Beyond the Knife in Renal Cell Carcinoma: A Systematic Review—To Ablate or Not to Ablate?
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Description of the Condition
1.1.1. Renal Cell Carcinoma (RCC)
1.1.2. Systemic Therapy in the First-Line Treatment Setting
1.1.3. Systemic Therapy in the Second-Line Treatment Setting or More
1.1.4. Metastasectomy
1.1.5. Active Surveillance (AS)
1.2. Description of Interventions/How These Interventions May Work
1.2.1. Thermal Ablative Therapies
Radiofrequency Ablation (RFA)
Cryotherapy
Microwave Ablation (MWA)
1.2.2. Stereotactic Body Radiotherapy (SBRT)
1.3. Why It Is Important to Do This Review
One Treatment Strategy May Not Fit All
1.4. Objectives
- To review the current role of metastasis-directed ablative therapies in the management of adult extracranial metastatic renal cell carcinoma inclusive of efficacy outcome measures and toxicity of different treatment modalities.
- To evaluate different ablative techniques including thermal ablation (including RFA, cryotherapy, and MWA) and SBRT.
2. Materials and Methods
2.1. Criteria for Considering Studies for This Review
2.1.1. Types of Studies
2.1.2. Population
2.1.3. Comparisons
2.1.4. Outcome Measures
2.2. Search Methods for Identification of Studies
2.2.1. Search Databases/Registries
- MEDLINE
- The Cochrane Library
- Clinical Trials.gov
2.2.2. Search Strategy
- [Renal cell carcinoma ‘OR’ RCC]‘AND’
- [Metastasis ‘OR’ Metastases ‘OR’ Metastatic]
- ‘AND’
- [Ablation ‘OR’ Ablate ‘OR’ Ablative ‘OR’ Thermal ablation ‘OR’ Catheter ablation ‘OR’ Radiotherapy ‘OR’ Irradiation ‘OR’ Radiosurgery ‘OR’ Stereotactic body radiotherapy ‘OR’ SBRT ‘OR’ SRT ‘OR’ Stereotactic radiotherapy ‘OR’ Stereotactic ablative radiotherapy ‘OR’ SABR ‘OR’ Radiofrequency ablation ‘OR’ RFA ‘OR’ Cryotherapy ‘OR’ Cryoablation ‘OR’ Microwave]
2.2.3. Inclusion Criteria
- >18 years
- English language
2.2.4. Exclusion Criteria
- Retrospective (unless matched-pair case–control)
- Terminated/withdrawn studies
- Non-RCC histology
- Basket studies (non-histology specific) with fewer than 10 RCC participants or that did not report how many RCC participants
- Review articles, editorials, and case reports
- Paediatric cohorts
- Intracranial studies
- Radiology studies
2.3. Data Collection and Analysis
2.3.1. Selection of Studies
2.3.2. Data Extraction and Management
2.3.3. Strategy for Data Synthesis
3. Results
3.1. Description of Studies
3.1.1. Included Studies
RCC SBRT Studies (See Table 1a) and RCC Thermal Ablation Studies (See Table 1b)
Basket Studies of Multiple Histologies (See Table 1c)
Ongoing Trials (See Table 2)
3.1.2. Excluded Studies
3.1.3. Risk of Bias in Included Studies
3.2. Effects of Interventions
3.2.1. Overall Numbers
3.2.2. Demographics/Patient Characteristics
3.2.3. Follow-Up
3.2.4. Local Control
3.2.5. Overall Survival
3.2.6. Progression-Free Survival
3.2.7. Severe Toxicity
Trial Author | Setting | Study Design | Patient Numbers | Risk Group | Nephrectomy | Pathology (% Clear Cell) | Systemic Treatment | Treatment Regime | FU Median (Months) | Local Disease Control | OS | PFS | Toxicity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(a) | |||||||||||||
Tang et al., 2021 [48] | OM | Phase 2 single-arm | 30 | IMDC: favourable 47%, intermediate 50%, poor 3% | 100% | 100% | Up to 1 prior line; no concurrent systemic treatment permitted | Sequential RT to all OM (SBRT ≤5 fractions with ≥7 Gy/f, If IMRT 52.5–70 Gy in 10–15 f); 43.3% 2nd course of radiotherapy | 17.5 | LC 97%. 1-year systemic therapy-free survival 82% (95% CI 70–98) | NR | Median PFS 22.7 m | ≥Grade 3 10% (back pain/muscle ache, hyperglycaemia) |
Siva et al., 2022 (RAPPORT) [49] | OM | Single-arm | 30 (83 lesions) | IMDC: favourable 56%, intermediate 44%, poor 0% | 100% | 100% | Pembrolizumab | SBRT to all OM + IO 77%—20 Gy in 1f, 23%—30 Gy in 10f | 28.0 | DCR 83% | 12 m OS 90%, 24 m OS 74% | 12 m PFS 60%, 24 m PFS 45% | 13% overall Grade 3 toxicity, 6.5% Grade 3 toxicity attributable to IO + SBRT |
Hannan et al., 2021 [50] | OP | Phase 2 single-arm | 23 (37 lesions) | IMDC: favourable 25%, intermediate 75%, poor 0% | 60% CN, 35% RN (60% synchronous mets) | 90% | Up to 4 lines TKI, IO, mTOR-I | Sequential SBRT to all OP lesions (8.1% kidney). 25 Gy × 1f, 12 Gy × 3 f, 8 Gy × 5f | 10.4 | LC 100%, extended duration of the ongoing systemic therapy by >6 m in 70%, 95% CI: 49.9–90.1) | Median OS not reached | Median PFS 11.1 m 12 m 79% | Grade 3 5% |
Cheung et al., 2021 [51] | OP | Phase 2 single-arm | 37 (57 lesions) | IMDC: favourable 32%, intermediate 68%, poor 0% | 100% | 65%, 35% clear cell component | TKI and IO | SBRT to 1–5 OP lesions. Median 72 Gy BED | 11.8 | 12 m LC 93% TTNT 12.6 m | 12 m OS 92% | Median PFS 9.3 m 12 m 84.7% 24 m 50.8% | No grade ≥ 3 toxicity |
de Wolf et al., 2017 [52] | PM | Phase 1 dose-escalation | 13 | MSKCC good 31%, intermediate 54%, high 0% | 100% | NR | TKI | SBRT to largest lesion + TKI (24, 30, 36 Gy in 3f) | 10.9 | 12 m LC 83% | NR | Median PFS 6.7 m | No DLTs seen at 24 and 30 Gy; at 36 Gy—single DLT Gd 4 hypoglycaemia; Gd 3–4 pazopanib toxicity 38% |
Masini et al., 2022 (NIVES) [53] | PM | Phase 2 single-arm | 69 | IMDC: favourable 26%, intermediate 65%, poor 9% | 77% | 80% | Nivolumab | SBRT to largest site, 30 Gy in 3f | 26.0 | DCR 85% ORR 17% | Median OS 20 m | Median PFS 5.6 m | All grade 3 toxicity outside of irradiated area |
Dengina et al., 2019 (VOLGA) [54] | PM | Phase 1b single-arm | 17 (17 lesions) | NR | 24% CN, 71% RN | TKI and IO | If stable for 4 months on systemic treatment, SBRT to 1 of 2 lesions in the same organ/compared to control lesion; 65% BED >100 Gy | 8.0 | ORR 76% | NR | NR | No grade ≥ 3 toxicity | |
Hammers et al., 2020 (RADVAX abstract) [47] | PM | Single-arm | 25 | IMDC: favourable 8%, intermediate 80%, poor 12% | 77% | 100% | Ipilimumab/nivolumab | SBRT to 1–2 lesions + IO (50 Gy in 5f) | NR | ORR 56% | NR | NR | 40% requiring steroids for dual IO toxicity; no grade 3 toxicity attributed to SBRT |
