 2011, 178, 69–78. [Google Scholar] [CrossRef]
- Rosell, R.; Skrzypski, M.; Jassem, E.; Taron, M.; Bartolucci, R.; Sanchez, J.J.; Mendez, P.; Chaib, I.; Perez-Roca, L.; Szymanowska, A.; et al. BRCA1: A novel prognostic factor in resected non-small-cell lung cancer. PLoS ONE 2007, 2, e1129. [Google Scholar] [CrossRef] [Green Version]
- Xian-Jun, F.; Xiu-Guang, Q.; Li, Z.; Hui, F.; Wan-Ling, W.; Dong, L.; Ping-Fa, L. ERCC1 and BRCA1 mRNA expression predicts the clinical outcome of non-small cell lung cancer receiving platinum-based chemotherapy. Pak. J. Med. Sci. 2014, 30, 488–492. [Google Scholar] [PubMed]
- Ceppi, P.; Volante, M.; Saviozzi, S.; Rapa, I.; Novello, S.; Cambieri, A.; Iacono, M.L.; Cappia, S.; Papotti, M.; Scagliotti, G.V. Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer 2006, 107, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Tsao, M.S.; Aviel-Ronen, S.; Ding, K.; Lau, D.; Liu, N.; Sakurada, A.; Whitehead, M.; Zhu, C.Q.; Livingston, R.; Johnson, D.H.; et al. Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J. Clin. Oncol. 2007, 25, 5240–5247. [Google Scholar] [CrossRef] [PubMed]
- Kerr, K.M.; Bubendorf, L.; Edelman, M.J.; Marchetti, A.; Mok, T.; Novello, S.; O’Byrne, K.; Stahel, R.; Peters, S.; Felip, E. Second ESMO consensus conference on lung cancer: Pathology and molecular biomarkers for non-small-cell lung cancer. Ann. Oncol. 2014, 25, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Bandi, M.; Nitta, M.; Ivanova, E.V.; Bronson, R.T.; Pellman, D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 2005, 437, 1043–1047. [Google Scholar] [CrossRef]
- Kildal, W.; Abeler, V.M.; Kristensen, G.B.; Jenstad, M.; Thoresen, S.; Danielsen, H.E. The prognostic value of DNA ploidy in a total population of uterine sarcomas. Ann. Oncol. 2009, 20, 1037–1041. [Google Scholar] [CrossRef]
- Sheltzer, J.M.; Ko, J.H.; Replogle, J.M.; Burgos, N.C.H.; Chung, E.S.; Meehl, C.M.; Sayles, N.M.; Passerini, V.; Storchova, Z.; Amon, A. Single-chromosome gains commonly function as tumor suppressors. Cancer Cell 2017, 31, 240–255. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, B.; Albregtsen, F.; Danielsen, H.E. Statistical nuclear texture analysis in cancer research: A review of methods and applications. Crit. Rev. Oncog. 2008, 14, 89–164. [Google Scholar] [CrossRef]
- Nielsen, B.; Albregtsen, F.; Kildal, W.; Abeler, V.M.; Kristensen, G.B.; Danielsen, H.E. The prognostic value of adaptive nuclear texture features from patient gray level entropy matrices in early stage ovarian cancer. Anal. Cell. Pathol. 2012, 35, 305–314. [Google Scholar] [CrossRef]
- Nielsen, B.; Danielsen, H.E. Prognostic value of adaptive textural features—The effect of standardizing nuclear first-order gray level statistics and mixing information from nuclei having different area. Cell. Oncol. 2006, 28, 85–95. [Google Scholar] [CrossRef]
- Yang, L.; Chen, P.; Zhang, L.; Wang, L.; Sun, T.; Zhou, L.; Li, Z.; Wu, A. Prognostic value of nucleotyping, DNA ploidy and stroma in high-risk stage II colon cancer. Br. J. Cancer 2020, 123, 973–981. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Li, Z.; Gao, Y.; Guan, X.; Jiang, Z.; Liu, Z.; Yang, M.; Chen, H.; Ma, X.; et al. Automated assessment of DNA ploidy, chromatin organization, and stroma fraction to predict prognosis and adjuvant therapy response in patients with stage II colorectal carcinoma. Am. J. Cancer Res. 2021, 11, 6119–6132. [Google Scholar]
