Presence of Myeloid Mutations in Patients with Chronic Myeloid Leukemia Increases Risk of Cardiovascular Event on Tyrosine Kinase Inhibitor Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Next-Generation Sequencing (NGS)
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Cardiovascular Events
3.3. Mutations
3.4. Risk Factors for Cardiovascular Events
3.5. CV Event-Free Survival Rate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deininger, M.W.; Shah, N.P.; Altman, J.K.; Berman, E.; Bhatia, R.; Bhatnagar, B.; DeAngelo, D.J.; Gotlib, J.; Hobbs, G.; Maness, L.; et al. Chronic Myeloid Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc Netw. 2020, 18, 1385–1415. [Google Scholar] [CrossRef] [PubMed]
- Nowell, H.D. The minute chromosome (Phl) in chronic granulocytic leukemia. Blut 1962, 8, 65–66. [Google Scholar] [CrossRef] [PubMed]
- Heisterkamp, N.; Stephenson, J.R.; Groffen, J.; Hansen, P.F.; de Klein, A.; Bartram, C.R.; Grosveld, G. Localization of the c-ab1 onco-gene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 1983, 306, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Hochhaus, A.; Baccarani, M.; Silver, R.T.; Schiffer, C.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Deininger, M.W.; Guilhot, F.; et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020, 34, 966–984. [Google Scholar] [CrossRef] [Green Version]
- Hochhaus, A.; Saglio, G.; Hughes, T.P.; Larson, R.A.; Kim, D.W.; Issaragrisil, S.; le Coutre, P.D.; Etienne, G.; Dorlhiac-Llacer, P.E.; Clark, R.E.; et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016, 30, 1044–1054. [Google Scholar] [CrossRef] [Green Version]
- Cortes, J.E.; Saglio, G.; Kantarjian, H.M.; Baccarani, M.; Mayer, J.; Boqué, C.; Shah, N.P.; Chuah, C.; Casanova, L.; Bradley-Garelik, B.; et al. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naïve Chronic Myeloid Leukemia Patients Trial. J. Clin. Oncol. 2016, 34, 2333–2340. [Google Scholar] [CrossRef] [Green Version]
- Cortes, J.E.; Gambacorti-Passerini, C.; Deininger, M.W.; Mauro, M.J.; Chuah, C.; Kim, D.W.; Dyagil, I.; Glushko, N.; Milojkovic, D.; le Coutre, P.; et al. Bosutinib Versus Imatinib for Newly Diagnosed Chronic Myeloid Leukemia: Results from the Randomized BFORE Trial. J. Clin. Oncol. 2018, 36, 231–237. [Google Scholar] [CrossRef]
- Lipton, J.H.; Chuah, C.; Guerci-Bresler, A.; Rosti, G.; Simpson, D.; Assouline, S.; Etienne, G.; Nicolini, F.E.; le Coutre, P.; Clark, R.E.; et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 612–621. [Google Scholar] [CrossRef]
- Aichberger, K.J.; Herndlhofer, S.; Schernthaner, G.H.; Schillinger, M.; Mitterbauer-Hohendanner, G.; Sillaber, C.; Valent, P. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am. J. Hematol. 2011, 86, 533–539. [Google Scholar] [CrossRef]
- Cortes, J.E.; Kim, D.W.; Pinilla-Ibarz, J.; le Coutre, P.D.; Paquette, R.; Chuah, C.; Nicolini, F.E.; Apperley, J.F.; Khoury, H.J.; Talpaz, M.; et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: Final 5-year results of the phase 2 PACE trial. Blood 2018, 132, 393–404. [Google Scholar] [CrossRef]