Nguyen et al., 2010 [55] | PM | Single-arm | 48 (55 lesions) | NR | 100% | NR | NR | SBRT to spine; 24 Gy/1f, 27 Gy/3f, 30 Gy/5f | 13.1 | 12 m spinal PFS 82%; 52% pain-free at 12 m (23% at baseline) | Median OS 22 m 12 m OS 72% | NR | 4% grade ≥ 3 toxicity (pain, anaemia) |
Sohn et al., 2014 [56] | PM | Matched-pair retrospective | 26 | NR | NR | NR | NR | 61.7 Gy (± 19.6) SBRT and 32 ± 8.4 for RT arm | NR | 12 m LC 85.7% SRS 12 m 29% with RT VAS change SBRT 4.4 ± 2.3 VAS change RT 2.8 ± 2.5 | NR | PFS benefit reported for SBRT vs. RT | No grade ≥ 3 toxicity 15.3% fracture SRS, 0% RT |
Gerszten et al., 2005 [57] | PM | Single-arm | 48 (60 lesions) | NR | NR | NR | NR | SBRT to spine, mean 20 Gy, 70% retreatments | 37 m | 87.5% local control (reported for 8 lesions), pain control 89% | NR | NR | No significant toxicity reported in immediate post-procedural timeframe |
Svedman et al., 2006 [58] | PM | Phase 2 single-arm | 30 (82 lesions) | NR | 83% | NR | No treatment 4 weeks before SBRT | Sequential SBRT allowed (70.1% lung, 11.2% kidney) (8 Gy × 4, 10 Gy × 4, 15 Gy × 2, 15 Gy × 3) | 52 m alive patients, 22 m dead patients | 79% | Median OS 32 m | NR | 1 possible Gd 5 toxicity (large pleural lesion) |
Correa et al., 2018 [59] | CR | Phase 1 dose-escalation | 12 | IMDC: favourable 8.3%, intermediate 66.7%, poor 25% | Not applicable | 75% | 50% no ST; adjuvant TKI/ mTOR-I permitted | SBRT to whole kidney (25 (n = 3), 30 (n = 6), 35 Gy (n = 3) in 5 f) | 22.0 | 17.3% median size reduction | Median OS 6.7 m | NR | Single grade 3 DLT at 30 Gy (group repeated); 2 grade 3 DLTs in 35 Gy cohort (MTD = 35 Gy); G3 events (2 fatigue, 1 bone pain); no significant reduction in GFR at 12 weeks |
Singh et al., 2022 [60] | CR | Single-arm | 16 | n = 3 partial, n = 11 total post SBRT | 75% | None | SBRT to kidney lesion (15 Gy in 1f) followed by nephrectomy | 17.0 | Not applicable | 12 m OS 71% 24 m OS 47% | NR | Gd 3: 6% (anaemia) | |
(b) | |||||||||||||
Cryotherapy | |||||||||||||
Bang et al., 2012 [61] | OM | Single-arm | 27 (72 lesions) | NR | NR | NR | TKI, IFN, bevacizumab, or other | Cryotherapy to metastases | 16.0 | LC 97% | Median OS 32.3 m | NR | Grade 3: 1.7% |
Campbell et al., 2021 [46] | PM | Randomised feasibility | 30 | IMDC: favourable 14%, intermediate 68%, poor 17% | 41% (all) | 62% | Tremulimumab | Tremelimumab ± cryotherapy to metastases | 29.0 | NR | Median OS 22.7 m (cryo arm) | Median PFS 3 m (cryo arm) | Grade ≥ 3: 55% (cryo arm); cryoablation did not statistically enhance tremulimumab toxicity |
Radiofrequency ablation | |||||||||||||
Pellerin et al., 2013 [62] | PM | Single-arm | 52 (58 lesions) | NR | NR | NR | NR | Embolisation, RFA, and cementoplasty to pelvic bone metastases | NR | LC NR; improvement in VAS score (p < 0.0001), QOL and narcotic use at 6 months | NR | NR | 5 leakages to psoas (no clinical consequence), 1 temporary buttock claudication |
Tsimafeyeu et al., 2013 [63] | CR | 2× single-arm studies | 38 | MSKCC good 97%, intermediate 3%, high 0% | NR | 97% | Sunitinib | RFA to primary kidney lesion | NR | ORR 29% | Median OS 27.2 m | Median PFS 13.4 m | Transient lumbar plexus pain (n = 11), perirenal haematoma (n = 1), inflammatory track mass (n = 2) |
(c) | |||||||||||||
Basket studies | |||||||||||||
Spaas et al., 2021 (CHEERS abstract) [64] | PM | Phase 2 randomised | 99 (SBRT 6 RCC, control 8 RCC) | NR | NR | NR | IO | IO vs. IO + SBRT to 1–3 lesions (24 Gy in 3f) | 8.0 m control, 11.2 m SBRT | ORR 27% (no significant difference) | NR | Median PFS 4.4 m (no significant difference) | 17.8% grade 3–4 toxicity (17.6% control) |
Chang et al., 2007 [65] | NR | Phase 1/2 single-arm | 63, 25 RCC (74 lesions) | NR | NR | NR | NR | SBRT to spine 30 Gy in 5f, 27 Gy in 3f (re-irradiation permitted) | 21.3 | LCR 77% | Median OS 24.3 m 12 m OS 69.8% | 12 m PFS 84% | 4.8% grade 3 toxicity |
Ghia et al., 2016 (Garg 2012, Garg 2011) [66,67,68] | OM | 2× single-arm (post hoc analysis) | 43 RCC patients (47 lesions) | NR | NR | 62.80% | NR | SBRT to spine (31.9% had prior spinal surgery). Single 24 Gy or multifraction (27 Gy in 3f or 30 Gy in 5f); re-irradiation permitted | 23.0 | LC 80.6 m 12 m LC 82% 24 m LC 68% | Median OS 22.8 m 12 m OS 74% 24 m OS 49% | NR | 2.3% grade ≥ 3 toxicity (radiculopathy) 46% fracture (6/13 assessable sites) SF and 9.1% MF (1/11 assessable sites) |
Trial Identifier | Trial Title | Setting | Study Design | Status | Target Numbers | Estimated Completion | Primary Endpoint | |
---|---|---|---|---|---|---|---|---|
RCC radiotherapy studies | ||||||||
NCT05578664 | PE-PE: Efficacy of perioperative pembrolizumab treatment in patients with resectable metastases from kidney cancer | OM | Randomised | Phase 2 | Not yet recruiting | 81 | Oct-25 | Relapse-free survival |
NCT03575611 | Stereotactic body radiation therapy in treating patients with oligometastatic renal cell carcinoma | OM | Single-arm | Feasibility | Recruiting | 30 | Sep-22 | Feasibility and progression-free survival |
NCT02956798 | SAbR for oligometastatic renal cell carcinoma | OM | Single-arm | Phase 2 | Active, not recruiting | 23 | Dec-23 | Time to start of systemic therapy |
NCT02542202 | Stereotactic body radiation therapy in treating patients with metastatic or recurrent kidney cancer | OM or OR | Single-arm | Pilot | Recruiting | 25 | Jul-23 | Grade 4 toxicity |
NCT04299646 | GETUG-StORM-01—Study assessing stereotactic radiotherapy in therapeutic strategy of oligoprogressive renal cell carcinoma metastases | OP | Randomised | Phase 2 | Recruiting | 114 | Sep-23 | Progression-free survival |
NCT04974671 | Trial of stereotactic body radiation therapy (SBRT) for oligoprogression on immune checkpoint inhibitors (ICI) in metastatic renal cell carcinoma | OP | Single-arm | Phase 2 | Recruiting | 30 | Oct-27 | Progression-free survival |
NCT03696277 | SAbR for oligoprogressive renal cell cancer | OP | Single-arm | Phase 2 | Active, not recruiting | 20 | Oct-24 | Time to change of systemic therapy |
