Artificial Intelligence-Based Hazard Detection in Robotic-Assisted Single-Incision Oncologic Surgery
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
2.1. Critical Analysis of Hazard Detection Techniques
2.1.1. SSD (Single-Shot Detector)
2.1.2. Faster R-CNN (Faster Region-Based Convolutional Network)
2.1.3. YOLOv5
2.2. Detection System Architecture
PARA-SILS-ROB
- (a)
- Motions outside the body: The 6-DOF parallel robot positions and orients the mobile platform carrying the instruments, aiming to move the tips of the three instruments over the insertion points in the body (using any model of a SILS port). The active instruments’ modules will orient the active instruments’ tips to ensure that the distance between their tips and the tip of the endoscopic camera is consistent with the SILS port. This motion is achieved without any restrictions.
- (b)
- Instruments’ insertion into the body: The instruments’ modules will insert the instruments based on predefined depths on linear trajectories. In this step, restrictions are applied onto the robotic system, as follows: (1) The 6-DOF parallel robot will register the insertion point coordinates of the endoscopic camera, which will be used as a fixed point in the robot workspace from this moment on until the instruments will be removed from the body—based on the principle of remote center of motion (RCM) [33,34]. (2) The 6-DOF parallel robot will preserve its vertical axis coordinates. The instruments’ insertion inside the body is performed only by the insertion modules.
- (c)
- Motions inside the body: The 6-DOF parallel robot will achieve the orientation of the endoscopic camera (preserving the fixed point, defined earlier as RCM). The orientation of the active instruments is achieved through the orientation function of the active instruments’ modules, which achieve the RCM through kinematic constraints.
2.3. Software Development and Testing
2.3.1. Dataset
- (a)
- The video had to contain the onset of bleeding. In this way, the algorithm was trained to detect the bleeding from the start and to mark its location.
- (b)
- It had to contain both scenes where the bleeding was present and where it was not. The images where the bleeding was not present were used as negative samples to avoid the overfitting of the model and to increase the accuracy.
- (c)
- The clip needed to offer the possibility to track the event—the bleeding event had to be visible (without many juxtapositions) to create (if needed) a trace of the bleeding.
2.3.2. Augmentation
2.3.3. TCP/IP Connection
3. Results
4. Discussion
- Neo-adjuvant treatments. Very often, cancer patients undergo chemotherapy and/or radiation therapy [37], targeting tumor shrinkage (turning an inoperable tumor into a manageable one), which has uncontrollable side effects on the neighboring tissues.
- Tumor location. As tumors have higher vascularity or location in the proximity of large blood vessels, the surgical intervention may often cause unwanted bleeding, which is more prone to uncontrollable hemorrhages [38].
- Blood-thinning medication. As shown in [39], cancer patients have a 50% to 70% higher risk of bleeding compared to non-cancer patients (with the same anticoagulant).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghoushchi, S.; Memarpour Ghiaci, A.; Rahnamay Bonab, S.; Ranjbarzadeh, R. Barriers to circular economy implementation in designing of sustainable medical waste management systems using a new extended decision-making and FMEA models. Environ. Sci. Pollut. Res. 2022, 29, 79735–79753. [Google Scholar] [CrossRef] [PubMed]
- Morales-Conde, S.; Peeters, A.; Meyer, Y.M.; Antoniou, S.A.; del Agua, I.A.; Arezzo, A.; Arolfo, S.; Ben Yehuda, A.; Boni, L.; Cassinotti, E.; et al. European association for endoscopic surgery (EAES) consensus statement on single-incision endoscopic surgery. Surg. Endosc. 2019, 33, 996–1019. [Google Scholar] [CrossRef] [PubMed]
- Dapri, G. 10-Year Experience with 1700 Single-Incision Laparoscopies. Surg. Technol. Int. 2019, 35, 71–83. [Google Scholar]
- Guido-Guerrero, W.; Bolaños-Cubillo, A.; González-Rivas, D. Single-port video-assisted thoracic surgery (VATS)-advanced procedures & update. J. Thorac. Dis. 2018, 10 (Suppl. 14), S1652–S1661. [Google Scholar] [CrossRef]