- Breccia, M.; Pregno, P.; Spallarossa, P.; Arboscello, E.; Ciceri, F.; Giorgi, M.; Grossi, A.; Mallardo, M.; Nodari, S.; Ottolini, S.; et al. Identification, prevention and management of cardiovascular risk in chronic myeloid leukaemia patients candidate to ponatinib: An expert opinion. Ann. Hematol. 2017, 96, 549–558. [Google Scholar] [CrossRef]
- Montani, D.; Bergot, E.; Günther, S.; Savale, L.; Bergeron, A.; Bourdin, A.; Bouvaist, H.; Canuet, M.; Pison, C.; Macro, M.; et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation 2012, 125, 2128–2137. [Google Scholar] [CrossRef] [Green Version]
- Guignabert, C.; Phan, C.; Seferian, A.; Huertas, A.; Tu, L.; Thuillet, R.; Sattler, C.; Le Hiress, M.; Tamura, Y.; Jutant, E.M.; et al. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J. Clin. Investig. 2016, 126, 3207–3218. [Google Scholar] [CrossRef] [Green Version]
- García-Gutiérrez, V.; Jiménez-Velasco, A.; Gómez-Casares, M.T.; Sánchez-Guijo, F.; López-Sendón, J.L.; Steegmann Olmedillas, J.L. Cardiovascular management of patients with chronic myeloid leukemia from a multidisciplinary perspective, and proposing action protocol by consensus meeting. Med. Clin. 2016, 146, 561.e1–561.e8. [Google Scholar] [CrossRef]
- Duncavage, E.J.; Bagg, A.; Hasserjian, R.P.; DiNardo, C.D.; Godley, L.A.; Iacobucci, I.; Jaiswal, S.; Malcovati, L.; Vannucchi, A.M.; Patel, K.P.; et al. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood 2022, 140, 2228–2247. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef]
- Jaiswal, S.; Natarajan, P.; Silver, A.J.; Gibson, C.J.; Bick, A.G.; Shvartz, E.; McConkey, M.; Gupta, N.; Gabriel, S.; Ardissino, D.; et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 111–121. [Google Scholar] [CrossRef]
- Kim, T.; Tyndel, M.S.; Kim, H.J.; Ahn, J.S.; Choi, S.H.; Park, H.J.; Kim, Y.K.; Kim, S.Y.; Lipton, J.H.; Zhang, Z.; et al. Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood 2017, 129, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Branford, S.; Wang, P.; Yeung, D.T.; Thomson, D.; Purins, A.; Wadham, C.; Shahrin, N.H.; Marum, J.E.; Nataren, N.; Parker, W.T.; et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood 2018, 132, 948–961. [Google Scholar] [CrossRef]
- Nteliopoulos, G.; Bazeos, A.; Claudiani, S.; Gerrard, G.; Curry, E.; Szydlo, R.; Alikian, M.; Foong, H.E.; Nikolakopoulou, Z.; Loaiza, S.; et al. Somatic variants in epigenetic modifiers can predict failure of response to imatinib but not to second-generation tyrosine kinase inhibitors. Haematologica 2019, 104, 2400–2409. [Google Scholar] [CrossRef] [Green Version]
- Adnan Awad, S.; Kankainen, M.; Ojala, T.; Koskenvesa, P.; Eldfors, S.; Ghimire, B.; Kumar, A.; Kytölä, S.; Kamel, M.M.; Heckman, C.A.; et al. Mutation accumulation in cancer genes relates to nonoptimal outcome in chronic myeloid leukemia. Blood Adv. 2020, 4, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Ochi, Y.; Yoshida, K.; Huang, Y.J.; Kuo, M.C.; Nannya, Y.; Sasaki, K.; Mitani, K.; Hosoya, N.; Hiramoto, N.; Ishikawa, T.; et al. Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia. Nat. Commun. 2021, 12, 2833. [Google Scholar] [CrossRef] [PubMed]