JPRN- UMIN000030972 | NIVOSTRCC—Multi-institutional randomised phase 2 trial of a treatment of nivolumab combined with stereotactic body radiotherapy for patients with unresectable or metastatic renal cell carcinoma | PM | Randomised | Phase 2 | Recruiting | 100 | Unknown | Response rate of nonirradiated lesion |
NCT05567588 | Pembrolizumab plus radiotherapy for advanced renal cancer | PM | Single-arm | Phase 2 | Not yet recruiting | 66 | Oct-25 | Objective response rate |
NCT05327686 | SAMURAI—Testing the addition of stereotactic radiation therapy with immune therapy for the treatment of patients with unresectable or metastatic renal cell cancer | CR | Randomised | Phase 2 | Recruiting | 240 | Jun-32 | Nephrectomy and progression-free survival |
NCT04090710 | CYTOSHRINK—SBRT with combination ipilimumab/nivolumab for metastatic kidney cancer | CR | Randomised | Phase 2 | Recruiting | 78 | Dec-23 | Progression-free survival |
Basket radiotherapy studies | ||||||||
NCT03862911 | SABR-COMET-3—Phase 3 randomised controlled trial and economic evaluation of stereotactic ablative radiotherapy for comprehensive treatment of oligometastatic (1–3 metastases) cancer | OM (1–3) | Randomised | Phase 3 RCT | Recruiting | 330 | Dec-28 | Overall survival |
NCT03721341 | SABR-COMET-10—A randomised phase 3 trial of stereotactic ablative radiotherapy for the comprehensive treatment of 4–10 oligometastatic tumours | OM (4–10) | Randomised | Phase 3 RCT | Recruiting | 204 | Jan-29 | Overall survival |
NCT04498767 | OligoRARE—Stereotactic body radiotherapy in patients with rare oligometastatic cancers | OM | Randomised | Phase 3 RCT | Recruiting | 200 | Feb-30 | Overall survival |
NCT05259319 | IMMUNOs-SBRT—Study evaluating the safety and the efficacy of combination of atezolizumab, tiragolumab and stereotactic body radiation therapy in patients with oligometastatic multiorgan | OM | Single-arm | Phase 1 | Not yet recruiting | 92 | Feb-30 | Grade 3 and grade 4 toxicity |
NCT03599765 | EXTEND: A randomised phase 2 basket trial assessing the efficacy of upfront local consolidative therapy (LCT) for oligometastatic disease | OM | Randomised | Phase 2 | Recruiting | 367 | Dec-25 | Incidence of adverse events |
NCT04177056 | SOLAR-P—Stereotactic body radiotherapy for osseous low alpha-beta resistant metastases for pain relief | PM | Single-arm | Cohort | Recruiting | 40 | Jan-23 | Overall pain response |
ChiCTR-IPR-17010456 | Apatinib and radiotherapy compared with zoledronic acid and radiotherapy treatment in patients with bone metastases of malignant tumour | PM | Randomised | Phase 2 | Recruiting | 60 | Unknown | Incidence of bone related events |
Basket Thermal ablation studies | ||||||||
NCT04375891 | Radiation therapy alone versus radiation therapy plus radiofrequency ablation (RFA)/vertebral augmentation | PM | Randomised | Phase 2 | Recruiting | 80 | May-26 | Change in pain control |
NCT04693377 | CROME—Cryoablation combined with stereotactic body radiation therapy for the treatment of painful bone metastases | PM | Randomised | Phase 2 | Recruiting | 40 | Apr-23 | Pain response |
Trial Author | Bias Due to Confounding | Bias of Selection | Bias in Classification of Interventions | Bias Due to Deviations from Intended Interventions | Bias Due to Missing Data | Bias in Measurement of Outcomes | Bias in Selection of Reported Result | Overall Bias |
---|---|---|---|---|---|---|---|---|
Bang et al., 2012 [61] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Pellerin et al., 2013 [62] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Tsimafeyeu et al., 2013 [63] | Low | Moderate | Low | Low | Low | Low | Low | Moderate |
Tang et al., 2021 [48] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Siva et al., 2022 [49] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Hannan et al., 2021 [50] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Cheung et al., 2021 [51] | Moderate | Moderate | Low | Moderate | Low | Low | Low | Moderate |
de Wolf et al., 2017 [52] | Low | Moderate | Low | Low | Low | Low | Low | Moderate |
Masini et al., 2022 [53] | Moderate | Moderate | Low | Moderate | Low | Low | Low | Moderate |
Dengina et al., 2019 [54] | Low | Moderate | Low | Low | Moderate | Low | Moderate | Moderate |
Nguyen et al., 2010 [55] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Sohn et al., 2013 [56] | Moderate | Moderate | Low | Low | Low | Moderate | Moderate | Moderate |
Svedman et al., 2009 [58] | Moderate | Moderate | Low | Low | Low | Moderate | Severe | Severe |
Gerszten et al., 2005 [57] | Moderate | Moderate | Low | Low | Moderate | Moderate | Moderate | Moderate |
Correa et al., 2018 [59] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Singh et al., 2022 [60] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Chang et al., 2007 [65] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Ghia et al., 2016 (Garg 2011, Garg 2012) [66,67,68] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
4. Discussion
4.1. Main Results in the Context of Existing Literature
4.1.1. Toxicity
4.1.2. Local Control
4.1.3. Overall Survival and Progression-Free Survival
4.2. Clinical Applicability
4.2.1. Oligometastatic Setting
A ‘Radical’ Approach in Combination with Systemic Therapy
Deferred ‘Consolidative’ Ablation or a Delay to Initiation of Systemic Therapy
Results in Context of Metastasectomy and Active Surveillance Approaches
4.2.2. Oligoprogressive Setting
A Delay to Change in Systemic Therapy or a Window for a Treatment-Break
4.2.3. Polymetastatic Setting
4.2.4. Cytoreductive Setting
4.3. Prognostic and Predictive Factors
4.4. Overall Completeness and Applicability of Evidence
4.5. Quality of the Evidence
4.6. Potential Biases in the Review Process
4.7. Agreements and Disagreements with Other Studies or Reviews
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cancer Research UK. Kidney Cancer Survival Statistics. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/kidney-cancer/survival#heading-Three (accessed on 1 March 2023).