- Saidy, M.N.; Tessier, M.; Tessier, D. Single-incision laparoscopic surgery—hype or reality: A historical control study. Perm. J. 2012, 16, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Abouarab, A.A.; Rahouma, M.; Kamel, M.; Ghaly, G.; Mohamed, A. Single Versus Multi-Incisional Video-Assisted Thoracic Surgery: A Systematic Review and Meta-analysis. J. Laparoendosc. Adv. Surg. Tech. A 2018, 28, 174–185. [Google Scholar] [CrossRef]
- Meacci, E.; Nachira, D.; Zanfrini, E.; Triumbari, E.K.A.; Iaffaldano, A.G.; Congedo, M.T.; Petracca Ciavarella, L.; Pogliani, L.; Chiappetta, M.; Porziella, V.; et al. Uniportal VATS approach to sub-lobar anatomic resections: Literature review and personal experience. J. Thorac. Dis. 2020, 12, 3376–3389. [Google Scholar] [CrossRef]
- Ishikawa, N.; Kawaguchi, M.; Moriyama, H.; Watanabe, G. Single-Incision Robotic Surgery. Surg. Sci. 2012, 3, 84–86. [Google Scholar] [CrossRef]
- Yanyan, L.; Jiaqiang, X.; Yurou, C.; Yuexiong, Y.; Wei, Z. Advances in the application of robotic single-site laparoscopy in gynecology. Intell. Surg. 2022, 4, 12–17. [Google Scholar]
- Sihoe, A.D.L. Transition from multiportal video-assisted thoracic surgery to uniportal video-assisted thoracic surgery and evolution to uniportal robotic-assisted thoracic surgery? Ann. Cardiothorac. Surg. 2023, 12, 82–90. [Google Scholar] [CrossRef]
- Ranjbarzadeh, R.; Saadi, S.B.; Amirabadi, A. LNPSS: SAR image despeckling based on local and non-local features using patch shape selection and edges linking. Measurement 2020, 164, 107989. [Google Scholar] [CrossRef]
- Vaida, C.; Crisan, N.; Birlescu, I.; Andras, I.; Pisla, D. Preliminary Assessment of Artificial Intelligence Agents for a SILS Robotic System. In Proceedings of the 2021 International Conference on e-Health and Bioengineering (EHB), Iasi, Romania, 18–19 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Ahuja, A.S.; Polascik, B.W.; Doddapaneni, D.; Byrnes, E.S.; Sridhar, J. The Digital Metaverse: Applications in Artificial Intelligence, Medical Education, and Integrative Health. Integr. Med. Res. 2023, 12, 100917. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, P. The Prospect for the Application of the Surgical Navigation System Based on Artificial Intelligence and Augmented Reality. In Proceedings of the 2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), Taichung, Taiwan, 10–12 December 2018; pp. 244–246. [Google Scholar] [CrossRef]
- Pauly, O.; Diotte, B.; Fallavollita, P.; Weidert, S.; Euler, E.; Navab, N. Machine learning-based augmented reality for improved surgical scene understanding. Comput. Med. Imaging Graph. 2015, 41, 55–60. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Goel, N.; Yadav, A.; Singh, B. Medical image processing: A review. In Proceedings of the 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH), Ghaziabad, India, 18–19 November 2016; pp. 57–62. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Alexander, C.B. SSD: Single Shot MultiBox Detector. In Computer Vision—ECCV 2016. Lecture Notes in Computer Science; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 9905. [Google Scholar]
- Ren, S.; Girshick, K.; He, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef]
- Du, L.; Zhang, R.; Wang, X. Overview of two-stage object detection algorithms. J. Phys. Conf. Ser. 2020, 1544, 012033. [Google Scholar] [CrossRef]
- Peiyuan, J.; Daji, R.; Fangyao, L.; Ying, C.; Bo, M. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar]
- Zhan, W.; Sun, C.; Wang, M.; She, J.; Zhang, Y.; Zhang, Z.; Sun, Y. An improved Yolov5 real-time detection method for small objects captured by UAV. Soft Comput. 2022, 26, 361–373. [Google Scholar] [CrossRef]
- Kaiyue, L.; Haitong, T.; Shuang, H.; Qin, Y.; Yulong, X.; Nizhuan, W. Performance Validation of Yolo Variants for Object Detection. In Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing, Harbin, China, 22–24 January 2021. [Google Scholar] [CrossRef]
- Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs. Sensors 2022, 22, 464. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.microsoft.com/en-us/hololens (accessed on 12 May 2023).