- Danielsen, H.E.; Hveem, T.S.; Domingo, E.; Pradhan, M.; Kleppe, A.; Syvertsen, R.A.; Kostolomov, I.; Nesheim, J.A.; Askautrud, H.A.; Nesbakken, A.; et al. Prognostic markers for colorectal cancer: Estimating ploidy and stroma. Ann. Oncol. 2018, 29, 616–623. [Google Scholar] [CrossRef]
- Van Pelt, G.W.; Sandberg, T.P.; Morreau, H.; Gelderblom, H.; Van Krieken, J.; Tollenaar, R.; Mesker, W.E. The tumour-stroma ratio in colon cancer: The biological role and its prognostic impact. Histopathology 2018, 73, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Richards, C.H.; McMillan, D.C.; Horgan, P.G.; Roxburgh, C.S.D. The relationship between tumour stroma percentage, the tumour microenvironment and survival in patients with primary operable colorectal cancer. Ann. Oncol. 2014, 25, 644–651. [Google Scholar] [CrossRef]
- Huijbers, A.; Tollenaar, R.A.; Van Pelt, G.W.; Zeestraten, E.C.; Dutton, S.; McConkey, C.C.; Domingo, E.; Smit, V.T.; Midgley, R.; Warren, B.F.; et al. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: Validation in the VICTOR trial. Ann. Oncol. 2013, 24, 179–185. [Google Scholar] [CrossRef]
- Ersvaer, E.; Hveem, T.S.; Vlatkovic, L.; Brennhovd, B.; Kleppe, A.; Tobin, K.A.R.; Pradhan, M.; Cyll, K.; Waehre, H.; Kerr, D.J.; et al. Prognostic value of DNA ploidy and automated assessment of stroma fraction in prostate cancer. Int. J. Cancer 2020, 147, 1228–1234. [Google Scholar] [CrossRef] [Green Version]
- Pignon, J.P.; Tribodet, H.; Scagliotti, G.V.; Douillard, J.Y.; Shepherd, F.A.; Stephens, R.J.; Dunant, A.; Torri, V.; Rosell, R.; Seymour, L.; et al. Lung adjuvant cisplatin evaluation: A pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 2008, 26, 3552–3559. [Google Scholar] [CrossRef]
Variables | n (%) | Diploid (%) | Non-Diploid (%) | Coefficient | p Value | CHO (%) | CHE (%) | Coefficient | p Value |
---|---|---|---|---|---|---|---|---|---|
Age, year | 61.5 ± 8.25 | 61.89 ± 9.19 | 0.021 | 0.796 | 61.67 ± 8.30 | 62.03 ± 10.39 | 0.018 | 0.827 | |
Gender | 0.092 | 0.255 | 0.104 | 0.198 | |||||
Male | 94 (61.0) | 35 (67.3) | 59 (57.8) | 73 (64.0) | 21 (51.5) | ||||
Female | 60 (39.0) | 17 (32.7) | 43 (42.2) | 41 (36.0) | 19 (47.5) | ||||
Histological type | −0.226 | 0.005 | −0.215 | 0.008 | |||||
Adenocarcinoma | 92 (59.7) | 23 (42.2) | 69 (67.6) | 61 (53.5) | 31 (77.5) | ||||
Squamous cell carcinoma | 62 (40.3) | 29 (55.8) | 33 (32.4) | 53 (46.5) | 9 (22.5) | ||||
Stage | 0.094 | 0.244 | −0.008 | 0.923 | |||||
Stage I | 103 (66.9) | 38 (73.1) | 65 (63.7) | 76 (66.7) | 27 (67.5) | ||||
Stage II | 51 (33.1) | 14 (26.9) | 37 (36.3) | 38 (33.3) | 13 (32.5) | ||||
pT stage | 0.014 | 0.697 | −0.066 | 0.349 | |||||
pT1 | 98 (63.6) | 34 (65.4) | 64 (62.7) | 71 (62.3) | 27 (67.5) | ||||
pT2 | 44 (28.6) | 13 (25.0) | 31 (30.4) | 32 (28.1) | 12 (30.0) | ||||
pT3 | 12 (7.8) | 5 (9.6) | 7 (6.9) | 11 (9.6) | 1 (2.5) | ||||
Lymph node status | 0.159 | 0.049 | 0.105 | 0.194 | |||||
Negative | 126 (81.8) | 47 (90.4) | 79 (77.5) | 96 (84.2) | 30 (75.0) | ||||
Positive | 28 (18.2) | 5 (9.6) | 23 (22.5) | 18 (15.8) | 10 (25.0) | ||||
Smoking | −0.128 | 0.111 | −0.192 | 0.017 | |||||
No | 79 (51.3) | 22 (42.3) | 57 (55.9) | 52 (45.6) | 27 (67.5) | ||||
YES | 75 (48.7) | 30 (57.7) | 45 (44.1) | 62 (54.4) | 13 (32.5) | ||||
Recurrence or metastasis | 0.235 | 0.003 | 0.122 | 0.132 | |||||
No | 107 (69.5) | 44 (84.6) | 63 (61.8) | 83 (72.8) | 24 (60.0) | ||||