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2009, 27, 3584–3590. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Aren Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthelemy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Motzer, R.J.; Rini, B.I.; Haanen, J.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Gravis-Mescam, G.; Uemura, M.; Lee, J.L.; et al. Updated efficacy results from the JAVELIN Renal 101 trial: First-line avelumab plus axitinib versus sunitinib in patients with advanced renal cell carcinoma. Ann. Oncol. 2020, 31, 1030–1039. [Google Scholar] [CrossRef]
- Motzer, R.; Alekseev, B.; Rha, S.Y.; Porta, C.; Eto, M.; Powles, T.; Grunwald, V.; Hutson, T.E.; Kopyltsov, E.; Mendez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Powles, T.; Plimack, E.R.; Soulieres, D.; Waddell, T.; Stus, V.; Gafanov, R.; Nosov, D.; Pouliot, F.; Melichar, B.; Vynnychenko, I.; et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): Extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020, 21, 1563–1573. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; Tomczak, P.; Hutson, T.E.; Michaelson, M.D.; Negrier, S.; Oudard, S.; Gore, M.E.; Tarazi, J.; Hariharan, S.; et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: Overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 2013, 14, 552–562. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Escudier, B.; Powles, T.; Mainwaring, P.N.; Rini, B.I.; Donskov, F.; Hammers, H.; Hutson, T.E.; Lee, J.-L.; Peltola, K.; et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1814–1823. [Google Scholar] [CrossRef]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [Green Version]
- Rini, B.I.; Pal, S.K.; Escudier, B.J.; Atkins, M.B.; Hutson, T.E.; Porta, C.; Verzoni, E.; Needle, M.N.; McDermott, D.F. Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): A phase 3, multicentre, randomised, controlled, open-label study. Lancet Oncol. 2020, 21, 95–104. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, W.S.; Park, B.; Pak, S.; Chung, J. A Retrospective Analysis of the Impact of Metastasectomy on Prognostic Survival according to Metastatic Organs in Patients with Metastatic Renal Cell Carcinoma. Front. Oncol. 2019, 9, 413. [Google Scholar] [CrossRef] [Green Version]
- Dabestani, S.; Marconi, L.; Bex, A. Metastasis therapies for renal cancer. Curr. Opin. Urol. 2016, 26, 566–572. [Google Scholar] [CrossRef]
- Dabestani, S.; Marconi, L.; Hofmann, F.; Stewart, F.; Lam, T.B.L.; Canfield, S.E.; Staehler, M.; Powles, T.; Ljungberg, B.; Bex, A. Local treatments for metastases of renal cell carcinoma: A systematic review. Lancet Oncol. 2014, 15, e549–e561. [Google Scholar] [CrossRef]
- Ouzaid, I.; Capitanio, U.; Staehler, M.; Wood, C.G.; Leibovich, B.C.; Ljungberg, B.; Van Poppel, H.; Bensalah, K. Surgical Metastasectomy in Renal Cell Carcinoma: A Systematic Review. Eur. Urol. Oncol. 2019, 2, 141–149. [Google Scholar] [CrossRef]
- Meagher, M.F.; Mir, M.C.; Autorino, R.; Minervini, A.; Kriegmair, M.; Maurer, T.; Porpiglia, F.; Van Bruwaene, S.; Linares, E.; Hevia, V.; et al. Impact of Metastasectomy on Cancer Specific and Overall Survival in Metastatic Renal Cell Carcinoma: Analysis of the REMARCC Registry. Clin. Genitourin. Cancer 2022, 20, 326–333. [Google Scholar] [CrossRef]
- You, D.; Lee, C.; Jeong, I.G.; Song, C.; Lee, J.-L.; Hong, B.; Hong, J.H.; Ahn, H.; Kim, C.-S. Impact of metastasectomy on prognosis in patients treated with targeted therapy for metastatic renal cell carcinoma. J. Cancer Res. Clin. Oncol. 2016, 142, 2331–2338. [Google Scholar] [CrossRef]
- Rini, B.I.; Dorff, T.B.; Elson, P.; Rodriguez, C.S.; Shepard, D.; Wood, L.; Humbert, J.; Pyle, L.; Wong, Y.N.; Finke, J.H.; et al. Active surveillance in metastatic renal-cell carcinoma: A prospective, phase 2 trial. Lancet Oncol. 2016, 17, 1317–1324. [Google Scholar] [CrossRef]
- Harrison, M.R.; Costello, B.A.; Bhavsar, N.A.; Vaishampayan, U.; Pal, S.K.; Zakharia, Y.; Jim, H.S.L.; Fishman, M.N.; Molina, A.M.; Kyriakopoulos, C.E.; et al. Active surveillance of metastatic renal cell carcinoma: Results from a prospective observational study (MaRCC). Cancer 2021, 127, 2204–2212. [Google Scholar] [CrossRef]
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Chambers, T.; Lopez, J.I.; Nicol, D.; O’Brien, T.; Larkin, J.; Horswell, S.; et al. Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal. Cell 2018, 173, 581–594.e512. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.R.; Green, S.; Elliot, A.; McGahan, J.P.; Khatri, V.P. Current oncologic applications of radiofrequency ablation therapies. World J. Gastrointest. Oncol. 2013, 5, 71–80. [Google Scholar] [CrossRef]
- Mirza, A.N.; Fornage, B.D.; Sneige, N.; Kuerer, H.M.; Newman, L.A.; Ames, F.C.; Singletary, S.E. Radiofrequency ablation of solid tumors. Cancer J. 2001, 7, 95–102. [Google Scholar] [PubMed]
- Decadt, B.; Siriwardena, A.K. Radiofrequency ablation of liver tumours: Systematic review. Lancet Oncol. 2004, 5, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Mala, T. Cryoablation of liver tumours—A review of mechanisms, techniques and clinical outcome. Minim. Invasive Allied. Technol. 2006, 15, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Baust, J.G.; Gage, A.A.; Bjerklund Johansen, T.E.; Baust, J.M. Mechanisms of cryoablation: Clinical consequences on malignant tumors. Cryobiology 2014, 68, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bala, M.M.; Riemsma, R.P.; Wolff, R.; Pedziwiatr, M.; Mitus, J.W.; Storman, D.; Swierz, M.J.; Kleijnen, J. Cryotherapy for liver metastases. Cochrane Database Syst. Rev. 2019, 7, CD009058. [Google Scholar] [CrossRef]
- Filippiadis, D.; Mauri, G.; Marra, P.; Charalampopoulos, G.; Gennaro, N.; De Cobelli, F. Percutaneous ablation techniques for renal cell carcinoma: Current status and future trends. Int. J. Hyperth. 2019, 36, 21–30. [Google Scholar] [CrossRef]
- Correa, R.J.M.; Louie, A.V.; Zaorsky, N.G.; Lehrer, E.J.; Ellis, R.; Ponsky, L.; Kaplan, I.; Mahadevan, A.; Chu, W.; Swaminath, A.; et al. The Emerging Role of Stereotactic Ablative Radiotherapy for Primary Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Eur. Urol. Focus 2019, 5, 958–969. [Google Scholar] [CrossRef]