- Marco von Atzigen, M.; Liebmann, F.; Hoch, A.; Bauer, D.E.; Snedeker, J.G.; Farshad, M.; Fürnstahl, P. HoloYolo: A proof-of-concept study for marker-less surgical navigation of spinal rod implants with augmented reality and on-device machine learning. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, 1–10. [Google Scholar] [CrossRef]
- Huber, T.; Hadzijusufovic, E.; Hansen, C.; Paschold, M.; Lang, H.M.A.; Kneist, W. Head-Mounted Mixed-Reality Technology During Robotic-Assisted Transanal Total Mesorectal Excision. Dis. Colon Rectum 2019, 62, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Vaida, C.; Rus, G.; Gherman, B.; Pusca, A.; Tucan, P.; Ulinici, I.; Pisla, D. Development of an augmented reality simulator for a robotic system used in single incision laparoscopic surgery. The Romanian Journal of Technical Sciences. Appl. Mech. 2023, 68, 3–19. [Google Scholar]
- Pisla, D.; Gherman, B.; Tucan, P.; Birlescu, I.; Pusca, A.; Rus, G.; Pisla, A.; Vaida, C. Application Oriented Modelling and Sim-ulation of an Innovative Parallel Robot for Single Incision Laparoscopic Surgery. In Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, the 46th Mechanisms and Robotics Conference (MR), St. Louis, MI, USA, 14–17 August 2022; Volume 7. V007T07A032. ASME. [Google Scholar]
- Vaida, C.; Andras, I.; Birlescu, I.; Crisan, N.; Plitea, N.; Pisla, D. Preliminary control design of a Single-Incision Laparoscopic Surgery Robotic System. In Proceedings of the 2021 25th International Conference on System Theory, Control and Computing (ICSTCC), Iasi, Romania, 20–23 October 2021; pp. 384–389. [Google Scholar] [CrossRef]
- Pisla, D.; Birlescu, I.; Vaida, C.; Tucan, P.; Gherman, B.; Plitea, N. Family of Modular Parallel Robots with Active Translational Joints for Single Incision Laparoscopic Surgery. OSIM A00733/03.12.2021, 3 December 2021. [Google Scholar]
- Pisla, D.; Plitea, N.; Gherman, B.G.; Vaida, C.; Pisla, A.; Suciu, M. Kinematics and Design of a 5-DOF Parallel Robot Used in Minimally Invasive Surgery. In Advances in Robot Kinematics: Motion in Man and Machine; Lenarcic, J., Stanisic, M., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 99–106. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, H.; Feng, M.; Zhao, J.; Fu, Y. New remote centre of motion mechanism for robot-assisted minimally invasive surgery. Biomed. Eng. Online 2018, 17, 170. [Google Scholar] [CrossRef]
- Pisla, D.; Plitea, N.; Vaida, C.; Hesselbach, J.; Raatz, A.; Vlad, L.; Graur, F.; Gyurka, B.; Gherman, B.; Suciu, M. PARAMIS parallel robot for laparoscopic surgery. Chirurgia 2010, 105, 677–683. [Google Scholar]
- Cartucho, J.; Ventura, R.; Veloso, M. Robust Object Recognition Through Symbiotic Deep Learning In Mobile Robots. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 2336–2341. [Google Scholar] [CrossRef]
- Minervini, F.; Kocher, G.J.; Bertoglio, P.; Kestenholz, P.B.; Gálvez Muñoz, C.; Patrini, D.; Ceulemans, L.J.; Begum, H.; Lutz, J.; Shojai, M.; et al. Pneumonectomy for lung cancer in the elderly: Lessons learned from a multicenter study. J. Thorac. Dis. 2021, 13, 5835–5842. [Google Scholar] [CrossRef]
- Li, H.; Liu, R.; Li, J.; Li, J.; Wu, H.; Wang, G.; Li, D. Tumor location influences perioperative and oncologic outcomes in solitary intrahepatic cholangiocarcinoma following curative resection: A multi-center analysis. HPB 2022, 24, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Angelini, D.E.; Radivoyevitch, T.; McCrae, K.R.; Khorana, A.A. Bleeding incidence and risk factors among cancer patients treated with anticoagulation. Am. J. Hematol. 2019, 94, 780–785. [Google Scholar] [CrossRef]
Model | Learning Rate | Batch Size | Optimizer | Epochs |
---|---|---|---|---|
YOLOv5s YOLOv5m | 0.1 0.05 0.001 | 8 16 32 | SGDM Adam | 100 250 350 500 |
Train/ Box_Loss | Train/ Obj_Loss | Metrics/ Precision | Metrics/ Recall | Metrics/ mAP_0.5 | Metrics/ mAP_0.5:0.95 | Val/ Box_Loss | Val/ Obj_Loss |
---|---|---|---|---|---|---|---|
0.015182 | 0.0049918 | 0.7293 | 0.9641 | 0.93654 | 0.82633 | 0.012306 | 0.0038008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rus, G.; Andras, I.; Vaida, C.; Crisan, N.; Gherman, B.; Radu, C.; Tucan, P.; Iakab, S.; Hajjar, N.A.; Pisla, D. Artificial Intelligence-Based Hazard Detection in Robotic-Assisted Single-Incision Oncologic Surgery. Cancers 2023, 15, 3387. https://doi.org/10.3390/cancers15133387
Rus G, Andras I, Vaida C, Crisan N, Gherman B, Radu C, Tucan P, Iakab S, Hajjar NA, Pisla D. Artificial Intelligence-Based Hazard Detection in Robotic-Assisted Single-Incision Oncologic Surgery. Cancers. 2023; 15(13):3387. https://doi.org/10.3390/cancers15133387
Chicago/Turabian StyleRus, Gabriela, Iulia Andras, Calin Vaida, Nicolae Crisan, Bogdan Gherman, Corina Radu, Paul Tucan, Stefan Iakab, Nadim Al Hajjar, and Doina Pisla. 2023. "Artificial Intelligence-Based Hazard Detection in Robotic-Assisted Single-Incision Oncologic Surgery" Cancers 15, no. 13: 3387. https://doi.org/10.3390/cancers15133387
APA StyleRus, G., Andras, I., Vaida, C., Crisan, N., Gherman, B., Radu, C., Tucan, P., Iakab, S., Hajjar, N. A., & Pisla, D. (2023). Artificial Intelligence-Based Hazard Detection in Robotic-Assisted Single-Incision Oncologic Surgery. Cancers, 15(13), 3387. https://doi.org/10.3390/cancers15133387