The Effectiveness of Cancer Immune Checkpoint Inhibitor Retreatment and Rechallenge—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Evidence Acquisition
2.3. Inclusion and Exclusion Criteria
2.4. PICO
2.5. Evidence Synthesis
3. Results
3.1. Treatment Regimens
3.2. Disease Control Rate and Overall Response Rate
3.3. Progression-free Survival and Overall Survival
3.4. Treatment Toxicity
4. Discussion
5. Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S.V.; Papneja, N.; Miller, W.H.J. A review of cancer immunotherapy: From the past, to the present, to the future. Curr. Oncol. 2020, 27 (Suppl. S2), S87–S97. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojas-Krawczyk, K.; Krawczyk, P.; Gil, M.; Strzemski, M. Two Complementarity Immunotherapeutics in Non-Small-Cell Lung Cancer Patients—Mechanism of Action and Future Concepts. Cancers 2021, 13, 2836. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Huang, A.C.; Zhang, W.; Zhang, G.; Wu, M.; Xu, W.; Yu, Z.; Yang, J.; Wang, B.; Sun, H.; et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018, 560, 382–386. [Google Scholar] [CrossRef]
- Abdin, S.M.; Zaher, D.M.; Arafa, E.-S.A.; Omar, H.A. Tackling Cancer Resistance by Immunotherapy: Updated Clinical Impact and Safety of PD-1/PD-L1 Inhibitors. Cancers 2018, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Cowey, C.L.; Scherrer, E.; Boyd, M.; Aguilar, K.M.; Beeks, A.; Krepler, C. Pembrolizumab Utilization and Clinical Outcomes Among Patients with Advanced Melanoma in the US Community Oncology Setting: An Updated Analysis. J. Immunother. 2021, 44, 224–233. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; Khattak, A.; Carlino, M.S.; et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): Distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 643–654. [Google Scholar] [CrossRef]
- E Theelen, W.S.M.; Chen, D.; Verma, V.; Hobbs, B.P.; Peulen, H.M.U.; Aerts, J.G.J.V.; Bahce, I.; Niemeijer, A.L.N.; Chang, J.Y.; de Groot, P.M.; et al. Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: A pooled analysis of two randomised trials. Lancet. Respir Med. 2020, 9, 467–475. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, J.S.; Teng, M.W.L.; Smyth, M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Zaretsky, J.M.; Garcia-Diaz, A.; Shin, D.S.; Escuin-Ordinas, H.; Hugo, W.; Hu-Lieskovan, S.; Torrejon, D.Y.; Abril-Rodriguez, G.; Sandoval, S.; Barthly, L.; et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N. Engl. J. Med. 2016, 375, 819–829. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Long, G.V.; Scolyer, R.A.; Teng, M.W.; Smyth, M.J. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 2017, 52, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Bernard-Tessier, A.; Baldini, C.; Martin, P.; Champiat, S.; Hollebecque, A.; Postel-Vinay, S.; Varga, A.; Bahleda, R.; Gazzah, A.; Michot, J.-M.; et al. Outcomes of long-term responders to anti-programmed death 1 and anti-programmed death ligand 1 when being rechallenged with the same anti-programmed death 1 and anti-programmed death ligand 1 at progression. Eur. J. Cancer 2018, 101, 160–164. [Google Scholar] [CrossRef]
- Minchom, A.; Yuan, W.; Crespo, M.; Gurel, B.; Figueiredo, I.; Wotherspoon, A.; Miranda, S.; Riisnaes, R.; Ferreira, A.; Bertan, C.; et al. Molecular and immunological features of a prolonged exceptional responder with malignant pleural mesothelioma treated initially and rechallenged with pembrolizumab. J. Immunother. Cancer 2020, 8, e000713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobbini, E.; Toffart, A.C.; Pérol, M.; Assié, J.-B.; Duruisseaux, M.; Coupez, D.; Dubos, C.; Westeel, V.; Delaunay, M.; Guisier, F.; et al. Immune Checkpoint Inhibitors Rechallenge Efficacy in Non–Small-Cell Lung Cancer Patients. Clin. Lung Cancer 2020, 21, e497–e510. [Google Scholar] [CrossRef]
- Gebhardt, C.; Ascierto, P.; Atkinson, V.; Corrie, P.; Dummer, R.; Schadendorf, D. The concepts of rechallenge and retreatment in melanoma: A proposal for consensus definitions. Eur. J. Cancer 2020, 138, 68–76. [Google Scholar] [CrossRef]