- Siva, S.; Ali, M.; Correa, R.J.M.; Muacevic, A.; Ponsky, L.; Ellis, R.J.; Lo, S.S.; Onishi, H.; Swaminath, A.; McLaughlin, M.; et al. 5-year outcomes after stereotactic ablative body radiotherapy for primary renal cell carcinoma: An individual patient data meta-analysis from IROCK (the International Radiosurgery Consortium of the Kidney). Lancet Oncol. 2022, 23, 1508–1516. [Google Scholar] [CrossRef]
- De Meerleer, G.; Khoo, V.; Escudier, B.; Joniau, S.; Bossi, A.; Ost, P.; Briganti, A.; Fonteyne, V.; Van Vulpen, M.; Lumen, N.; et al. Radiotherapy for renal-cell carcinoma. Lancet Oncol. 2014, 15, e170–e177. [Google Scholar] [CrossRef]
- Ning, S.; Trisler, K.; Wessels, B.W.; Knox, S.J. Radiobiologic studies of radioimmunotherapy and external beam radiotherapy in vitro and in vivo in human renal cell carcinoma xenografts. Cancer 1997, 80, 2519–2528. [Google Scholar] [CrossRef]
- Francolini, G.; Detti, B.; Ingrosso, G.; Desideri, I.; Becherini, C.; Carta, G.; Pezzulla, D.; Caramia, G.; Dominici, L.; Maragna, V.; et al. Stereotactic body radiation therapy (SBRT) on renal cell carcinoma, an overview of technical aspects, biological rationale and current literature. Crit. Rev. Oncol. Hematol. 2018, 131, 24–29. [Google Scholar] [CrossRef]
- Rabinovitch, R.A.; Zelefsky, M.J.; Gaynor, J.J.; Fuks, Z. Patterns of failure following surgical resection of renal cell carcinoma: Implications for adjuvant local and systemic therapy. J. Clin. Oncol. 1994, 12, 206–212. [Google Scholar] [CrossRef]
- Zahoor, H.; Barata, P.C.; Jia, X.; Martin, A.; Allman, K.D.; Wood, L.S.; Gilligan, T.D.; Grivas, P.; Ornstein, M.C.; Garcia, J.A.; et al. Patterns, predictors and subsequent outcomes of disease progression in metastatic renal cell carcinoma patients treated with nivolumab. J. Immunother. Cancer 2018, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Sellner, F.; Thalhammer, S.; Klimpfinger, M. Isolated Pancreatic Metastases of Renal Cell Carcinoma-Clinical Particularities and Seed and Soil Hypothesis. Cancers 2023, 15, 339. [Google Scholar] [CrossRef]
- Khoo, V. New concepts in prostate cancer management: The conundrum of managing oligometastatic disease in prostate cancer—Through the looking glass darkly. Clin. Radiol. 2019, 74, 865–875. [Google Scholar] [CrossRef]
- Lehrer, E.J.; Singh, R.; Wang, M.; Chinchilli, V.M.; Trifiletti, D.M.; Ost, P.; Siva, S.; Meng, M.-B.; Tchelebi, L.; Zaorsky, N.G. Safety and Survival Rates Associated with Ablative Stereotactic Radiotherapy for Patients with Oligometastatic Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2021, 7, 92–106. [Google Scholar] [CrossRef]
- Harrow, S.; Palma, D.A.; Olson, R.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic Radiation for the Comprehensive Treatment of Oligometastases (SABR-COMET): Extended Long-Term Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 611–616. [Google Scholar] [CrossRef]
- Palma, D.A.; Olson, R.; Harrow, S.; Gaede, S.; Louie, A.V.; Haasbeek, C.; Mulroy, L.; Lock, M.; Rodrigues, G.B.; Yaremko, B.P.; et al. Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): A randomised, phase 2, open-label trial. Lancet 2019, 393, 2051–2058. [Google Scholar] [CrossRef]
- Gonnet, A.; Salabert, L.; Roubaud, G.; Catena, V.; Brouste, V.; Buy, X.; Gross Goupil, M.; Ravaud, A.; Palussiere, J. Renal cell carcinoma lung metastases treated by radiofrequency ablation integrated with systemic treatments: Over 10 years of experience. BMC Cancer 2019, 19, 1182. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Liu, T.; Zhang, F.; Ji, C.; Zhao, X.; Wang, W.; Guo, H. Radiofrequency ablation versus partial nephrectomy for clinical T1a renal-cell carcinoma: Long-term clinical and oncologic outcomes based on a propensity score analysis. J. Endourol. 2015, 29, 518–525. [Google Scholar] [CrossRef]
- Tsai, C.J.; Yang, J.T.; Guttmann, D.M.; Shaverdian, N.; Shepherd, A.F.; Eng, J.; Gelblum, D.; Xu, A.; Namakydoust, A.; Iqbal, A.; et al. Consolidative Use of Radiotherapy to Block (CURB) Oligoprogression―Interim Analysis of the First Randomized Study of Stereotactic Body Radiotherapy in Patients with Oligoprogressive Metastatic Cancers of the Lung and Breast. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 1325–1326. [Google Scholar] [CrossRef]
- Chmura, S.J.; Winter, K.A.; Woodward, W.A.; Borges, V.F.; Salama, J.K.; Al-Hallaq, H.A.; Matuszak, M.; Milano, M.T.; Jaskowiak, N.T.; Bandos, H.; et al. NRG-BR002: A phase IIR/III trial of standard of care systemic therapy with or without stereotactic body radiotherapy (SBRT) and/or surgical resection (SR) for newly oligometastatic breast cancer (NCT02364557). J. Clin. Oncol. 2022, 40, 1007. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Spaas, M.; Sundahl, N.; Rottey, S.; Kruse, V.; De Maeseneer, D.; Duprez, F.; Dirix, P.; Surmont, V.; Lievens, Y.; Van den Begin, R.; et al. Immuno-radiotherapy in solid tumors: Preliminary results of the randomized phase 2 CHEERS trial. Radiother. Oncol. 2021, 161, S490–S491. [Google Scholar] [CrossRef]
- Campbell, M.T.; Matin, S.F.; Tam, A.L.; Sheth, R.A.; Ahrar, K.; Tidwell, R.S.; Rao, P.; Karam, J.A.; Wood, C.G.; Tannir, N.M.; et al. Pilot study of Tremelimumab with and without cryoablation in patients with metastatic renal cell carcinoma. Nat. Commun. 2021, 12, 6375. [Google Scholar] [CrossRef]
- Hammers, H.J.; Vonmerveldt, D.; Ahn, C.; Nadal, R.; Drake, C.G.; Folkert, M.R.; Laine, A.M.; Courtney, K.D.; Brugarolas, J.; Song, D.Y.; et al. Combination of dual immune checkpoint inhibition (ICI) with stereotactic radiation (SBRT) in metastatic renal cell carcinoma (mRCC) (RADVAX RCC). J. Clin. Oncol. 2020, 38, 614. [Google Scholar] [CrossRef]
- Tang, C.; Msaouel, P.; Hara, K.; Choi, H.; Le, V.; Shah, A.Y.; Wang, J.; Jonasch, E.; Choi, S.; Nguyen, Q.-N.; et al. Definitive radiotherapy in lieu of systemic therapy for oligometastatic renal cell carcinoma: A single-arm, single-centre, feasibility, phase 2 trial. Lancet Oncol. 2021, 22, 1732–1739. [Google Scholar] [CrossRef]
- Siva, S.; Bressel, M.; Wood, S.T.; Shaw, M.G.; Loi, S.; Sandhu, S.K.; Tran, B.; Azad, A.A.; Lewin, J.H.; Cuff, K.E.; et al. Stereotactic Radiotherapy and Short-course Pembrolizumab for Oligometastatic Renal Cell Carcinoma-The RAPPORT Trial. Eur. Urol. 2022, 81, 364–372. [Google Scholar] [CrossRef]