- Adnan Awad, S.; Brück, O.; Shanmuganathan, N.; Jarvinen, T.; Lähteenmäki, H.; Klievink, J.; Ibrahim, H.; Kytölä, S.; Koskenvesa, P.; Hughes, T.P.; et al. Epigenetic modifier gene mutations in chronic myeloid leukemia (CML) at diagnosis are associated with risk of relapse upon treatment discontinuation. Blood Cancer J. 2022, 12, 69. [Google Scholar] [CrossRef] [PubMed]
- Curik, N.; Polivkova, V.; Burda, P.; Koblihova, J.; Laznicka, A.; Kalina, T.; Kanderova, V.; Brezinova, J.; Ransdorfova, S.; Karasova, D.; et al. Somatic Mutations in Oncogenes Are in Chronic Myeloid Leukemia Acquired De Novo via Deregulated Base-Excision Repair and Alternative Non-Homologous End Joining. Front. Oncol. 2021, 11, 744373. [Google Scholar] [CrossRef]
- Jaiswal, S. Clonal hematopoiesis and nonhematologic disorders. Blood 2020, 136, 1606–1614. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Di Lisi, D.; Madaudo, C.; Alagna, G.; Santoro, M.; Rossetto, L.; Siragusa, S.; Novo, G. The new HFA/ICOS risk assessment tool to identify patients with chronic myeloid leukaemia at high risk of cardiotoxicity. ESC Heart Fail. 2022, 9, 1914–1919. [Google Scholar] [CrossRef]
- Hadzijusufovic, E.; Albrecht-Schgoer, K.; Huber, K.; Hoermann, G.; Grebien, F.; Eisenwort, G.; Schgoer, W.; Herndlhofer, S.; Kaun, C.; Theurl, M.; et al. Nilotinib-induced vasculopathy: Identification of vascular endothelial cells as a primary target site. Leukemia 2017, 31, 2388–2397. [Google Scholar] [CrossRef] [Green Version]
- Giles, F.J.; Rea, D.; Rosti, G.; Cross, N.C.P.; Steegmann, J.L.; Griskevicius, L.; le Coutre, P.; Coriu, D.; Petrov, L.; Ossenkoppele, G.J.; et al. Impact of age on efficacy and toxicity of nilotinib in patients with chronic myeloid leukemia in chronic phase: ENEST1st subanalysis. J. Cancer Res. Clin. Oncol. 2017, 143, 1585–1596. [Google Scholar] [CrossRef] [Green Version]
- Giles, F.J.; Mauro, M.J.; Hong, F.; Ortmann, C.E.; McNeill, C.; Woodman, R.C.; Hochhaus, A.; le Coutre, P.D.; Saglio, G. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: A retrospective cohort analysis. Leukemia 2013, 27, 1310–1315. [Google Scholar] [CrossRef] [Green Version]
- Jain, P.; Kantarjian, H.; Boddu, P.C.; Nogueras-González, G.M.; Verstovsek, S.; Garcia-Manero, G.; Borthakur, G.; Sasaki, K.; Kadia, T.M.; Sam, P.; et al. Analysis of cardiovascular and arteriothrombotic adverse events in chronic-phase CML patients after frontline TKIs. Blood Adv. 2019, 3, 851–861. [Google Scholar] [CrossRef]
- Cortes, J.E.; Khoury, H.J.; Kantarjian, H.; Brümmendorf, T.H.; Mauro, M.J.; Matczak, E.; Pavlov, D.; Aguiar, J.M.; Fly, K.D.; Dimitrov, S.; et al. Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib. Am. J. Hematol. 2016, 91, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Bick, A.G.; Pirruccello, J.P.; Griffin, G.K.; Gupta, N.; Gabriel, S.; Saleheen, D.; Libby, P.; Kathiresan, S.; Natarajan, P. Genetic Interleukin 6 Signaling Deficiency Attenuates Cardiovascular Risk in Clonal Hematopoiesis. Circulation 2020, 141, 124–131. [Google Scholar] [CrossRef]
- Segura-Díaz, A.; Stuckey, R.; Florido, Y.; Sobas, M.; Álvarez-Larrán, A.; Ferrer-Marín, F.; Pérez-Encinas, M.; Carreño-Tarragona, G.; Fox, M.L.; Tazón Vega, B.; et al. Presence of DNMT3A/TET2/ASXL1 mutations in polycythemia vera patients increases risk of thrombosis independently of age. Blood Adv. 2023. accepted. [Google Scholar]