- Haanen, J.; Ernstoff, M.; Wang, Y.; Menzies, A.; Puzanov, I.; Grivas, P.; Larkin, J.; Peters, S.; Thompson, J.; Obeid, M. Rechallenge patients with immune checkpoint inhibitors following severe immune-related adverse events: Review of the literature and suggested prophylactic strategy. J. Immunother. Cancer 2020, 8, e000604. [Google Scholar] [CrossRef]
- Bimbatti, D.; Maruzzo, M.; Pierantoni, F.; Diminutto, A.; Dionese, M.; Deppieri, F.M.; Lai, E.; Zagonel, V.; Basso, U. Immune checkpoint inhibitors rechallenge in urological tumors: An extensive review of the literature. Crit. Rev. Oncol. Hematol. 2022, 170, 103579. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2019, 45, 228–247. [Google Scholar] [CrossRef]
- Robert, C.; Schadendorf, D.; Messina, M.; Hodi, F.S.; O’Day, S. Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clin. Cancer Res. 2013, 19, 2232–2239. [Google Scholar] [CrossRef] [Green Version]
- Sileni, V.C.; Pigozzo, J.; Ascierto, P.A.; Simeone, E.; Maio, M.; Calabrò, L.; Marchetti, P.; De Galitiis, F.; Testori, A.; Ferrucci, P.F.; et al. Ipilimumab retreatment in patients with pretreated advanced melanoma: The expanded access programme in Italy. Br. J. Cancer 2014, 110, 1721–1726. [Google Scholar] [CrossRef] [Green Version]
- Jacobsoone-Ulrich, A.; Jamme, P.; Alkeraye, S.; Dzwiniel, V.; Faure, E.; Templier, C.; Mortier, L. Ipilimumab in anti-PD1 refractory metastatic melanoma: A report of eight cases. Melanoma Res. 2016, 26, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Aya, F.; Gaba, L.; Victoria, I.; Fernández-Martínez, A.; Tosca, M.; Prat, A.; Arance, A. Ipilimumab after progression on anti-PD-1 treatment in advanced melanoma. Future Oncol. 2016, 12, 2683–2688. [Google Scholar] [CrossRef]
- Bowyer, S.; Prithviraj, P.; Lorigan, P.; Larkin, J.; McArthur, G.; Atkinson, V.; Millward, M.; Khou, M.; Diem, S.; Ramanujam, S.; et al. Efficacy and toxicity of treatment with the anti-CTLA-4 antibody ipilimumab in patients with metastatic melanoma after prior anti-PD-1 therapy. Br. J. Cancer 2016, 114, 1084–1089. [Google Scholar] [CrossRef]
- Nomura, M.; Otsuka, A.; Kondo, T.; Nagai, H.; Nonomura, Y.; Kaku, Y.; Matsumoto, S.; Muto, M. Efficacy and safety of retreatment with nivolumab in metastatic melanoma patients previously treated with nivolumab. Cancer Chemother. Pharmacol. 2017, 80, 999–1004. [Google Scholar] [CrossRef]
- Zimmer, L.; Apuri, S.; Eroglu, Z.; Kottschade, L.A.; Forschner, A.; Gutzmer, R.; Schlaak, M.; Heinzerling, L.; Krackhardt, A.M.; Loquai, C.; et al. Ipilimumab alone or in combination with nivolumab after progression on anti-PD-1 therapy in advanced melanoma. Eur. J. Cancer. 2017, 75, 47–55. [Google Scholar] [CrossRef]
- Blasig, H.; Bender, C.; Hassel, J.C.; Eigentler, T.K.; Sachse, M.M.; Hiernickel, J.; Koop, A.; Satzger, I.; Gutzmer, R. Reinduction of PD1-inhibitor therapy: First experience in eight patients with metastatic melanoma. Melanoma Res. 2017, 27, 321–325. [Google Scholar] [CrossRef]
- Robert, C.; Ribas, A.; Schachter, J.; Arance, A.; Grob, J.-J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.M.; Lotem, M.; et al. Articles Pembrolizumab versus ipilimumab in advanced melanoma multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019, 20, 1239–1251. [Google Scholar] [CrossRef]
- Jansen, Y.; Rozeman, E.; Mason, R.; Goldinger, S.; Foppen, M.G.; Hoejberg, L.; Schmidt, H.; van Thienen, J.; Haanen, J.; Tiainen, L.; et al. Discontinuation of anti-PD-1 antibody therapy in the absence of disease progression or treatment limiting toxicity: Clinical outcomes in advanced melanoma. Ann. Oncol. 2019, 30, 1154–1161. [Google Scholar] [CrossRef] [Green Version]
- Kan, T.; Takahagi, S.; Kawai, M.; Matsubara, D.; Tanaka, A.; Hide, M. Rechallenge of programmed cell death 1 inhibitor after an interval with dacarbazine treatment may be effective for advanced malignant melanoma. J. Dermatol. 2020, 47, 907–910. [Google Scholar] [CrossRef]
- Whitman, E.D.; Scherrer, E.; Ou, W.; Krepler, C. Outcomes of retreatment with anti-PD-1 monotherapy after response to first course in patients with cutaneous melanoma. Future Oncol. 2020, 16, 1441–1453. [Google Scholar] [CrossRef] [PubMed]