- Hannan, R.; Christensen, M.; Robles, L.; Christie, A.; Garant, A.; Desai, N.B.; Hammers, H.J.; Arafat, W.; Bowman, I.A.; Cole, S.; et al. Phase II trial of stereotactic ablative radiation (SAbR) for oligometastatic kidney cancer. J. Clin. Oncol. 2021, 39, 216–224. [Google Scholar] [CrossRef]
- Cheung, P.; Patel, S.; North, S.A.; Sahgal, A.; Chu, W.; Soliman, H.; Ahmad, B.; Winquist, E.; Niazi, T.; Patenaude, F.; et al. Stereotactic Radiotherapy for Oligoprogression in Metastatic Renal Cell Cancer Patients Receiving Tyrosine Kinase Inhibitor Therapy: A Phase 2 Prospective Multicenter Study. Eur. Urol. 2021, 80, 693–700. [Google Scholar] [CrossRef]
- De Wolf, K.; Rottey, S.; Vermaelen, K.; Decaestecker, K.; Sundahl, N.; De Lobel, L.; Goetghebeur, E.; De Meerleer, G.; Lumen, N.; Fonteyne, V.; et al. Combined high dose radiation and pazopanib in metastatic renal cell carcinoma: A phase I dose escalation trial. Radiat. Oncol. 2017, 12, 157. [Google Scholar] [CrossRef] [Green Version]
- Masini, C.; Iotti, C.; De Giorgi, U.; Bellia, R.S.; Buti, S.; Salaroli, F.; Zampiva, I.; Mazzarotto, R.; Mucciarini, C.; Vitale, M.G.; et al. Nivolumab in Combination with Stereotactic Body Radiotherapy in Pretreated Patients with Metastatic Renal Cell Carcinoma. Results of the Phase II NIVES Study. Eur. Urol. 2022, 81, 274–282. [Google Scholar] [CrossRef]
- Dengina, N.; Mitin, T.; Gamayunov, S.; Safina, S.; Kreinina, Y.; Tsimafeyeu, I. Stereotactic body radiation therapy in combination with systemic therapy for metastatic renal cell carcinoma: A prospective multicentre study. ESMO Open 2019, 4, e000535. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, Q.-N.; Shiu, A.S.; Rhines, L.D.; Wang, H.; Allen, P.K.; Wang, X.S.; Chang, E.L. Management of spinal metastases from renal cell carcinoma using stereotactic body radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 1185–1192. [Google Scholar] [CrossRef]
- Sohn, S.; Chung, C.K.; Sohn, M.J.; Chang, U.-K.; Kim, S.H.; Kim, J.; Park, E. Stereotactic radiosurgery compared with external radiation therapy as a primary treatment in spine metastasis from renal cell carcinoma: A multicenter, matched-pair study. J. Neuro Oncol. 2014, 119, 121–128. [Google Scholar] [CrossRef]
- Gerszten, P.C.; Burton, S.A.; Ozhasoglu, C.; Vogel, W.J.; Welch, W.C.; Baar, J.; Friedland, D.M. Stereotactic radiosurgery for spinal metastases from renal cell carcinoma. J. Neurosurg. Spine 2005, 3, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Svedman, C.; Sandstrom, P.; Pisa, P.; Blomgren, H.; Lax, I.; Kalkner, K.-M.; Nilsson, S.; Wersall, P. A prospective Phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol. 2006, 45, 870–875. [Google Scholar] [CrossRef]
- Correa, R.J.M.; Ahmad, B.; Warner, A.; Johnson, C.; MacKenzie, M.J.; Pautler, S.E.; Bauman, G.S.; Rodrigues, G.B.; Louie, A.V. A prospective phase I dose-escalation trial of stereotactic ablative radiotherapy (SABR) as an alternative to cytoreductive nephrectomy for inoperable patients with metastatic renal cell carcinoma. Radiat. Oncol. 2018, 13, 47. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Winslow, T.B.; Kermany, M.H.; Goritz, V.; Heit, L.; Miller, A.; Hoffend, N.C.; Stein, L.C.; Kumaraswamy, L.K.; Warren, G.W.; et al. A Pilot Study of Stereotactic Body Radiation Therapy Combined with Cytoreductive Nephrectomy for Metastatic Renal Cell Carcinoma. Clin. Cancer Res. 2017, 23, 5055–5065. [Google Scholar] [CrossRef] [Green Version]
- Bang, H.J.; Littrup, P.J.; Goodrich, D.J.; Currier, B.P.; Aoun, H.D.; Heilbrun, L.K.; Vaishampayan, U.; Adam, B.; Goodman, A.C. Percutaneous cryoablation of metastatic renal cell carcinoma for local tumor control: Feasibility, outcomes, and estimated cost-effectiveness for palliation. J. Vasc. Interv. Radiol. JVIR 2012, 23, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Pellerin, O.; Medioni, J.; Vulser, C.; Dean, C.; Oudard, S.; Sapoval, M. Management of painful pelvic bone metastasis of renal cell carcinoma using embolization, radio-frequency ablation, and cementoplasty: A prospective evaluation of efficacy and safety. Cardiovasc. Interv. Radiol. 2014, 37, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Tsimafeyeu, I.; Zart, J.S.; Chung, B. Cytoreductive radiofrequency ablation in patients with metastatic renal cell carcinoma (RCC) with small primary tumours treated with sunitinib or interferon-alpha. BJU Int. 2013, 112, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Spaas, M.; Sundahl, N.; Hulstaert, E.; Kruse, V.; Rottey, S.; De Maeseneer, D.; Surmont, V.; Meireson, A.; Brochez, L.; Reynders, D.; et al. Checkpoint inhibition in combination with an immunoboost of external beam radiotherapy in solid tumors (CHEERS): Study protocol for a phase 2, open-label, randomized controlled trial. BMC Cancer 2021, 21, 514. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.L.; Shiu, A.S.; Mendel, E.; Mathews, L.A.; Mahajan, A.; Allen, P.K.; Weinberg, J.S.; Brown, B.W.; Wang, X.S.; Woo, S.Y.; et al. Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J. Neurosurg. Spine 2007, 7, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghia, A.J.; Chang, E.L.; Bishop, A.J.; Pan, H.Y.; Boehling, N.S.; Amini, B.; Allen, P.K.; Li, J.; Rhines, L.D.; Tannir, N.M.; et al. Single-fraction versus multifraction spinal stereotactic radiosurgery for spinal metastases from renal cell carcinoma: Secondary analysis of Phase I/II trials. J. Neurosurg. Spine 2016, 24, 829–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, A.K.; Shiu, A.S.; Yang, J.; Wang, X.S.; Allen, P.; Brown, B.W.; Grossman, P.; Frija, E.K.; McAleer, M.F.; Azeem, S.; et al. Phase 1/2 trial of single-session stereotactic body radiotherapy for previously unirradiated spinal metastases. Cancer 2012, 118, 5069–5077. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.K.; Wang, X.S.; Shiu, A.S.; Allen, P.; Yang, J.; McAleer, M.F.; Azeem, S.; Rhines, L.D.; Chang, E.L. Prospective evaluation of spinal reirradiation by using stereotactic body radiation therapy: The University of Texas MD Anderson Cancer Center experience. Cancer 2011, 117, 3509–3516. [Google Scholar] [CrossRef]
- King, J.; Glenn, D.; Clark, W.; Zhao, J.; Steinke, K.; Clingan, P.; Morris, D.L. Percutaneous radiofrequency ablation of pulmonary metastases in patients with colorectal cancer. Br. J. Surg. 2004, 91, 217–223. [Google Scholar] [CrossRef]