- Bocchia, M.; Galimberti, S.; Aprile, L.; Sicuranza, A.; Gozzini, A.; Santilli, F.; Abruzzese, E.; Baratè, C.; Scappini, B.; Fontanelli, G.; et al. Genetic predisposition and induced pro-inflammatory/pro-oxidative status may play a role in increased atherothrombotic events in nilotinib treated chronic myeloid leukemia patients. Oncotarget 2016, 7, 72311–72321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caocci, G.; Mulas, O.; Abruzzese, E.; Luciano, L.; Iurlo, A.; Attolico, I.; Castagnetti, F.; Galimberti, S.; Sgherza, N.; Bonifacio, M.; et al. Arterial occlusive events in chronic myeloid leukemia patients treated with ponatinib in the real-life practice are predicted by the Systematic Coronary Risk Evaluation (SCORE) chart. Hematol. Oncol. 2019, 37, 296–302. [Google Scholar] [CrossRef]
- Manouchehri, A.; Kanu, E.; Mauro, M.J.; Aday, A.W.; Lindner, J.R.; Moslehi, J. Tyrosine Kinase Inhibitors in Leukemia and Cardiovascular Events: From Mechanism to Patient Care. Arter. Thromb. Vasc. Biol. 2020, 40, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; Hughes, T.P.; Larson, R.A.; Kim, D.W.; Issaragrisil, S.; le Coutre, P.; Etienne, G.; Boquimpani, C.; Pasquini, R.; Clark, R.E.; et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia 2021, 35, 440–453. [Google Scholar] [CrossRef]
- Dorer, D.J.; Knickerbocker, R.K.; Baccarani, M.; Cortes, J.E.; Hochhaus, A.; Talpaz, M.; Haluska, F.G. Impact of dose intensity of ponatinib on selected adverse events: Multivariate analyses from a pooled population of clinical trial patients. Leuk. Res. 2016, 48, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Žácková, D.; Ježíšková, A.; Kvetková, A.; Jurček, T.; Yoo, Y.S.; Lee, H.; Kim, K.H.; Chang, M.H.; Yi, S.Y.; et al. Somatic Mutations in Myeloid Transcription Factors and in Activated Signaling Pathway, but Not in Epigenetic Modifier Pathway, Predict the Risk of Treatment Failure and Progression to Advanced Phase in Chronic Myeloid Leukemia. Blood 2022, 140, 812–814. [Google Scholar] [CrossRef]
- Wu, M.D.; Moslehi, J.J.; Lindner, J.R. Arterial Thrombotic Complications of Tyrosine Kinase Inhibitors. Arter. Thromb. Vasc. Biol. 2021, 41, 3–10. [Google Scholar] [CrossRef] [PubMed]
Patient | First CV Event | Second CV Event |
---|---|---|
1 | Deep vein thrombosis | |
2 | Ischemic stroke | |
3 | Chronic ischemic syndrome | |
4 | Acute coronary syndrome | |
5 | Ischemic stroke | |
6 | Portal vein thrombosis | Subclavian artery thrombosis |
7 | Coronary artery disease | |
8 | Chronic ischemic syndrome | |
9 | Transient ischemic attack | Transient ischemic attack |
10 | Peripheral artery disease and acute coronary syndrome | |
11 | Acute coronary syndrome | |
12 | Acute coronary syndrome | |
13 | Ischemic stroke | |
14 | Portal vein thrombosis | |
15 | Chronic ischemic syndrome | |
16 | Ischemic stroke | |
17 | Acute coronary syndrome | |
18 | Coronary artery disease | |
19 | Aortic aneurysm | |
20 | Acute coronary syndrome | |
21 | Acute coronary syndrome | |
22 | Acute coronary syndrome | Acute coronary syndrome |
23 | Acute coronary syndrome | |
24 | Acute coronary syndrome | |
25 | Acute coronary syndrome | |