- Hepner, A.; Atkinson, V.G.; Larkin, J.; Burrell, R.A.; Carlino, M.S.; Johnson, D.B.; Zimmer, L.; Tsai, K.K.; Klein, O.; Lo, S.N.; et al. ScienceDirect Re-induction ipilimumab following acquired resistance to combination ipilimumab and anti e PD-1 therapy. Eur. J. Cancer 2021, 153, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Niki, M.; Nakaya, A.; Kurata, T.; Yoshioka, H.; Kaneda, T.; Kibata, K.; Ogata, M.; Nomura, S. Immune checkpoint inhibitor re-challenge in patients with advanced non-small cell lung cancer. Oncotarget 2018, 9, 32298–32304. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Uchida, N.; Kanai, O.; Okamura, M.; Nakatani, K.; Mio, T. Retreatment with pembrolizumab in advanced non-small cell lung cancer patients previously treated with nivolumab: Emerging reports of 12 cases. Cancer Chemother. Pharmacol. 2018, 81, 1105–1109. [Google Scholar] [CrossRef]
- Fujita, K.; Uchida, N.; Yamamoto, Y.; Kanai, O.; Okamura, M.; Nakatani, K.; Sawai, S.; Mio, T. Retreatment with Anti-PD-L1 antibody in advanced non-small cell lung cancer previously treated with Anti-PD-1 antibodies. Anticancer Res. 2019, 39, 3917–3921. [Google Scholar] [CrossRef] [PubMed]
- Katayama, Y.; Shimamoto, T.; Yamada, T.; Takeda, T.; Yamada, T.; Shiotsu, S.; Chihara, Y.; Hiranuma, O.; Iwasaku, M.; Kaneko, Y.; et al. Retrospective Efficacy Analysis of Immune Checkpoint Inhibitor Rechallenge in Patients with Non-Small Cell Lung Cancer. J. Clin. Med. 2019, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Kubo, T.; Ninomiya, K.; Kudo, K.; Minami, D.; Murakami, E.; Ochi, N.; Ninomiya, T.; Harada, D.; Yasugi, M.; et al. The effect and safety of immune checkpoint inhibitor rechallenge in non-small cell lung cancer. Jpn. J. Clin. Oncol. 2019, 49, 762–765. [Google Scholar] [CrossRef] [PubMed]
- Mouri, A.; Kaira, K.; Yamaguchi, O.; Shiono, A.; Miura, Y.; Hashimoto, K.; Nishihara, F.; Murayama, Y.; Kobayashi, K.; Kagamu, H. Clinical difference between discontinuation and retreatment with nivolumab after immune—Related adverse events in patients with lung cancer. Cancer Chemother. Pharmacol. 2019, 84, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Gelsomino, F.; Di Federico, A.; Filippini, D.M.; Dall’olio, F.G.; Lamberti, G.; Sperandi, F.; Balacchi, C.; Brocchi, S.; Ardizzoni, A. Overcoming Primary Resistance to PD-1 Inhibitor with Anti–PD-L1 Agent in Squamous-Cell NSCLC: Case Report. Clin. Lung Cancer 2020, 21, e45–e48. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Hao, X.; Yang, K.; Wang, Q.; Wang, J.; Lin, L.; Teng, F.; Li, J.; Xing, P. Immune checkpoint inhibitor rechallenge in advanced or metastatic non-small cell lung cancer: A retrospective cohort study. J. Cancer Res. Clin. Oncol. 2022, 148, 3081–3089. [Google Scholar] [CrossRef] [PubMed]
- Otani, Y.; Mori, K.; Morikawa, N.; Mizutani, M.; Yasojima, H.; Masuyama, M.; Mano, M.; Masuda, N. Rechallenge of anti-PD-1/PD-L1 antibody showed a good response to metastatic breast cancer: A case report. Immunotherapy 2021, 13, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Ravi, P.; Mantia, C.; Su, C.; Sorenson, K.; Elhag, D.; Rathi, N.; Bakouny, Z.; Agarwal, N.; Zakharia, Y.; Costello, B.A.; et al. Evaluation of the Safety and Efficacy of Immunotherapy Rechallenge in Patients with Renal Cell Carcinoma. JAMA Oncol. 2020, 6, 1606–1610. [Google Scholar] [CrossRef] [PubMed]
- Kambhampati, S.; Mei, M.G.; Godfrey, J.; Siddiqi, T.; Salhotra, A.; Chen, R.; Smith, E.; Popplewell, L.L.; Herrera, A.F. PD-1 Blockade After Avelumab in Relapsed/Refractory Classical Hodgkin Lymphoma. Clin. Lymphoma Myeloma Leuk. 2022, 22, e893–e897. [Google Scholar] [CrossRef] [PubMed]
- Wakasugi, T.; Takeuchi, S.; Ohkubo, J.-I.; Suzuki, H. Retreatment with nivolumab for patients with recurrent and/or metastatic head and neck cancer. Acta Otolaryngol. 2022, 142, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Makrakis, D.; Bakaloudi, D.R.; Talukder, R.; Lin, G.I.; Diamantopoulos, L.N.; Jindal, T.; Vather-Wu, N.; Zakharia, Y.; Tripathi, N.; Agarwal, N.; et al. Treatment Rechallenge with Immune Checkpoint Inhibitors in Advanced Urothelial Carcinoma. Clin. Genitourin. Cancer 2022, 21, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.J.; Lalani, A.