- VanSonnenberg, E.; Shankar, S.; Morrison, P.R.; Nair, R.T.; Silverman, S.G.; Jaklitsch, M.T.; Liu, F.; Cheung, L.; Tuncali, K.; Skarin, A.T.; et al. Radiofrequency ablation of thoracic lesions: Part 2, initial clinical experience—Technical and multidisciplinary considerations in 30 patients. Am. J. Roentgenol. 2005, 184, 381–390. [Google Scholar] [CrossRef]
- Maciolek, K.A.; Abel, E.J.; Best, S.L.; Emamekhoo, H.; Averill, S.L.; Ziemlewicz, T.J.; Lubner, M.G.; Hinshaw, J.L.; Lee, F.T., Jr.; Wells, S.A. Percutaneous microwave ablation for local control of metastatic renal cell carcinoma. Abdom. Radiol. 2018, 43, 2446–2454. [Google Scholar] [CrossRef]
- Gebbia, V.; Girlando, A.; Di Grazia, A.; Fazio, I.; Borsellino, N.; Piazza, D.; Serretta, V.; Pergolizzi, S.; Pontoriero, A.; Firenze, A.; et al. Stereotactic Radiotherapy for the Treatment of Patients with Oligo-progressive Metastatic Renal Cell Carcinoma Receiving Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor: Data from the Real World. Anticancer Res. 2020, 40, 7037–7043. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Han, H.; Liu, Z.; Huang, S.; Cao, W.; Liu, B.; Qin, Z.; Guo, S.; Zhang, Z.; et al. Survival Outcomes after Adding Stereotactic Body Radiotherapy to Metastatic Renal Cell Carcinoma Patients Treated with Tyrosine Kinase Inhibitors. Am. J. Clin. Oncol. 2020, 43, 58–63. [Google Scholar] [CrossRef]
- Kroeze, S.G.C.; Fritz, C.; Schaule, J.; Siva, S.; Kahl, K.H.; Sundahl, N.; Blanck, O.; Kaul, D.; Adebahr, S.; Verhoeff, J.J.C.; et al. Stereotactic radiotherapy combined with immunotherapy or targeted therapy for metastatic renal cell carcinoma. BJU Int. 2021, 127, 703–711. [Google Scholar] [CrossRef]
- Meyer, E.; Pasquier, D.; Bernadou, G.; Calais, G.; Maroun, P.; Bossi, A.; Theodore, C.; Albiges, L.; Stefan, D.; de Crevoisier, R.; et al. Stereotactic radiation therapy in the strategy of treatment of metastatic renal cell carcinoma: A study of the Getug group. Eur. J. Cancer 2018, 98, 38–47. [Google Scholar] [CrossRef]
- Onal, C.; Hurmuz, P.; Guler, O.C.; Yavas, G.; Tilki, B.; Oymak, E.; Yavas, C.; Ozyigit, G. The role of stereotactic body radiotherapy in switching systemic therapy for patients with extracranial oligometastatic renal cell carcinoma. Clin. Transl. Oncol. 2022, 24, 1533–1541. [Google Scholar] [CrossRef]
- Hannan, R.; Christensen, M.; Hammers, H.; Christie, A.; Paulman, B.; Lin, D.; Garant, A.; Arafat, W.; Courtney, K.; Bowman, I.; et al. Phase II Trial of Stereotactic Ablative Radiation for Oligoprogressive Metastatic Kidney Cancer. Eur. Urol. Oncol. 2022, 5, 216–224. [Google Scholar] [CrossRef]
- Belfiore, G.; Moggio, G.; Tedeschi, E.; Greco, M.; Cioffi, R.; Cincotti, F.; Rossi, R. CT-guided radiofrequency ablation: A potential complementary therapy for patients with unresectable primary lung cancer—A preliminary report of 33 patients. Am. J. Roentgenol. 2004, 183, 1003–1011. [Google Scholar] [CrossRef]
- Huo, Y.R.; Chan, M.V.; Habib, A.R.; Lui, I.; Ridley, L. Pneumothorax rates in CT-Guided lung biopsies: A comprehensive systematic review and meta-analysis of risk factors. Br. J. Radiol. 2020, 93, 20190866. [Google Scholar] [CrossRef]
- Cunha, M.V.; Al-Omair, A.; Atenafu, E.G.; Masucci, G.L.; Letourneau, D.; Korol, R.; Yu, E.; Howard, P.; Lochray, F.; da Costa, L.B.; et al. Vertebral compression fracture (VCF) after spine stereotactic body radiation therapy (SBRT): Analysis of predictive factors. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, e343–e349. [Google Scholar] [CrossRef]
- Sahgal, A.; Atenafu, E.G.; Chao, S.; Al-Omair, A.; Boehling, N.; Balagamwala, E.H.; Cunha, M.; Thibault, I.; Angelov, L.; Brown, P.; et al. Vertebral compression fracture after spine stereotactic body radiotherapy: A multi-institutional analysis with a focus on radiation dose and the spinal instability neoplastic score. J. Clin. Oncol. 2013, 31, 3426–3431. [Google Scholar] [CrossRef]
- Boehling, N.S.; Grosshans, D.R.; Allen, P.K.; McAleer, M.F.; Burton, A.W.; Azeem, S.; Rhines, L.D.; Chang, E.L. Vertebral compression fracture risk after stereotactic body radiotherapy for spinal metastases. J. Neurosurg. Spine 2012, 16, 379–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahgal, A.; Whyne, C.M.; Ma, L.; Larson, D.A.; Fehlings, M.G. Vertebral compression fracture after stereotactic body radiotherapy for spinal metastases. Lancet Oncol. 2013, 14, e310–e320. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.S.; Laufer, I.; Boland, P.J.; Hanover, A.; Bilsky, M.H.; Yamada, J.; Lis, E. Risk of fracture after single fraction image-guided intensity-modulated radiation therapy to spinal metastases. J. Clin. Oncol. 2009, 27, 5075–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, B.W.; Joseph, J.R.; Saadeh, Y.S.; La Marca, F.; Szerlip, N.J.; Schermerhorn, T.C.; Spratt, D.E.; Younge, K.C.; Park, P. Radiosurgery for Treatment of Renal Cell Metastases to Spine: A Systematic Review of the Literature. World Neurosurg. 2018, 109, e502–e509. [Google Scholar] [CrossRef]
- Shi, D.D.; Hertan, L.M.; Lam, T.C.; Skamene, S.; Chi, J.H.; Groff, M.; Cho, C.H.; Ferrone, M.L.; Harris, M.; Chen, Y.H.; et al. Assessing the utility of the spinal instability neoplastic score (SINS) to predict fracture after conventional radiation therapy (RT) for spinal metastases. Pract. Radiat. Oncol. 2018, 8, e285–e294. [Google Scholar] [CrossRef]
- Marvaso, G.; Corrao, G.; Oneta, O.; Pepa, M.; Zaffaroni, M.; Corso, F.; Gandini, S.; Cecconi, A.; Zerini, D.; Mazzola, G.C.; et al. Oligo metastatic renal cell carcinoma: Stereotactic body radiation therapy, if, when and how? Clin. Transl. Oncol. 2021, 23, 1717–1726. [Google Scholar] [CrossRef]
- Buti, S.; Bersanelli, M.; Viansone, A.; Leonetti, A.; Masini, C.; Ratta, R.; Procopio, G.; Maines, F.; Iacovelli, R.; Ciccarese, C.; et al. Treatment Outcome of metastatic lesions from renal cell carcinoma underGoing Extra-cranial stereotactic body radioTHERapy: The together retrospective study. Cancer Treat. Res. Commun. 2020, 22, 100161. [Google Scholar] [CrossRef]
- Dove, A.P.H.; Wells, A.; Gong, W.; Liu, D.; Kirschner, A.N. Evaluation of 5 Fraction Stereotactic Body Radiation Therapy (SBRT) for Osseous Renal Cell Carcinoma Metastases. Am. J. Clin. Oncol. 2022, 45, 501–505. [Google Scholar] [CrossRef]