YES | 47 (30.5) | 8 (15.34) | 39 (38.2) | 31 (27.2) | 16 (40.0) | ||||
DNA ploidy | N/A | N/A | 0.392 | <0.001 | |||||
Diploid | 52 (33.8) | N/A | N/A | 51 (44.7) | 1 (2.5) | ||||
Non-diploid | 102 (66.2) | N/A | N/A | 63 (55.3) | 39 (97.5) | ||||
Nucleotyping | 0.392 | <0.001 | N/A | N/A | |||||
CHO | 114 (74.0) | 51 (98.1) | 63 (61.8) | N/A | N/A | ||||
CHE | 40 (26.0) | 1 (1.9) | 39 (38.2) | N/A | N/A | ||||
TSR | 0.086 | 0.289 | −0.025 | 0.757 | |||||
LS | 126 (81.8) | 44 (84.6) | 82 (80.4) | 92 (80.7) | 34 (85.0) | ||||
HS | 25 (16.2) | 6 (11.5) | 19 (18.6) | 19 (16.7) | 6 (15.0) | ||||
Carbon deposition | 3 (2.0) | 2 (3.9) | 1 (1.0) | 3 (2.6) | 0 (0.0) | ||||
Total | 154 (100) | 52 (100) | 102 (100) | 114 (100) | 40 (100) |
Variables | n | 5-Year-DFS% (95% CI) | HR (95% CI) | p-Value | AHR (95% CI) a | p Value | p for Trend |
---|---|---|---|---|---|---|---|
PN | |||||||
Diploid and CHO (PN low risk) | 51 | 81.75 (66.51–90.52) | Ref. | Ref. | |||
Diploid and CHE or non-diploid and CHO (PN intermediate risk) | 64 | 61.30 (46.66–73.04) | 2.682 (1.198–6.003) | 0.016 | 2.763 (1.196–6.380) | 0.017 | 0.004 |
Non-diploid and CHE (PN high risk) | 39 | 54.14 (34.89–69.93) | 3.226 (1.377–7.557) | 0.007 | 3.601 (1.497–8.754) | 0.004 | |
PS | |||||||
Diploid and LS (PS low risk) | 44 | 79.28 (62.54–89.16) | Ref. | Ref. | |||
Diploid and HS or non-diploid and LS (PS intermediate risk) | 88 | 58.82 (46.06–69.54) | 2.499 (1.150–5.429) | 0.021 | 2.803 (1.244–6.314) | 0.013 | 0.053 |
Non-diploid and HS (PS high risk) | 19 | 64.78 (37.34–82.58) | 2.038 (0.735–5.649) | 0.171 | 2.390 (0.840–6.800) | 0.102 | |
NS | |||||||
CHO and LS (NS low risk) | 92 | 67.32 (55.53–76.63) | Ref. | Ref. | |||
CHO and HS or CHE and LS (NS intermediate risk) | 53 | 65.02 (48.26–77.54) | 0.945 (0.505–1.769) | 0.859 | 1.001 (0.527–1.900) | 0.998 | 0.387 |
CHE and HS (NS high risk) | 6 | 50.00 (11.09–80.37) | 2.053 (0.704–5.987) | 0.188 | 2.192 (0.747–6.431) | 0.153 | |
PNS | |||||||
0 high-risk factor (PNS low risk) | 43 | 78.72 (61.61–88.85) | Ref. | Ref. | |||
1 or 2 high-risk factors (PNS intermediate risk) | 102 | 60.96 (49.29–70.73) | 2.200 (1.020–4.746) | 0.045 | 2.444 (1.088–5.493) | 0.031 | 0.009 |
3 high-risk factors (PNS high risk) | 6 | 50.00 (11.09–80.37) | 3.782 (1.117–12.812) | 0.033 | 4.312 (1.242–14.964) | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, L.; Wu, J.; Zhang, Z.; Mao, L.; Dong, Y.; He, Z.; Wang, H.; Chi, K.; Jiang, Y.; Lin, D. Prognostic Value of Chromatin Structure Typing in Early-Stage Non-Small Cell Lung Cancer. Cancers 2023, 15, 3171. https://doi.org/10.3390/cancers15123171
Mao L, Wu J, Zhang Z, Mao L, Dong Y, He Z, Wang H, Chi K, Jiang Y, Lin D. Prognostic Value of Chromatin Structure Typing in Early-Stage Non-Small Cell Lung Cancer. Cancers. 2023; 15(12):3171. https://doi.org/10.3390/cancers15123171
Chicago/Turabian StyleMao, Luning, Jianghua Wu, Zhongjie Zhang, Lijun Mao, Yuejin Dong, Zufeng He, Haiyue Wang, Kaiwen Chi, Yumeng Jiang, and Dongmei Lin. 2023. "Prognostic Value of Chromatin Structure Typing in Early-Stage Non-Small Cell Lung Cancer" Cancers 15, no. 12: 3171. https://doi.org/10.3390/cancers15123171
APA StyleMao, L., Wu, J., Zhang, Z., Mao, L., Dong, Y., He, Z., Wang, H., Chi, K., Jiang, Y., & Lin, D. (2023). Prognostic Value of Chromatin Structure Typing in Early-Stage Non-Small Cell Lung Cancer. Cancers, 15(12), 3171. https://doi.org/10.3390/cancers15123171