-K.A.; Bossé, D.; Steinharter, J.A.; Harshman, L.C.; Hodi, F.S.; Ott, P.A.; Choueiri, T.K. Response to single agent PD-1 inhibitor after progression on previous PD-1 / PD-L1 inhibitors: A case series. J. Immunother. Cancer 2017, 5, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonaggio, A.; Michot, J.M.; Voisin, A.L.; Le Pavec, J.; Collins, M.; Lallart, A.; Cengizalp, G.; Vozy, A.; Laparra, A.; Varga, A.; et al. Evaluation of Readministration of Immune Checkpoint Inhibitors after Immune-Related Adverse Events in Patients with Cancer. JAMA Oncol. 2019, 5, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- De Risi, I.; Sciacovelli, A.M.; Guida, M. Checkpoint Inhibitors Immunotherapy in Metastatic Melanoma: When to Stop Treatment? Biomedicines 2022, 10, 2424. [Google Scholar] [CrossRef] [PubMed]
- Fessas, P.; Lee, H.; Ikemizu, S.; Janowitz, T. A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. Semin. Oncol. 2017, 44, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, H.T.; Shin, W.; Chae, J.; Choi, J.; Kim, S.H.; Lim, H.; Heo, T.W.; Park, K.Y.; Lee, Y.J.; et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat. Commun. 2016, 7, 13354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöffski, P.; Tan, D.S.W.; Martín, M.; Ochoa-De-Olza, M.; Sarantopoulos, J.; Carvajal, R.D.; Kyi, C.; Esaki, T.; Prawira, A.; Akerley, W.; et al. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J. Immunother. Cancer 2022, 10, e003776. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Schadendorf, D.; Lipson, E.J.; Ascierto, P.A.; Matamala, L.; Gutiérrez, E.C.; Rutkowski, P.; Gogas, H.J.; Lao, C.D.; De Menezes, J.J.; et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl. J. Med. 2022, 386, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Nathan, P.; Hassel, J.C.; Rutkowski, P.; Baurain, J.-F.; Butler, M.O.; Schlaak, M.; Sullivan, R.J.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2021, 385, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Middleton, M.R.; McAlpine, C.; Woodcock, V.K.; Corrie, P.; Infante, J.R.; Steven, N.M.; Evans, T.R.J.; Anthoney, A.; Shoushtari, A.N.; Hamid, O.; et al. Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma. Clin. Cancer Res. 2020, 26, 5869–5878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Chen, D.; Yu, J. Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct. Target Ther. 2022, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wang, Y.; He, P.; Shao, B.; Liu, F.; Xiang, Z.; Yang, T.; Zeng, Y.; He, T.; Ma, J.; et al. Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Front. Oncol. 2022, 12, 809304. [Google Scholar] [CrossRef] [PubMed]
- Bailly, C.; Thuru, X.; Quesnel, B. Combined cytotoxic chemotherapy and immunotherapy of cancer: Modern times. NAR Cancer 2020, 2, zcaa002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Jin, F.; You, Y.; Du, Y.; Di Liu, D.; Xu, X.; Wang, J.; Zhu, L.; Chen, M.; Shu, G.; et al. Synergistic effect of tumor chemo-immunotherapy induced by leukocyte-hitchhiking thermal-sensitive micelles. Nat. Commun. 2021, 12, 4755. [Google Scholar] [CrossRef] [PubMed]
- Vanneman, M.; Dranoff, G. Combining Immunotherapy and Targeted Therapies in Cancer Treatment. Nat. Rev. Cancer 2012, 12, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bylsma, S.; Yun, K.; Patel, S.; Dennis, M.J. Immune Checkpoint Inhibitor Rechallenge After Prior Immune Toxicity. Curr. Treat Options Oncol. 2022, 23, 1153. [Google Scholar] [CrossRef] [PubMed]
- Gumusay, O.; Callan, J.; Rugo, H.S. Immunotherapy toxicity: Identification and management. Breast Cancer Res. Treat. 2022, 192, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Alaiwi, S.A.; Xie, W.; Nassar, A.H.; Dudani, S.; Martini, D.; Bakouny, Z.; Steinharter, J.A.; Nuzzo, P.V.; Flippot, R.; Martinez-Chanza, N.; et al. Safety and efficacy of restarting immune checkpoint inhibitors after clinically significant immune-related adverse events in metastatic renal cell carcinoma. J. Immunother. Cancer 2020, 8, e000144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PICO | Description |
---|---|
Patients | Cancer patients that were subjected to immune checkpoint inhibitors retreatment or rechallenge |
Indicator group | Cancer patients retreated or rechallenged with immune checkpoint inhibitors |