26 | Pulmonary embolism 1 |
HR | CI | p-Value | HR | CI | p-Value | ||
---|---|---|---|---|---|---|---|
Age ≥ 60 years at diagnosis | 3.60 | 1.55–8.33 | 0.003 | Age ≥ 60 years at diagnosis | 4.11 | 1.75–9.71 | 0.001 |
Pathogenic mutation | 2.79 | 1.27–6.10 | 0.01 | Any mutation 1 | 2.54 | 1.15–5.62 | 0.021 |
First-line imatinib | 0.29 | 0.13–0.64 | 0.002 | First-line imatinib | 0.31 | 0.14–0.70 | 0.004 |
Age ≥ 60 years at diagnosis | 3.29 | 1.42–7.63 | 0.005 | Age ≥ 60 years at diagnosis | 3.73 | 1.59–8.77 | 0.003 |
Pathogenic mutation | 2.62 | 1.20–5.75 | 0.016 | Any mutation 1 | 2.49 | 1.13–5.52 | 0.024 |
First-line nilotinib | 2.38 | 1.04–5.41 | 0.039 | First-line nilotinib | 2.16 | 0.95–4.95 | 0.067 |
Age ≥ 60 years at diagnosis | 3.60 | 1.55–8.33 | 0.003 | Age ≥ 60 years at diagnosis | 4.11 | 1.75–9.71 | 0.001 |
Pathogenic mutation | 2.79 | 1.27–6.10 | 0.010 | Any mutation 1 | 2.53 | 1.15–5.62 | 0.021 |
2G-TKI in first line | 3.48 | 1.57–7.75 | 0.002 | 2G-TKI in first line | 3.17 | 1.43–7.04 | 0.004 |
CV Event-Free Survival (%) | Imatinib | 2G-TKI | ||
---|---|---|---|---|
No Mutation | With Mutation | No Mutation | With Mutation | |
24 months | 96.2 | 94.7 | 95.8 | 83.3 |
48 months | 94.1 | 83.6 | 91.3 | 62.5 |
120 months | 87.3 | 60.4 | 54.1 | 31.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuckey, R.; Segura-Díaz, A.; Sáez Perdomo, M.N.; Pérez Encinas, M.M.; González San Miguel, J.D.; Florido, Y.; Sánchez-Sosa, S.; López-Rodríguez, J.F.; Bilbao-Sieyro, C.; Gómez-Casares, M.T., on behalf of the Spanish CML Group (GELMC). Presence of Myeloid Mutations in Patients with Chronic Myeloid Leukemia Increases Risk of Cardiovascular Event on Tyrosine Kinase Inhibitor Treatment. Cancers 2023, 15, 3384. https://doi.org/10.3390/cancers15133384
Stuckey R, Segura-Díaz A, Sáez Perdomo MN, Pérez Encinas MM, González San Miguel JD, Florido Y, Sánchez-Sosa S, López-Rodríguez JF, Bilbao-Sieyro C, Gómez-Casares MT on behalf of the Spanish CML Group (GELMC). Presence of Myeloid Mutations in Patients with Chronic Myeloid Leukemia Increases Risk of Cardiovascular Event on Tyrosine Kinase Inhibitor Treatment. Cancers. 2023; 15(13):3384. https://doi.org/10.3390/cancers15133384
Chicago/Turabian StyleStuckey, Ruth, Adrián Segura-Díaz, María Nieves Sáez Perdomo, Manuel Mateo Pérez Encinas, Jóse David González San Miguel, Yanira Florido, Santiago Sánchez-Sosa, Juan Francisco López-Rodríguez, Cristina Bilbao-Sieyro, and María Teresa Gómez-Casares on behalf of the Spanish CML Group (GELMC). 2023. "Presence of Myeloid Mutations in Patients with Chronic Myeloid Leukemia Increases Risk of Cardiovascular Event on Tyrosine Kinase Inhibitor Treatment" Cancers 15, no. 13: 3384. https://doi.org/10.3390/cancers15133384
APA StyleStuckey, R., Segura-Díaz, A., Sáez Perdomo, M. N., Pérez Encinas, M. M., González San Miguel, J. D., Florido, Y., Sánchez-Sosa, S., López-Rodríguez, J. F., Bilbao-Sieyro, C., & Gómez-Casares, M. T., on behalf of the Spanish CML Group (GELMC). (2023). Presence of Myeloid Mutations in Patients with Chronic Myeloid Leukemia Increases Risk of Cardiovascular Event on Tyrosine Kinase Inhibitor Treatment. Cancers, 15(13), 3384. https://doi.org/10.3390/cancers15133384