- Franzese, C.; Marvaso, G.; Francolini, G.; Borghetti, P.; Trodella, L.E.; Sepulcri, M.; Matrone, F.; Nicosia, L.; Timon, G.; Ognibene, L.; et al. The role of stereotactic body radiation therapy and its integration with systemic therapies in metastatic kidney cancer: A multicenter study on behalf of the AIRO (Italian Association of Radiotherapy and Clinical Oncology) genitourinary study group. Clin. Exp. Metastasis 2021, 38, 527–537. [Google Scholar] [CrossRef]
- Franzese, C.; Franceschini, D.; Di Brina, L.; D’Agostino, G.R.; Navarria, P.; Comito, T.; Mancosu, P.; Tomatis, S.; Scorsetti, M. Role of Stereotactic Body Radiation Therapy for the Management of Oligometastatic Renal Cell Carcinoma. J. Urol. 2019, 201, 70–75. [Google Scholar] [CrossRef]
- Tomasian, A.; Madaelil, T.P.; Wallace, A.N.; Wiesner, E.; Jennings, J.W. Percutaneous thermal ablation alone or in combination with cementoplasty for renal cell carcinoma osseous metastases: Pain palliation and local tumour control. J. Med. Imaging Radiat. Oncol. 2020, 64, 96–103. [Google Scholar] [CrossRef]
- Gardner, C.S.; Ensor, J.E.; Ahrar, K.; Huang, S.Y.; Sabir, S.H.; Tannir, N.M.; Lewis, V.O.; Tam, A.L. Cryoablation of Bone Metastases from Renal Cell Carcinoma for Local Tumor Control. J. Bone Jt. Surg. Am. Vol. 2017, 99, 1916–1926. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Liu, R.; Wei, W.; Zhang, Z.; Mai, L.; Guo, S.; Han, H.; Zhou, F.; He, L.; et al. Stereotactic body radiotherapy in combination with non-frontline PD-1 inhibitors and targeted agents in metastatic renal cell carcinoma. Radiat. Oncol. 2021, 16, 211. [Google Scholar] [CrossRef]
- Liu, Y.; Long, W.; Zhang, Z.; Zhang, Z.; Mai, L.; Huang, S.; Han, H.; Zhou, F.; Dong, P.; He, L. Metastasis-directed stereotactic body radiotherapy for oligometastatic renal cell carcinoma: Extent of tumor burden eradicated by radiotherapy. World J. Urol. 2021, 39, 4183–4190. [Google Scholar] [CrossRef]
- Stenman, M.; Sinclair, G.; Paavola, P.; Wersall, P.; Harmenberg, U.; Lindskog, M. Overall survival after stereotactic radiotherapy or surgical metastasectomy in oligometastatic renal cell carcinoma patients treated at two Swedish centres 2005–2014. Radiother. Oncol. 2018, 127, 501–506. [Google Scholar] [CrossRef]
- Zaorsky, N.G.; Lehrer, E.J.; Kothari, G.; Louie, A.V.; Siva, S. Stereotactic ablative radiation therapy for oligometastatic renal cell carcinoma (SABR ORCA): A meta-analysis of 28 studies. Eur. Urol. Oncol. 2019, 2, 515–523. [Google Scholar] [CrossRef]
- De, B.; Venkatesan, A.M.; Msaouel, P.; Ghia, A.J.; Li, J.; Yeboa, D.N.; Nguyen, Q.N.; Bishop, A.J.; Jonasch, E.; Shah, A.Y.; et al. Definitive radiotherapy for extracranial oligoprogressive metastatic renal cell carcinoma as a strategy to defer systemic therapy escalation. BJU Int. 2022, 129, 610–620. [Google Scholar] [CrossRef]
- Zhang, Y.; Schoenhals, J.; Christie, A.; Mohamad, O.; Wang, C.; Bowman, I.; Singla, N.; Hammers, H.; Courtney, K.; Bagrodia, A.; et al. Stereotactic Ablative Radiation Therapy (SAbR) Used to Defer Systemic Therapy in Oligometastatic Renal Cell Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 367–375. [Google Scholar] [CrossRef]
- Naito, S.; Kato, T.; Tsuchiya, N. Surgical and focal treatment for metastatic renal cell carcinoma: A literature review. Int. J. Urol. 2022, 29, 494–501. [Google Scholar] [CrossRef]
- Dandapani, S.V.; Salgia, N.; Dizman, N.; Zengin, Z.B.; Hsu, J.; Pal, S.K. Efficacy and Toxicity of Radiotherapy for Oligoprogression of Metastatic Renal Cell carcinoma (mRCC). Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, e879. [Google Scholar] [CrossRef]
- Barata, P.C.; Mendiratta, P.; Kotecha, R.; Gopalakrishnan, D.; Juloori, A.; Chao, S.T.; Koshkin, V.; Ornstein, M.; Gilligan, T.D.; Wood, L.S.; et al. Effect of Switching Systemic Treatment after Stereotactic Radiosurgery for Oligoprogressive, Metastatic Renal Cell Carcinoma. Clin. Genitourin. Cancer 2018, 16, 413–419.e411. [Google Scholar] [CrossRef] [PubMed]
- Brooks, E.D.; Chang, J.Y. Time to abandon single-site irradiation for inducing abscopal effects. Nat. Rev. Clin. Oncol. 2019, 16, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Mejean, A.; Escudier, B.; Thezenas, S.; Beauval, J.-B.; Geoffroy, L.; Bensalah, K.; Thiery-Vuillemin, A.; Cormier, L.; Lang, H.; Guy, L.; et al. CARMENA: Cytoreductive nephrectomy followed by sunitinib versus sunitinib alone in metastatic renal cell carcinoma—Results of a phase III noninferiority trial. J. Clin. Oncol. 2018, 36, LBA3. [Google Scholar] [CrossRef]
- Bex, A.; Mulders, P.; Jewett, M.; Wagstaff, J.; van Thienen, J.V.; Blank, C.U.; van Velthoven, R.; Del Pilar Laguna, M.; Wood, L.; van Melick, H.H.E.; et al. Comparison of Immediate vs. Deferred Cytoreductive Nephrectomy in Patients with Synchronous Metastatic Renal Cell Carcinoma Receiving Sunitinib: The SURTIME Randomized Clinical Trial. JAMA Oncol. 2019, 5, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Altoos, B.; Amini, A.; Yacoub, M.; Bourlon, M.T.; Kessler, E.E.; Flaig, T.W.; Fisher, C.M.; Kavanagh, B.D.; Lam, E.T.; Karam, S.D. Local Control Rates of Metastatic Renal Cell Carcinoma (RCC) to Thoracic, Abdominal, and Soft Tissue Lesions Using Stereotactic Body Radiotherapy (SBRT). Radiat. Oncol. 2015, 10, 218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Chang, X.; Liu, T.; Wang, W.; Zhao, X.; Ji, C.; Yang, R.; Guo, H. Prognostic Factors for Long-Term Survival in Patients with Renal-Cell Carcinoma After Radiofrequency Ablation. J. Endourol. 2016, 30, 37–42. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Green, H.; Taylor, A.; Khoo, V. Beyond the Knife in Renal Cell Carcinoma: A Systematic Review—To Ablate or Not to Ablate? Cancers 2023, 15, 3455. https://doi.org/10.3390/cancers15133455
Green H, Taylor A, Khoo V. Beyond the Knife in Renal Cell Carcinoma: A Systematic Review—To Ablate or Not to Ablate? Cancers. 2023; 15(13):3455. https://doi.org/10.3390/cancers15133455
Chicago/Turabian StyleGreen, Harshani, Alexandra Taylor, and Vincent Khoo. 2023. "Beyond the Knife in Renal Cell Carcinoma: A Systematic Review—To Ablate or Not to Ablate?" Cancers 15, no. 13: 3455. https://doi.org/10.3390/cancers15133455
APA StyleGreen, H., Taylor, A., & Khoo, V. (2023). Beyond the Knife in Renal Cell Carcinoma: A Systematic Review—To Ablate or Not to Ablate? Cancers, 15(13), 3455. https://doi.org/10.3390/cancers15133455