Comparator group | Cancer patients who were not retreated or rechallenged with immune checkpoint inhibitors |
Outcomes | Cancer patients’ RECIST-based response of immune checkpoint inhibitor retreatment or rechallenge |
First Author, Year | N | Stage | ICI1 | CNV Meta | Interval Treatment | Median Time Interval | Cessation from ICI1 | ICI2 | CNV Meta | # Retreatment—1; # Rechallenge—2 | Major Efficacy Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|
Melanoma | |||||||||||
Robert, 2013 [24] | 38 | IV | Ipi + gp100; Ipi | NA | NA | 11.5 months (6.0–48.7); 8.9 months (6.0–28.9) | Completion | Ipi + gp100; Ipi | NA | 1 | 7 patients achieved a better response after ICI2 than after ICI1. |
Chiarion-Sileni, 2014 [25] | 51 | III–IV | Ipi | NA | NA | 36 weeks (24–66) | Completion * | Ipi | 3 | 1 | Median OS in retreated vs. non-retreated was 21 (95% CI 16–26) and 13 months (95% CI 11–15), respectively (p < 0.0001). |
Jacobsoone-Urlich, 2016 [26] | 8 | IV | Pem; Niv | NA | NA | 127.5 days (91–210) | Completion * | Ipi | NA | Not-specified | 4 patients achieved a better response after ICI2 than after ICI1. |
Aya, 2016 [27] | 9 | IV | Pem; Niv | NA | 4 | 13.1 weeks (2–38) | Progression | Ipi | 1 | Not-specified | 2 patients who responded to ICI2, had DOR +8 and +17 months above median. |
Bowyer, 2016 [28] | 40 | IV | Pem; Niv | NA | NA | 53 days (range 2–683 days) | Progression | Ipi | 3 | 2 | ICI2 responders (>6 months OR or prolonged SD) achieved 3 PR, 3 SD and 1 PD at ICI1. |
Nomura, 2017 [29] | 8 | IV | Niv | 0 | 4 | 3 months | Progression (7); Toxicity (1) | Ipi | 1 | 1 | Median PFS in retreated vs. non-retreated was 4.1 (range 2.1–8.4) and 4.3 months (range 0.3–14), respectively. |
Zimmer, 2017 [30] | 84 | III–IV | Anti-PD-1 | NA | NA | 42 days (1–588)—Niv + Ipi; 28 days (7–660)—Ipi | Progression * | Niv + Ipi; Ipi | 33 | 1 | Benefit from ICI1 had no impact on response to ICI2 (OR 0.75, 95% CI 2–3.6, p = 0.82; 1.45, 95% CI 4–5.0, p = 0.55). |
Blasig, 2017 [31] | 8 | IV | Pem; Niv | 0 | 6 | 10.5 months (1–15) | Progression (7); Toxicity (1) | Pem | 3 | 1 | 2 patients achieved a better response after ICI2 than after ICI1. |
Robert, 2019 [32] | 13 | III–IV | Pem | NA | 3 | NA | Competion (12); NA (1) | Pem | 1 | 1 | 7 patients achieved the same ICI1 response after ICI2 (3 CR, 3 PR, 1 SD). |
Jansen, 2019 [33] | 19 | III–IV | Pem; Niv | NA | NA | 12 months (2.1–19.2) | Elective discontinuation | Pem; Niv | NA | 1 | 5/6 objective responses after ICI2 were seen in patients obtaining CR during ICI1. |
Kan, 2020 [34] | 4 | IV | Niv | 0 | 4 | NA | Completion | Pem | 0 | 1 | Patients who achieved PR at ICI2 showed a decrease in NLR after the intermediate treatment in spite of the increase during ICI1. |
Whitman, 2020 [35] | 21 | III–IV | Pem; Niv | NA | NA | ≥90 days | Completion (with SD or better) | Pem; Niv | 0 | 1 | Patients who achieved SD or better at ICI1 benefited from ICI2. |
Hepner, 2021 [36] | 47 | III–IV | Ipi + Niv; Ipi + Pem; Ipi | NA | 25 | NA | Completion (27); Toxicity (19); Other (1) | Ipi + Niv; Ipi + Pem; Ipi | NA | 1 | Patients who achieved PR at ICI1 had a higher response rate to ICI2 than those with SD as the best response to ICI1 (11/33, 33% vs. 1/10, 10%, p = 0.035); however, PFS was similar |
Perdyan, 2023 [Figure 1 of this paper] | 1 | IV | Pem | 1 | 1 | 27 months | Completion | Pem | 1 | 1 | - |
Non-small cell lung cancer | |||||||||||
Niki, 2018 [37] | 11 | Advanced | Niv | NA | 10 | 4.2 months (1–12.7) | NA (but not toxicity) | Niv; Pem | NA | 2 | 4 patients who had responded to ICI1 responded to ICI2; the only patient who had PD at ICI1, achieved PR in ICI2, however, received chemoradiation in between. |
Fujita, 2018 [38] | 12 | III–IV | Niv | NA | 8 | NA | Completion * | Pem | NA | 1 | Patients who responded to ICI2 (PR and SD) had very high (TPS ≥ 80%) tumour PD-L1 expression. Interval chemoradiation did not affect the efficacy of ICI2. |
Fujita, 2019 [39] | 18 | III–IV | Pem; Niv | NA | 11 | NA | Completion (7); Progression (11) * | Atez | NA | 1 | Atezolizumab at ICI2 was not effective. It might be due to a large number of patients receiving it as a third- or later-line regimen. |
Katayama, 2019 [40] | 35 | III–IV | Niv; Pem; Atez | NA | 35 * | 157 days (106–238) | Progression | Niv; Pem; Atez | 7 | 2 | In multivariate analysis, ECOG-PS ≥ 2 was associated with PFS (HR 2.38, 95% CI 1.03–5.52, p = 0.043) and OS (HR 3.01, 95% CI 1.10–8.24, p = 0.032) of ICI2. |
Watanabe, 2019 [41] | 14 | III–IV | Pem; Niv; Atez | NA | 14 | 6.5 months (2.1–15.1) | Progression | Niv; Pem | NA | 2 | 2 of 3 patients who achieved more than SD at ICI2, received interval radiotherapy. |
Mouri, 2019 [42] | 21 | III–IV | Niv | NA | 0 | NA | Toxicity | Niv | NA | 1 | Median OS and PFS did not differ between the ICI2 and discontinuation cohorts. |
Gelsomino, 2020 [43] | 1 | III | Niv | 0 | 1 | 13 months | Progression | Atez | 0 | 2 | - |
Gobbini, 2020 [17] | 144 | I–IV | Anti-PD-1; Anti-PD-L1 | 24 | 88 | NA | Progression (58); Toxicity (58); Clinical decision (28) | Anti-PD-1; Anti-PD-L1 | 33 | 2 | Longer PFS and OS at ICI2 were achieved in cases of discontinuation of ICI1 because of toxicity or clinical decision (in most cases because of long-term benefit) compared to patients with PD. Moreover, patients who did not require an interval CHT, and those with a better ECOG PS at the ICI2 experienced better outcomes. |
Xu, 2022 [44] | 40 | I–IV | Anti-PD-1 | NA | 7 | NA | Progression | Anti-PD-1; Anti-PD-L1 | 10 | 2 | Longer PFS was achieved in patients with the best overall response of SD/PD in initial immunotherapy, or whose treatment lines prior to ICI rechallenge were one or two. |
Breast cancer | |||||||||||
Otani, 2021 [45] | 1 | IV | Atez + Nab-p | NA | 1 | NA | Completion | Pem | NA | 2 | - |
Renal cell carcinoma | |||||||||||
Ravi, 2020 [46] | 69 | IV | Niv/Ipi-based | NA | NA | NA | Progression (50); Toxicity (16); Other (3) | Niv/Ipi-based | NA | 2 | The ORR at ICI-2 was higher in patients who responded to ICI-1 (7/24) compared with those who had SD (4/25) or PD (3/14), while it was similar in patients receiving single-agent ICI (n = 7), dual ICI (n = 5), or ICI in combination with TT (n = 3) at ICI-2. |
Mesothelioma | |||||||||||
Minchom, 2020 [16] | 1 | Advanced | Pem | NA | 0 | 21 months | Completion | Pem | NA | 2 | - |
Classical Hodgkin lymphoma | |||||||||||
Kambhampati, 2022 [47] | 7 | III–IV | Avelumab | NA | 4 | 3.2 months (0.5–23.7) | Progression (5); Toxicity (2) | Niv; Pem | NA | 1 | PD-1 blockade after PD-L1 blockade in r/r cHL may be effective with 86% ORR, including patients who previously progressed on avelumab. |
Head and neck cancer | |||||||||||
Wakasugi, 2022 [48] | 12 | NA | Niv; Pem | NA | 12 | NA | Progression | Niv | NA | 1 | In multivariate analysis, median OS was the longest in ICI2 when compared to salvage chemotherapy or radiotherapy cohorts (HR 0.258, 95% CI 091–0.732, p = 0.011). |
Urothelial carcinoma | |||||||||||
Makrakis, 2022 [49] | 25 | III–IV * | Anti-PD-1; Anti-PD-L1 | 0;1 | 13 | 45 weeks (8–208) | Progression (19); Toxicity (4); Completion (2) * | Anti-PD-1; Anti-PD-L1 | 0;1 | 2 | About half of the patients who were rechallenged with an ICI-based regimen achieved disease control. |
Mixed cancers | |||||||||||
Martini, 2017 [50] | 3 | IV | Pem; Anti-PD-L1 | 0 | 3 | 6 months (0.25–20) | Progression (2); Toxicity (1) | Niv | 0 | 1 | - |
Bernard-Tessier, 2018 [15] | 8 | NA | Anti-PD-1; Anti-PD-L1 | NA | 0 | 35 months (16.3–65.8) | Completion | Anti-PD-1; Anti-PD-L1 | NA | 2 | Patients treated for MSI-high colorectal carcinoma and urothelial carcinoma had similar long-term responses to ICI2. |
Simonaggio, 2019 [51] | 40 | NA | Anti PD-1; Anti PD-L1 | NA | NA | NA | Toxicity | Anti PD-1; Anti-PD-L1 | NA | 2 | Median PFS in rechallenged vs. non-rechallenged was 19.1 (95% CI 17—not reached) and 23.6 months (95% CI 10.2—not reached), respectively. |
First Author, Year | N Patients | CR1 | PR1 | SD1 | PD1 | NE1 | ORR1 | DCR1 | CR2 | PR2 | SD2 | PD2 | NE2 | ORR2 | DCR2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Melanoma | |||||||||||||||
Robert, 2013 [24] | 38 | 0 | 11 | 21 | 5 | 1 | 0.29 | 0.84 | 1 | 6 | 16 | 15 | 0 | 0.18 | 0.61 |
Chiarion-Sileni, 2014 [25] | 51 | 0 | 20 | 31 | 0 | 0 | 0.39 | 1 | 2 | 12 | 30 | 7 | 0 | 0.27 | 0.86 |
Jacobsoone-Urlich, 2016 [26] | 8 | 0 | 2 | 0 | 6 | 0 | 0.25 | 0.25 | 3 | 1 | 0 | 4 | 0 | 0.5 | 0.5 |
Aya, 2016 [27] | 9 | 0 | 4 | 1 | 4 | 0 | 0.44 | 0.56 | 0 | 2 | 0 | 7 | 0 | 0.29 | 0.29 |
Bowyer, 2016 [28] | 40 | 0 | 8 | 15 | 17 | 0 | 0.2 | 0.58 | 0 | 4 | 3 | 33 | 0 | 0.1 | 0.18 |
Nomura, 2017 [29] | 8 | 0 | 3 | 3 | 2 | 0 | 0.38 | 0.75 | 0 | 2 | 3 | 3 | 0 | 0.25 | 0.63 |
Zimmer, 2017 [30] | 84 | 0 | 15 | 15 | 52 | 2 | 0.18 | 0.37 | 1 | 13 | 15 | 47 | 8 | 0.17 | 0.35 |
Blasig, 2017 [31] | 8 | 1 | 2 | 3 | 2 | 0 | 0.38 | 0.75 | 0 | 1 | 3 | 4 | 0 | 0.13 | 0.25 |
Robert, 2019 [32] | 13 | 6 | 6 | 1 | 0 | 0 | 0.92 | 0.92 | 3 | 4 | 3 | 0 | 2 | 0.54 | 0.77 |
Jansen, 2019 [33] | 19 | 9 | 6 | 4 | 0 | 0 | 0.79 | 1 | 2 | 4 | 5 | 7 | 1 | 0.32 | 0.37 |
Kan, 2020 [34] | 4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0.5 | 0.5 |
Whitman, 2020 [35] | 21 | 4 | 10 | 7 | 0 | 0 | 0.67 | 1 | 7 | 6 | 5 | 3 | 0 | 0.62 | 0.86 |
Hepner, 2021 [36] | 47 | 4 | 33 | 10 | 0 | 0 | 0.79 | 1 | 1 | 11 | 9 | 26 | 0 | 0.26 | 0.45 |
Perdyan, 2022 [Figure 1 of this paper] | 1 | 1 | 0 | 0 | 0 | 0 | - | - | 0 | 1 | 0 | 0 | 0 | - | - |
Non-small cell lung cancer | |||||||||||||||
Niki, 2018 [37] | 11 | 0 | 5 | 2 | 4 | 0 | 0.45 | 0.63 | 0 | 3 | 2 | 6 | 0 | 0.27 | 0.45 |
Fujita, 2018 [38] | 12 | 0 | 7 | 2 | 3 | 0 | 0.58 | 0.75 | 0 | 1 | 4 | 6 | 1 | 0.08 | 0.42 |
Katayama, 2019 [40] | 35 | 0 | 12 | 12 | 10 | 1 | 0.35 | 0.71 | 0 | 1 | 14 | 18 | 2 | 0.03 | 0.43 |
Watanabe, 2019 [41] | 14 | 0 | 3 | 5 | 6 | 0 | 0.21 | 0.57 | 0 | 1 | 2 | 11 | 0 | 0.07 | 0.21 |
Fujita, 2019 [39] | 18 | 0 | 7 | 4 | 6 | 1 | 0.39 | 0.61 | 0 | 0 | 7 | 11 | 0 | 0.39 | 0.39 |
Mouri, 2019 [42] | 21 | 1 | 12 | 8 | 0 | 0 | 0.62 | 1 | 0 | 3 | 15 | 2 | 1 | 0.17 | 0.86 |
Gelsomino *, 2020 [43] | 1 | 0 | 0 | 0 | 1 | 0 | - | - | 0 | 1 | 0 | 0 | 0 | - | - |
Gobbini, 2020 [17] | 144 | 10 | 61 | 38 | 26 | 9 | 0.53 | 0.81 | 5 | 18 | 45 | 54 | 22 | 0.16 | 0.47 |
Xu, 2022 [44] | 40 | 0 | 14 | 19 | 7 | 0 | 0.35 | 0.83 | 0 | 9 | 25 | 6 | 0 | 0.23 | 0.85 |
Breast cancer | |||||||||||||||
Otani *, 2021 [45] | 1 | 0 | 1 | 0 | 0 | 0 | - | - | 1 | 0 | 0 | 0 | 0 | - | - |
Renal cell carcinoma | |||||||||||||||
Ravi, 2020 [46] | 69 | 0 | 25 | 29 | 14 | 1 | 0.37 | 0.79 | 0 | 15 | 26 | 23 | 5 | 0.22 | 0.59 |
Mesothelioma | |||||||||||||||
Minchom *, 2020 [16] | 1 | 0 | 1 | 0 | 0 | 0 | - | - | 0 | 0 | 1 | 0 | 0 | - | - |
Classical Hodgkin lymphoma | |||||||||||||||
Kambhampati, 2022 [47] | 7 | 2 | 3 | 1 | 0 | 1 | 0.71 | 0.86 | 5 | 1 | 0 | 1 | 0 | 0.86 | 0.86 |
Head and neck cancer | |||||||||||||||
Wakasugi, 2022 [48] | 12 | 1 | 1 | 8 | 2 | 0 | 0.17 | 0.83 | 0 | 2 | 5 | 1 | 1 | 0.17 | 0.58 |
Urothelial carcinoma | |||||||||||||||
Makrakis, 2022 [49] | 25 | 3 | 6 | 4 | 11 | 1 | 0.36 | 0.52 | 1 | 3 | 8 | 12 | 1 | 0.16 | 0.48 |
Mixed cancers | |||||||||||||||
Martini, 2017 [50] | 3 | 1 | 0 | 2 | 0 | 0 | 0.33 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
Bernard-Tessier, 2018 [15] | 8 | 1 | 6 | 1 | 0 | 0 | 0.88 | 1 | 0 | 2 | 6 | 0 | 0 | 0.25 | 1 |
Simonaggio, 2019 [51] | 40 | 0 | 9 | 17 | 4 | 10 | 0.3 | 0.87 | 0 | 13 | 15 | 9 | 3 | 0.33 | 0.7 |
First Author, Year | PFS1 | PFS2 | OS1 | OS2 |
---|---|---|---|---|
Melanoma | ||||
Chiarion-Sileni, 2014 [25] | NA | NA | mOS: 21 months (95% CI 16–26) | mOS: 12 months (95% CI 10–14) |
Jacobsoone-Urlich, 2016 [26] | NA | NA | NA | Mean OS: 13.8 months for 4 patients with CR or PR. |
Aya, 2016 [27] | NA | mPFS: 3.14 months (95% CI 2.56–3.71) | mOS: 21.8 months (95% CI 12.9–30.6 | mOS: 16.8 months (95% CI 8.1–25.4) |
Bowyer, 2016 [28] | mPFS: 5 months (95% CI–not revealed) | NA | NA | NA |
Nomura, 2017 [29] | mPFS: 4.1 months (range 2.1–8.4) | mPFS: 4.3 months (0.3–14) | mOS: 18.6 months (6.0–24.8) | NA |
Zimmer, 2017 [30] | NA | mPFS: Ipi: 3 months (95% CI 2.8–3.8) Ipi + Niv: 2 months (95% CI 1.9–3) | NA | 1-year OS: Ipi: 54% (95% CI 35–70) Ipi + Niv: 55% (95% CI 26–76) |
Robert, 2019 [32] | mPFS: Pem: 11.6 months (95% CI 8.2–16.4) Ipi: 3.7 months (95% CI 2.8–4.3) | NA | mOS: Pem: 32.7 months (95% CI 24.5–41.6); Ipi: 15.9 months (95% CI 13.3–22) | NA |
Jansen, 2019 [33] | mTTP: 12 months (2–23) | NA | NA | NA |
Whitman, 2020 [35] | NA | NA | NA | mOS: 30 months (95% CI 14.4—not reached) |
Hepner, 2021 [36] | mPFS: 11 months (95% CI 8–15) | mPFS: 5 months (95% CI 3–9) | NA | mOS: 17 months (95% CI 12—not reached) |
Non-small cell lung cancer | ||||
Niki, 2018 [37] | mPFS: 4.9 months (0.7–18.2) | mPFS: 2.7 months (0.5–16.1) | NA | NA |
Fujita, 2018 [38] | mPFS: 6.2 months (range 2.8–13.7) | mPFS: 3.1 months (range 1.2–12.6) | NA | NA |
Katayama, 2019 [40] | mPFS: 120 days (95% CI 84–139) | mPFS: 81 days (95% CI 41–112) | mOS: 596 days (95% CI 455–864) | mOS: 225 days (95% CI 106–361) |
Watanabe, 2019 [41] | mPFS: 3.7 months (95% CI 1.3–7.1) | mPFS: 1.6 months (95% CI 0.8–2.6) | NA | OS: 6.5 months (95% CI 1.4–19.0) |
Fujita, 2019 [39] | mPFS: Niv 7.7 months (±6.6) Pem 5.6 months (±4.7) | mPFS: 2.9 months (±1.8) | NA | NA |
Gobbini, 2020 [17] | mPFS: 13 months (95% CI 10–16.5) | mPFS: 4.4 months (95% CI 3–6.5) | mOS: 3.3 years (95% CI 2.9–3.9) | mOS: 1.5 years (95% CI 1.0–2.1) |
Xu, 2022 [44] | mPFS: 5.7 months (95% CI 4.1–7.2) | mPFS: 6.8 months (95% CI 5.8–7.8) | NA | NA |
Renal cell carcinoma | ||||
Ravi, 2020 [46] | mTTP: 8.2 months (95% CI 5.7–10.6) | mTTP: 5.7 months (95% CI 3.2–7.6) | NA | NA |
Head and neck cancer | ||||
Wakasugi, 2022 [48] | mPFS: 11.2 months (95% CI 0–29.3) | NA | mOS: 23.6 months (95% CI 21.1–26.0) | NA |
Mixed cancers | ||||
Bernard-Tessier, 2018 [15] | mPFS: 24.4 months (range 15.8–49.0) | mPFS: 12.9 months (range 5.0–35.4) | NA | NA |
Simonaggio, 2019 [51] | mPFS: 19.1 (95% CI 17—not reached) | mPFS: 23.6 months (95% CI 10.2—not reached) | mOS: not reached | mOS: not reached |
First Author, Year | N | AE1 (%) | AE2 (%) | SAE1 (%) | SAE2 (%) |
---|---|---|---|---|---|
Melanoma | |||||
Robert, 2013 [24] | 38 | 0.47 | 0.58 | NA | NA |
Chiarion-Sileni, 2014 [25] | 51 | 0.39 | 0.22 | 0.04 | 0.06 |
Jacobsoone-Urlich, 2016 [26] | 8 | NA | 0.38 | NA | 0.13 |
Aya, 2016 [27] | 9 | 0.67 | 0.88 | 0.11 | 0.44 |
Bowyer, 2016 [28] | 40 | NA | NA | 0.21 | 0.35 |
Nomura, 2017 [29] | 8 | 1.25 | 0.38 | 0.25 | 0 |
Blasig, 2017 [31] | 8 | 1.63 | 1.38 | 0.25 | 0.13 |
Robert, 2019 [32] | 13 | NA | 0.46 | NA | 0 |
Kan, 2020 [34] | 4 | 0.25 | 0.5 | 0 | 0 |
Hepner, 2021 [36] | 47 | 0.94 | 0.57 | 0.38 | 0.38 |
Non-small cell lung cancer | |||||
Niki, 2018 [37] | 11 | 1.45 | 0.64 | 0 | 0 |
Fujita, 2018 [38] | 12 | 1.25 | 1.33 | 0.67 (G ≥ 2) | 0.83 (G ≥ 2) |
Watanabe, 2019 [41] | 14 | 0.64 | 0.36 | 0.21 (G ≥ 2) | 0 (G ≥ 2) |
Fujita, 2019 [39] | 18 | 0.89 | 1.28 | 0.5 (G ≥ 2) | 0.83 (G ≥ 2) |
Mouri, 2019 [42] | 21 | NA | 1 | NA | 0.33 |
Gobbini, 2020 [17] | 144 | NA | NA | 0.19 | 0.06 |
Xu, 2022 [44] | 40 | NA | NA | NA | NA |
Renal cell carcinoma | |||||
Ravi, 2020 [46] | 69 | 0.71 | 0.45 | 0.26 | 0.16 |
Classical Hodgkin lymphoma | |||||
Kambhampati, 2022 [47] | 7 | 0.43 | 0.14 | 0.14 | 0 |
Head and neck cancer | |||||
Wakasugi, 2022 [48] | 12 | NA | 1.5 | NA | 0 |
Urothelial carcinoma | |||||
Makrakis, 2022 [49] | 25 | 0.17 | 0 | NA | NA |
Mixed cancers | |||||
Martini, 2017 [50] | 3 | NA | 1 | NA | NA |
Simonaggio, 2019 [51] | 40 | NA | 1 | NA | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdyan, A.; Sobocki, B.K.; Balihodzic, A.; Dąbrowska, A.; Kacperczyk, J.; Rutkowski, J. The Effectiveness of Cancer Immune Checkpoint Inhibitor Retreatment and Rechallenge—A Systematic Review. Cancers 2023, 15, 3490. https://doi.org/10.3390/cancers15133490
Perdyan A, Sobocki BK, Balihodzic A, Dąbrowska A, Kacperczyk J, Rutkowski J. The Effectiveness of Cancer Immune Checkpoint Inhibitor Retreatment and Rechallenge—A Systematic Review. Cancers. 2023; 15(13):3490. https://doi.org/10.3390/cancers15133490
Chicago/Turabian StylePerdyan, Adrian, Bartosz Kamil Sobocki, Amar Balihodzic, Anna Dąbrowska, Justyna Kacperczyk, and Jacek Rutkowski. 2023. "The Effectiveness of Cancer Immune Checkpoint Inhibitor Retreatment and Rechallenge—A Systematic Review" Cancers 15, no. 13: 3490. https://doi.org/10.3390/cancers15133490
APA StylePerdyan, A., Sobocki, B. K., Balihodzic, A., Dąbrowska, A., Kacperczyk, J., & Rutkowski, J. (2023). The Effectiveness of Cancer Immune Checkpoint Inhibitor Retreatment and Rechallenge—A Systematic Review. Cancers, 15(13), 3490. https://doi.org/10.3390/cancers15133490